Skip to main content

Bioimage Informatics for Big Data

  • Chapter
  • First Online:
Focus on Bio-Image Informatics

Abstract

Bioimage informatics is a field wherein high-throughput image informatics methods are used to solve challenging scientific problems related to biology and medicine. When the image datasets become larger and more complicated, many conventional image analysis approaches are no longer applicable. Here, we discuss two critical challenges of large-scale bioimage informatics applications, namely, data accessibility and adaptive data analysis. We highlight case studies to show that these challenges can be tackled based on distributed image computing as well as machine learning of image examples in a multidimensional environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anastassiou C et al (2015) Project MindScope: inferring cortical function in the mouse visual system, PNAS (submitted)

    Google Scholar 

  • Bria A, Iannello G, Peng H (2015) An open-source Vaa3D plugin for real-time 3D visualization of Terabyte-sized volumetric image. International symposium on biomedical imaging: from nano to macro, pp 520–523

    Google Scholar 

  • Burns R et al (2013) The Open Connectome Project Data Cluster: scalable analysis and vision for high-throughput neuroscience. SSDBM 2013

    Google Scholar 

  • Chen H et al (2015) SmartTracing: self-learning based neuron reconstruction. Brain Informatics (submitted)

    Google Scholar 

  • Collman F et al (2015) Mapping synapses by conjugate light-electron array tomography. J Neurosci 35:5792–5807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danuser G (2011) Computer vision in cell biology. Cell 147:973–978

    Article  CAS  PubMed  Google Scholar 

  • De Chaumont F et al (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696

    Article  PubMed  Google Scholar 

  • Jenett A et al (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2:991–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones TR et al (2009) Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci U S A 106(6):1826–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jug F et al (2014) Bioimage Informatics in the context of Drosophila research. Methods 68(1):60–73

    Article  CAS  PubMed  Google Scholar 

  • Kasthuri N et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162:648–661

    Article  CAS  PubMed  Google Scholar 

  • Khmelinskii A et al (2012) Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nat Biotechnol 30:708–714

    Article  CAS  PubMed  Google Scholar 

  • Kim J et al (2012) mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat Methods 9:96–102

    Article  CAS  Google Scholar 

  • Kutsuna N et al (2012) Active learning framework with iterative clustering for bioimage classification. Nat Commun 3:1032

    Article  PubMed  PubMed Central  Google Scholar 

  • Kvilekval K et al (2010) Bisque: a platform for bioimage analysis and management. Bioinformatics 26:544–552

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2015) Interactive exemplar-based segmentation toolkit for biomedical image analysis. International symposium on biomedical imaging: from nano to macro, pp 168–171

    Google Scholar 

  • Long F et al (2009) A 3D digital atlas of C. elegans and its application to single-cell analyses. Nat Methods 6:667–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luisi J et al (2011) The FARSIGHT trace editor: an open source tool for 3-D inspection and efficient pattern analysis aided editing of automated neuronal reconstructions. Neuroinformatics 9:305–315

    Article  PubMed  Google Scholar 

  • Mancuso JJ et al (2013) Methods of dendritic spine detection: from Golgi to high-resolution optical imaging. Neuroscience 251:129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maree R et al (2013) A rich internet application for remote visualization and collaborative annotation of digital slides in histology and cytology. Diagn Pathol 8(S1):S26

    Article  PubMed Central  Google Scholar 

  • Martone ME et al (2002) A cell-centered database for electron tomographic data. J Struct Biol 138:145–155

    Article  CAS  PubMed  Google Scholar 

  • Micheva KD et al (2010) Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68:639–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikut R et al (2013) Automated processing of Zebrafish imaging data: a survey. Zebrafish 10(3):401–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers G (2012) Why bioimage informatics matters. Nat Methods 9:659–660

    Article  CAS  PubMed  Google Scholar 

  • Orlov N et al (2008) WND-CHARM: multi-purpose image classification using compound image transforms. Pattern Recognit Lett 29:1684–1693

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng H (2008) Bioimage informatics: a new area of engineering biology. Bioinformatics 24:1827–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng H et al (2010) V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat Biotechnol 28:348–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng H et al (2011) BrainAligner: 3D registration atlases of Drosophila brains. Nat Methods 8:493–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng H et al (2012) Bioimage informatics: a new category in bioinformatics. Bioinformatics 28:1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng H et al (2014a) Extensible visualization and analysis for multidimensional images using Vaa3D. Nat Protoc 9:193–208

    Article  CAS  PubMed  Google Scholar 

  • Peng H et al (2014b) Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis. Nat Commun 5:4342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng H et al (2015a) BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron. doi:10.1016/j.neuron.2015.1006.1036

    PubMed  Google Scholar 

  • Peng H, Meijering E, Ascoli GA (2015b) From DIADEM to BigNeuron. Neuroinformatics 13:259–260

    Article  PubMed  Google Scholar 

  • Qu L, Long F, Peng H (2015) 3-D registration of biological images and models: registration of microscopic images and its uses in segmentation and annotation. IEEE Signal Proc Mag 32:70–77

    Article  Google Scholar 

  • Saalfeld S et al (2009) CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics 25:1984–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders J et al (2015) Learning-guided automatic three dimensional synapse quantification for drosophila neurons. BMC Bioinformatics 16:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Silvestri L et al (2013) Micron-scale resolution optical tomography of entire mouse brains with confocal light sheet microscopy. J Vis Exp 80:e50696, doi:50610.53791/50696

    Google Scholar 

  • Sommer C et al (2011) ilastik: interactive learning and segmentation toolkit. IEEE international symposium on biomedical imaging: from nano to macro, pp. 230–233

    Google Scholar 

  • Swedlow JR et al (2003) Informatics and quantitative analysis in biological imaging. Science 300:100–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swedlow JR et al (2009) Bioimage informatics for experimental biology. Annu Rev Biophys 38:327–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomer R et al (2012) Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods 9:755–763

    Article  PubMed  Google Scholar 

  • Weiler N et al (2014) Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography. Scientific Data 1, December 23 2014, p 140046

    Google Scholar 

  • Zhou J, Peng H (2011) Counting cells in 3D confocal images based on discriminative models. Proceedings of the 2nd ACM conference on bioinformatics, computational biology and biomedicine. ACM, pp 399–403

    Google Scholar 

  • Zhou J et al (2013a) Performance model selection for learning-based biological image analysis on a cluster. Proceedings of the international conference on bioinformatics, computational biology and biomedical informatics. ACM, pp 324–332

    Google Scholar 

  • Zhou J et al (2013b) BIOCAT: a pattern recognition platform for customizable biological image classification and annotation. BMC Bioinformatics 14:291. doi:210.1186/1471-2105-1114-1291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanchuan Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peng, H. et al. (2016). Bioimage Informatics for Big Data. In: De Vos, W., Munck, S., Timmermans, JP. (eds) Focus on Bio-Image Informatics. Advances in Anatomy, Embryology and Cell Biology, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-28549-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28549-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28547-4

  • Online ISBN: 978-3-319-28549-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics