
Appendices



Appendix A
Exercises

Explanations of the different types of exercises can be found in the Preface. In
summary, the objective is to provide four types of exercises:

Understanding These exercises aim at highlighting the most important issues
from each chapter. Exercises are available in Chaps. 1–11.

Training The objective of these exercises is to encourage practicing exper-
imentation. This includes setting up hypotheses and performing
the statistical analysis.

Reviewing Chapters 12 and 13 include examples of experiments. The in-
tention of this part is to provide help in reviewing and reading
published experiments.

Assignments These exercises are formulated to promote an understanding of
how experiments can be used in software engineering to evaluate
methods and techniques.

The understanding type questions can be found at the end of each chapter, while
the three other types of exercises can be found in this appendix.

A.1 Training

The exercises are preferably solved either using a statistical program package or
tables from books in statistics. The tables in Appendix B may be used, but the tables
provided are only for the 5% significance level, so if other significance levels are
used then other sources must be used. It should be remembered that Appendix B
has primarily been provided to explain the examples in Chap. 10.

C. Wohlin et al., Experimentation in Software Engineering,
DOI 10.1007/978-3-642-29044-2, © Springer-Verlag Berlin Heidelberg 2012

203



A Exercises

A.1.1 Normally Distributed Data

The probably most complicated example of the statistical methods in Chap. 10 is
the goodness of fit test for the normal distribution, see Sect. 10.2.12. Thus, it is
appropriate to ensure a good understanding of that test.

1. Carry out the goodness of fit test, on the same data, see Table 10.20, using 12
segments instead.

A.1.2 Experience

In Chap. 12, the outcome of the Personal Software Process course is compared
with the background of the students taking the course. The analysis conducted in
Chap. 12 is only partial. The full data set is provided in Tables A.2 and A.3. In
Table A.1, the survey material handed out at the first lecture is presented. The
outcome of the survey is presented in Table A.2. The outcome of the PSP course
is presented in Table A.3, where the following seven measures have been used to
measure the outcome of the course:

Size The number of new and changed lines of code for the ten programs.
Time The total development time for the ten programs.
Prod. The productivity measured as number of lines of code per develop-

ment hour.
Faults The number of faults logged for the ten programs. This includes all

faults found, for example, including compilation faults.
Faults/KLOC The number of faults for each 1,000 lines of code.
Pred. Size The absolute relative error in predicting program size. The figures

show the error in absolute percentages, for example, both over-
and underestimates with 20% are shown as 20% without any sign
indicating the direction of the estimation error.

Pred. Time The absolute relative error in predicting the development time.

Based on the presentation in Chap. 12 and the data in Tables A.2 and A.3 answer
the following questions.

1. How can the survey be improved? Think about what constitutes good measures
of background, experience and ability.

2. Define hypotheses, additional to those in Chap. 12, based on the available data.
Motivate why these hypotheses are interesting.

3. What type of sampling has been used?
4. Analyze the hypotheses you have stated. What are the results?
5. Discuss the external validity of your findings. Can the results be generalized

outside the PSP? Can the results be generalized to industrial software engineers?

204



A.1 Training

Table A.1 Student characterization

Area Description Answer

Study program
(denoted Line)

Answer: Computer Science and Engineering
or Electrical Engineering

General knowledge
in computer
science and
software
engineering
(denoted SE)

1. Little, but curious about the new course
2. Not my speciality (focus on other subjects)
3. Rather good, but not my main focus

(one of a couple of areas)
4. Main focus of my studies

General knowledge
in programming
(denoted Prog.)

1. Only 1–2 courses
2. 3 or more courses, no industrial experience
3. A few courses and some industrial experience
4. More than three courses and more than 1 year

industrial experience

Knowledge about
the PSP (denoted
PSP)

1. What is it?
2. I have heard about it
3. A general understanding of what it is
4. I have read some material

Knowledge in C
(denoted C)

1. No prior knowledge
2. Read a book or followed a course
3. Some industrial experience (less than 6 months)
4. Industrial experience

Knowledge in C++
(denoted C++)

1. No prior knowledge
2. Read a book or followed a course
3. Some industrial experience (less than 6 months)
4. Industrial experience

Number of courses
(denoted Courses)

A list of courses was provided and the students
were asked to put down a yes or no whether they
had taken the course or not. Moreover, they were
asked to complement the list of courses if they had
read something else they thought was a particularly
relevant course

A.1.3 Programming

In an experiment, 20 programmers have developed the same program, where 10 of
them have used programming language A and 10 have used language B. Language
A is newer and the company is planning to change to language A if it is better than
language B. During the development, the size of the program, the development time,
the total number of removed defects and the number of defects removed in test have
been measured.

205



A Exercises

Table A.2 Information from background survey

Subject Line SE Prog. PSP C C++ Courses

1 1 2 1 2 1 1 2

2 1 3 2 1 2 1 4

3 2 3 2 2 2 2 7

4 1 3 2 3 2 1 3

5 1 3 2 3 2 1 5

6 2 4 3 2 1 1 7

7 2 3 2 2 1 2 7

8 1 3 2 2 1 1 4

9 2 4 3 2 1 1 9

10 2 4 2 1 1 1 7

11 1 2 2 1 2 1 3

12 2 4 3 2 1 1 9

13 2 4 3 2 3 3 8

14 2 3 2 2 1 1 6

15 1 3 2 2 1 1 5

16 2 4 2 1 1 1 10

17 1 3 3 1 1 1 5

18 2 4 3 2 1 3 6

19 2 4 3 3 3 3 8

20 1 1 1 1 1 1 2

21 2 3 3 2 2 2 10

22 2 3 2 3 1 1 5

23 1 3 2 2 1 1 4

24 1 2 1 1 1 1 3

25 2 4 3 1 2 2 7

26 1 3 2 2 1 1 5

27 2 4 3 2 3 2 7

28 1 3 2 3 1 1 2

29 2 4 2 3 1 1 7

30 2 3 3 1 2 3 6

31 1 3 2 2 2 2 5

32 2 3 3 1 2 2 10

33 2 4 3 1 1 1 5

34 1 2 2 1 2 2 3

35 1 2 1 1 1 1 2

36 1 2 1 2 1 1 2

37 1 2 2 2 2 2 2

38 2 4 2 2 2 1 6

39 1 2 1 2 1 1 2

40 2 4 3 1 4 4 7

41 2 3 3 2 2 2 8

41 2 4 3 2 2 2 9

(continued)

206



A.1 Training

Table A.2 (continued)

Subject Line SE Prog. PSP C C++ Courses

43 1 3 2 1 1 1 3

44 1 4 3 2 3 2 7

45 2 4 2 2 2 1 6

46 2 2 4 2 4 4 7

47 2 4 3 2 3 2 7

48 1 2 2 2 1 1 2

49 1 3 3 1 1 1 3

50 2 3 2 3 1 1 8

51 2 4 2 4 2 2 8

52 2 4 3 3 3 2 8

53 2 4 3 3 2 2 10

54 1 2 1 2 1 1 2

55 1 2 2 2 1 1 4

56 2 3 2 1 1 1 8

57 1 2 3 1 1 1 4

58 2 4 3 3 1 1 6

59 1 2 2 2 2 1 4

The programmers have been randomly assigned a programming language and
the objective of the experiment is to evaluate if the language has any effect on the
four measured variables. The collected data can be found in Table A.4. The data is
fictitious.

1. Which design has been used in the experiment?
2. Define the hypotheses for the evaluation.
3. Use box plots to investigate the differences between the languages in terms of

central tendency and dispersion with respect to all four factors. Is there any
outlier and if so should it be removed?

4. Assume that parametric tests can be used. Evaluate the effect of the programming
language on the four measured variables. Which conclusions can be drawn from
the results?

5. Evaluate the effect of the programming language on the four measured variables
using a non-parametric test. Which conclusions can be drawn from the results?
Compare the results to those achieved when using parametric tests.

6. Discuss the validity of the results and if it is appropriate to use a parametric test.
7. Assume that the participating programmers have chosen the programming

language themselves. What consequences does this have on the validity of the
results? Do the conclusions still hold?

207



A Exercises

Table A.3 Outcome from the PSP course

Subject Size Time Prod. Faults Faults/KLOC Pred. size Pred. time

1 839 3,657 13:8 53 63:2 39.7 20.2
2 1; 249 3,799 19:7 56 44:8 44.1 21.2
3 968 1,680 34:6 71 73:3 29.1 25.1
4 996 4,357 13:7 35 35:1 24.3 18.0
5 794 2,011 23:7 32 40:3 26.0 13.2

6 849 2,505 20:3 26 30:6 61.1 48.2
7 1; 455 4,017 21:7 118 81:1 36.5 34.7
8 1; 177 2,673 26:4 61 51:8 34.6 32.5
9 747 1,552 28:9 41 54:9 51.0 18.2
10 1; 107 2,479 26:8 59 53:3 22.6 14.0

11 729 3,449 12:7 27 37:0 26.9 52.0
12 999 3,105 19:3 63 63:1 26.0 19.8
13 881 2,224 23:8 44 49:9 47.9 39.9
14 730 2,395 18:3 94 128:8 63.0 20.3
15 1; 145 3,632 18:9 70 61:1 33.3 34.8

16 1; 803 3,193 33:9 98 54:4 52.9 21.8
17 800 2,702 17:8 60 75:0 34.3 26.7
18 1; 042 2,089 29:9 64 61:4 49.3 41.5
19 918 3,648 15:1 43 46:8 49.7 71.5
20 1; 115 6,807 9:8 26 23:3 34.1 22.4

21 890 4,096 13:0 108 121:3 19.3 34.8
22 1; 038 3,609 17:3 98 94:4 21.4 52.0
23 1; 251 6,925 10:8 498 398:1 21.8 34.1
24 623 4,216 8:9 53 85:1 40.5 36.3
25 1; 319 1,864 42:5 92 69:7 43.7 45.0

26 800 4,088 11:7 74 92:5 42.6 36.2
27 1; 267 2,553 29:8 88 69:5 53.0 30.1
28 945 1,648 34:4 42 44:4 33.3 17.9
29 724 4,144 10:5 49 67:7 32.8 17.8
30 1; 131 2,869 23:7 102 90:2 29.2 15.5

31 1; 021 2,235 27:4 49 48:0 18.0 25.0
32 840 3,215 15:7 69 82:1 85.6 54.0
33 985 5,643 10:5 133 135:0 27.3 31.0
34 590 2,678 13:2 33 55:9 83.0 20.0
35 727 4,321 10:1 48 66:0 17.0 22.7

36 955 3,836 14:9 76 79:6 33.3 36.8
37 803 4,470 10:8 56 69:7 18.2 27.7
38 684 1,592 25:8 28 40:9 35.0 34.1
39 913 4,188 13:1 45 49:3 25.3 27.5
40 1; 200 1,827 39:4 61 50:8 31.6 20.9

41 894 2,777 19:3 64 71:6 21.3 22.4
42 1; 545 3,281 28:3 136 88:0 35.0 16.1

(continued)

208



A.1 Training

Table A.3 (continued)

Subject Size Time Prod. Faults Faults/KLOC Pred. size Pred. time

43 995 2,806 21:3 71 71:4 15.6 38.3
44 807 2,464 19:7 65 80:5 43.3 26.4
45 1; 078 2,462 26:3 55 51:0 49.1 51.6

46 944 3,154 18:0 71 75:2 59.0 39.2
47 868 1,564 33:3 50 57:6 50.4 45.2
48 701 3,188 13:2 31 44:2 21.2 49.7
49 1; 107 4,823 13:8 86 77:7 19.3 28.4
50 1; 535 2,938 31:3 71 46:3 29.6 20.7

51 858 7,163 7:2 97 113:1 58.4 32.9
52 832 2,033 24:6 84 101:0 48.4 25.6
53 975 3,160 18:5 115 117:9 29.5 31.5
54 715 3,337 12:9 40 55:9 41.7 26.6
55 947 4,583 12:4 99 104:5 41.0 22.3

56 926 2,924 19:0 77 83:2 32.5 34.7
57 711 3,053 14:0 78 109:7 22.8 14.3
58 1; 283 7,063 10:9 186 145:0 46.5 26.6
59 1; 261 3,092 24:5 54 42:8 27.4 45.3

A.1.4 Design

This exercise is based on data obtained from an experiment carried out by Briand,
Bunse and Daly. The experiment is further described by Briand et al. [28].

An experiment is designed in order to evaluate the impact of quality object-
oriented design principles when intending to modify a given design. The quality
design principles evaluated are the principles provided by Coad and Yourdon [35].
In the experiment two systems are used with one design for each system. One of the
designs is a ‘good’ design made using the design principles and the other is a ‘bad’
design not using the principles. The two designs are documented in the same way
in terms of layout and content and are of the same size, i.e. they are developed to
be as similar as possible except for following or not following the design principles.
The objective of the experiment is to evaluate if the quality design principles ease
impact analysis when identifying changes in the design.

The task for each participant is to undertake two separate impact analyses, one
for each system design. Marking all places in the design that have to be changed
but not actually change them makes the impact analyses. The first impact analysis
is for a changed customer requirement and the second is for an enhancement in the
systems functionality. Four measures are collected during the task:

Mod Time: Time spent on identifying places for modification.
Mod Comp: Represents the completeness of the impact analysis and is defined

as:

209



A Exercises

Table A.4 Data for programming exercise

Programming
language

Program size
(LOC)

Development
time (min)

Total number of
defects

Number of test
defects

A 1; 408 3,949 89 23
A 1; 529 2,061 69 16
A 946 3,869 170 41
A 1; 141 5,562 271 55
A 696 5,028 103 39

A 775 2,296 75 29
A 1; 205 2,980 79 11
A 1; 159 2,991 194 28
A 862 2,701 67 27
A 1; 206 2,592 77 15

B 1; 316 3,986 68 20
B 1; 787 4,477 54 10
B 1; 105 3,789 130 23
B 1; 583 4,371 48 13
B 1; 381 3,325 133 29

B 944 5,234 80 25
B 1; 492 4,901 64 21
B 1; 217 3,897 89 29
B 936 3,825 57 20
B 1; 441 4,015 79 18

Mod Comp D Number of correct places found

Total number of places to be found

Mod Corr: Represents the correctness of the impact analysis and is defined as:

Mod Corr D Number of correct places found

Total number of places indicated as found

Mod Rate: The number of correct places found per time unit, that is:

Mod Rate D Number of correct places found

Time for identification

The experiment is conducted at two occasions, in order to let each participant
work with both the good design and the bad design. The subjects were randomly
assigned to one of two groups, A or B. Group A worked with the good design at the
first occasion and the bad design in the second. Group B studied the bad design first
and then the good design. The collected data can be found in Table A.5.

210



A.1 Training

Table A.5 Data for design exercise

Good object-oriented design Bad object-oriented design

Pa
rt

ic
ip

an
t

G
ro

up

M
od

T
im

e

M
od

C
om

p

M
od

C
or

r

M
od

R
at

e

M
od

T
im

e

M
od

C
om

p

M
od

C
or

r

M
od

R
at

e

P01 B – 0.545 0.75 – – 0.238 0.714 –
P02 B – 0.818 1 – – 0.095 1 –
P03 A 20 0.409 1 0.45 25 0.19 1 0.16
P04 B 22 0.818 1 0.818 25 0.238 1 0.2
P05 B 30 0.909 1 0.667 35 0.476 0.909 0.286

P07 A – 0 – – 38 0.476 1 0.263
P09 A – 0.455 1 – – 0.476 1 –
P10 B – 0.409 0.9 – – 0.381 1 –
P11 A 45 0.545 0.923 0.267 50 0.714 1 0.3
P12 B – 0.773 1 – – 0.714 1 –

P13 A 40 0.773 1 0.425 40 0.762 1 0.4
P14 B 30 0.909 1 0.667 30 0.333 0.875 0.233
P15 B – 0.864 1 – 40 0.238 1 0.125
P16 B 30 0.773 1 0.567 – – – –
P17 B – 0.955 1 – – 0.286 0.75 –

P18 B – 0 – – – 0.19 1 –
P19 A 29 0.818 1 0.621 27 0.667 1 0.519
P20 A 9 0.591 1 1.444 15 0.19 0.8 0.267
P21 B 20 0.591 1 0.65 35 0.19 1 0.114
P22 B 30 0.682 1 0.5 20 0.714 1 0.75

P23 B – 0.818 1 – – 0.476 1 –
P24 A 30 0.773 1 0.567 40 0.762 1 0.4
P25 A – 0.955 1 – – 0.667 0.875 –
P26 B 25 0 0 0 25 0.095 0.5 0.08
P27 A 27 0.773 0.944 0.63 36 0.389 0.7 0.194

P28 A 25 0.773 1 0.68 30 0.667 1 0.467
P29 B 44 0.773 1 0.386 23 0.762 1 0.696
P31 A – 0.409 1 – – 0.286 0.75 –
P32 A 30 0.909 1 0.667 – 0.5 1 –
P33 A 65 0.818 1 0.277 – 0.619 1 –

P34 A 50 0.636 0.933 0.28 30 0.4 0.889 0.267
P35 A 10 0.591 1 1.3 10 0.667 1 1.4
P36 A 13 1 1 1.692 – 0.619 1 –

211



A Exercises

1. Which design has been used in the experiment?
2. Define the hypotheses for the evaluation.
3. How should the missing values in Table A.5 be treated?
4. Assume that parametric tests can be used. Evaluate the effect of the quality design

principles on the four measured variables. Which conclusions can be drawn from
the results?

5. Evaluate the effect of the quality design principles on the four measured variables
using non-parametric tests. Which conclusions can be drawn from the results?
Compare the results to those achieved when using parametric tests.

6. Discuss the validity of the results and if it is appropriate to use parametric tests.
7. The participants in the experiment are students taking a software engineering

course that have volunteered to be subjects. From which population is the sample
taken from? Discuss how this type of sampling will affect the external validity of
the experiment? How can the sampling be made differently?

A.1.5 Inspections

This exercise refers to the example experiment in Chap. 13.

1. Rewrite the abstract in Chap. 13 to be a structured abstract, as defined in
Chap. 11.

2. Conduct the scoping and planning steps for an exact replication of the experi-
ment. Especially, define how many subjects should be enrolled to achieve a given
level of confidence in the analysis.

3. Conduct the scoping step for a differentiated replication of the experiment.
Define three different goal templates for three alternative replications. Discuss
pros and cons of each alternative with respect to costs, risks and gains (see also
Fig. 2.1).

A.2 Reviewing

Below is a list of questions, which are important to consider when reading or
reviewing an article presenting an experiment. Use the list and review the examples
presented in Chaps. 12 and 13, and also some experiment presented in the literature.

The list below should be seen as a checklist in addition to normal questions when
reading an article. An example of a normal question may be; is the abstract a good
description of the content of the paper? Some specific aspects to consider when
reading an experiment article are:

• Is the experiment understandable and interesting in general?
• Does the experiment have any practical value?
• Are other experiments addressing the problem summarized and referenced?

212



A.3 Assignments

• What is the population in the experiment?
• Is the sample used representative of the population?
• Are the dependent and independent variables clearly defined?
• Are the hypotheses clearly formulated?
• Is the type of design clearly stated?
• Is the design correct?
• Is the instrumentation described properly?
• Is the validity of the experiment treated carefully and convincing?
• Are different types of validity threats addressed properly?
• Has the data been validated?
• Is the statistical power sufficient, are there enough subjects in the experiment?
• Are the appropriate statistical tests applied? Are Parametric or non-parametric

tests used and are they used correctly?
• Is the significance level used appropriate?
• Is the data interpreted correctly?
• Are the conclusions correct?
• Are the results not overstated?
• Is it possible to replicate the study?
• Is data provided?
• Is it possible to use the results for performing a meta-analysis?
• Is further work and experimentation in the area outlined?

A.3 Assignments

These assignments are based on the following general scenario. A company would
like to improve their way of working by changing the software process. You are
consulted as an expert in evaluating new techniques and methods in relation to the
existing process. The company would like to know whether or not to change their
software process.

You are expected to search for appropriate literature, review the existing literature
on the subject, apply the experiment process and write a report containing a
recommendation for the company. The recommendation should discuss both the
results of the experiment and other relevant issues for taking the decision whether
or not to change the process. Other relevant issues include costs and benefits for
making the change. If you are unable to find the correct costs, you are expected to
make estimates. The latter may be in terms of relative costs.

The assignments are intentionally fairly open-ended to allow for interpretation
and discussion. Each assignment is described in terms of prerequisites needed to
perform the assignment and then the actual task is briefly described. It should be
noted that the assignments below are examples of possible experiments that can be
conducted. The important issue to hold in mind is that the main objective is that the
assignments should provide practice in using experiments as part of an evaluation
procedure.

213



A Exercises

Finally, it should be noted that some organizations provide what is called lab
packages that can be used to replicate experiments. Lab packages are important
as they allow us to build upon work by others and hence hopefully come to more
generally valid results by replication. Some lab packages can be found by a search
on the Internet. It may also be beneficial to contact the original experimenter to get
support and maybe also a non-published lab package.

A.3.1 Unit Test and Code Reviews

The company wants to evaluate if it is cost-effective to introduce code reviews. Unit
testing is done today, although on non-reviewed code. Is this the best way to do it?

Prerequisites

• Suitable programs with defects that can be found during either reviews or testing.
• A review method, which may be ad hoc, but preferable it should be something

more realistic, for example, a checklist-based approach. In this case, a checklist
is needed.

• A testing method, which also may be ad hoc, but preferably it is based on, for
example, usage or equivalence partitioning.

Task

• Evaluate if it is cost-effective to introduce code reviews.

A.3.2 Inspection Methods

Several different ways of conducting reviews are available. The company intends to
introduce the best inspection method out of two possible choices. Which of the two
methods is the best to introduce for the company?

Prerequisites

• Suitable software artifacts to review should be available.
• Two review methods with appropriate support in terms of, for example, checklists

or description of different reading perspectives, see also Appendix A.1.5.

Task

• Assume that the company intends to introduce reviews of the chosen software ar-
tifacts, which method should they introduce? Determine which of the inspection
methods that is best in finding defects. Is the best method also cost effective?

214



A.3 Assignments

A.3.3 Requirements Notation

It is important to write requirements specification so that all readers interpret them
easily and in the same way. The company has several different notations to choose
from. Which is the best way of representing requirements?

Prerequisites

• A requirements specification written in several different notations, for example,
natural language and different graphical representations.

Task

• Evaluate if it is beneficial to change the company’s notation for requirements
specifications. Assume that the company uses natural language today.

215



Appendix B
Statistical Tables

This appendix contains statistical tables for a significance level of 5%. More
elaborated tables can be found in most books on statistics, for example [119], and
tables are also available on the Internet. The main objective here is to provide some
information, so that the tests that are explained in Chap. 10 become understandable
and so that the examples provided can be followed. This is important even if
statistical packages are used for the calculations, since it is important to understand
the underlying calculations before just applying the different statistical tests. It is
also worth noting the tables are a shortcut, for example, the values for the t-test,
F-test and Chi-2 can be calculated from the respective distributions.

The following statistical tables are included:

• t-test (see Sects. 10.3.4, 10.3.7, and Table B.1)
• Chi-2 (see Sect. 10.3.12 and Table B.2)
• Mann-Whitney (see Sect. 10.3.5 and Table B.3)
• Wilcoxon (see Sect. 10.3.8 and Table B.4)
• F-test (see Sects. 10.3.6, 10.3.10, Table B.5)

C. Wohlin et al., Experimentation in Software Engineering,
DOI 10.1007/978-3-642-29044-2, © Springer-Verlag Berlin Heidelberg 2012

217



B Statistical Tables

Table B.1 Critical values
two-tailed t-test (5%), see
Sects. 10.3.4 and 10.3.7

Degrees of freedom t-value

1 12:706

2 4:303

3 3:182

4 2:776

5 2:571

6 2:447

7 2:365

8 2:306

9 2:262

10 2:228

11 2:201

12 2:179

13 2:160

14 2:145

15 2:131

16 2:120

17 2:110

18 2:101

19 2:093

20 2:086

21 2:080

22 2:074

23 2:069

24 2:064

25 2:060

26 2:056

27 2:052

28 2:048

29 2:045

30 2:042

40 2:021

60 2:000

120 1:980

1 1:960

218



B Statistical Tables

Table B.2 Critical values
one-tailed Chi2-test (5%), see
Sect. 10.3.12

Degrees of freedom �2

1 3:84

2 5:99

3 7:81

4 9:49

5 11:07

6 12:59

7 14:07

8 15:51

9 16:92

10 18:31

11 19:68

12 21:03

13 22:36

14 23:68

15 25:00

16 26:30

17 27:59

18 28:87

19 30:14

20 31:41

21 32:67

22 33:92

23 35:17

24 36:42

25 37:65

26 38:88

27 40:11

28 41:34

29 42:56

30 43:77

40 55:76

60 79:08

80 101:88

100 124:34

219



B Statistical Tables

Table B.3 Critical values two-tailed Mann-Whitney (5%), see Sect. 10.3.5

NB 5 6 7 8 9 10 11 12

NA

3 0 1 1 2 2 3 3 4

4 1 2 3 4 4 5 6 7

5 2 3 5 6 7 8 9 11

6 5 6 8 10 11 13 14

7 8 10 12 14 16 18

8 13 15 17 19 22

9 17 20 23 26

10 23 26 29

11 30 33

12 37

Table B.4 Critical values
two-tailed matched-pair
Wilcoxon test (5%), see
Sect. 10.3.8

n T

6 0

7 2

8 3

9 5

10 8

11 10

12 13

13 17

14 21

15 25

16 29

17 34

18 40

19 46

20 52

22 66

25 89

Please note that in Table B.3, NA is for the smaller sample and NB for the larger
sample.

Please note that Table B.5 provides the upper 0:025% point of the F distribution
with f1 and f2 being the degrees of freedom. This is equivalent to F0:0025;f1;f2 .

220



B Statistical Tables

T
ab

le
B

.5
C

ri
ti

ca
lv

al
ue

s
tw

o-
ta

il
ed

F-
te

st
(5

%
),

se
e

Se
ct

.1
0.

3.
6.

Fo
r

A
N

O
V

A
,t

hi
s

is
eq

ui
va

le
nt

to
a

si
gn

ifi
ca

nc
e

le
ve

lo
f

2.
5%

,s
ee

Se
ct

.1
0.

3.
10

f
1

1
2

3
4

5
6

7
8

9
10

12
15

20
30

40
60

12
0

1
f

2 1
6
4
8

8
0
0

8
6
4

9
0
0

9
2
2

9
3
7

9
4
8

9
5
7

9
6
3

9
6
9

9
7
7

9
8
5

9
9
3

1,
00

1
1,

00
6

1,
01

0
1,

01
4

1,
01

8
2

3
8
:5

3
9
:0

3
9
:2

3
9
:2

3
9
:3

3
9
:3

3
9
:4

3
9
:4

3
9
:4

3
9
:4

3
9
:4

3
9
:4

3
9
:4

39
.5

39
.5

39
.5

39
.5

39
.5

3
1
7
:4

1
6
:0

1
5
:4

1
5
:1

1
4
:9

1
4
:7

1
4
:6

1
4
:5

1
4
:5

1
4
:4

1
4
:3

1
4
:2

1
4
:2

14
.1

14
.0

14
.0

14
.0

13
.9

4
1
2
:2

1
0
:6

9
:9

8
9
:6

0
9
:3

6
9
:2

0
9
:0

7
8
:9

8
8
:9

0
8
:8

4
8
:7

5
8
:6

6
8
:5

6
8.

46
8.

41
8.

36
8.

31
8.

26
5

1
0
:0

8
:4

3
7
:7

6
7
:3

9
7
:1

5
6
:9

8
6
:8

5
6
:7

6
6
:6

8
6
:6

2
6
:5

2
6
:4

3
6
:3

3
6.

23
6.

18
6.

12
6.

07
6.

02

6
8
:8

1
7
:2

6
6
:6

0
6
:2

3
5
:9

9
5
:8

2
5
:7

0
5
:6

0
5
:5

2
5
:4

6
5
:3

7
5
:2

7
5
:1

7
5.

07
5.

01
4.

96
4.

90
4.

85
7

8
:0

7
6
:5

4
5
:8

9
5
:5

2
5
:2

9
5
:1

2
4
:9

9
4
:9

0
4
:8

2
4
:7

6
4
:6

7
4
:5

7
4
:4

7
4.

36
4.

31
4.

25
4.

20
4.

14
8

7
:5

7
6
:0

6
5
:4

2
5
:0

5
4
:8

2
4
:6

5
4
:5

3
4
:4

3
4
:3

6
4
:3

0
4
:2

0
4
:1

0
4
:0

0
3.

89
3.

84
3.

78
3.

73
3.

67
9

7
:2

1
5
:7

1
5
:0

8
4
:7

2
4
:4

8
4
:3

2
4
:2

0
4
:1

0
4
:0

3
3
:9

6
3
:8

7
3
:7

7
3
:6

7
3.

56
3.

51
3.

45
3.

39
3.

33
10

6
:9

4
5
:4

6
4
:8

3
4
:4

7
4
:2

4
4
:0

7
3
:9

5
3
:8

5
3
:7

8
3
:7

2
3
:6

2
3
:5

2
3
:4

2
3.

31
3.

26
3.

20
3.

14
3.

08

12
6
:5

5
5
:1

0
4
:4

7
4
:1

2
3
:8

9
3
:7

3
3
:6

1
3
:5

1
3
:4

4
3
:3

7
3
:2

8
3
:1

8
3
:0

7
2.

96
2.

91
2.

85
2.

79
2.

72
15

6
:2

0
4
:7

6
4
:1

5
3
:8

0
3
:5

8
3
:4

1
3
:2

9
3
:2

0
3
:1

2
3
:0

6
2
:9

6
2
:8

6
2
:7

6
2.

64
2.

59
2.

52
2.

46
2.

40
20

5
:8

7
4
:4

6
3
:8

6
3
:5

1
3
:2

9
3
:1

3
3
:0

1
2
:9

1
2
:8

4
2
:7

7
2
:6

8
2
:5

7
2
:4

6
2.

35
2.

29
2.

22
2.

16
2.

09
30

5
:5

7
4
:1

8
3
:5

9
3
:2

5
3
:0

3
2
:8

7
2
:7

5
2
:6

5
2
:5

7
2
:5

1
2
:4

1
2
:3

1
2
:2

0
2.

07
2.

01
1.

94
1.

87
1.

79
40

5
:4

2
4
:0

5
3
:4

6
3
:1

3
2
:9

0
2
:7

4
2
:6

2
2
:5

3
2
:4

5
2
:3

9
2
:2

9
2
:1

8
2
:0

7
1.

94
1.

88
1.

80
1.

72
1.

64

60
5
:2

9
3
:9

3
3
:3

4
3
:0

1
2
:7

9
2
:6

3
2
:5

1
2
:4

1
2
:3

3
2
:2

7
2
:1

7
2
:0

6
1
:9

4
1.

82
1.

74
1.

67
1.

58
1.

48
12

0
5
:1

5
3
:8

0
3
:2

3
2
:8

9
2
:6

7
2
:5

2
2
:3

9
2
:3

0
2
:2

2
2
:1

6
2
:0

5
1
:9

4
1
:8

2
1.

69
1.

61
1.

53
1.

43
1.

31
1

5
:0

2
3
:6

9
3
:1

2
2
:7

9
2
:5

7
2
:4

1
2
:2

9
2
:1

9
2
:1

1
2
:0

5
1
:9

4
1
:8

3
1
:7

1
1.

57
1.

48
1.

39
1.

27
1.

00

221



References

1. Anastas, J.W., MacDonald, M.L.: Research Design for the Social Work and the Human
Services, 2nd edn. Columbia University Press, New York (2000)

2. Andersson, C., Runeson, P.: A spiral process model for case studies on software quality
monitoring – method and metrics. Softw. Process: Improv. Pract. 12(2), 125–140 (2007).
doi: 10.1002/spip.311

3. Andrews, A.A., Pradhan, A.S.: Ethical issues in empirical software engineering: the limits of
policy. Empir. Softw. Eng. 6(2), 105–110 (2001)

4. American Psychological Association: Ethical principles of psychologists and code of conduct.
Am. Psychol. 47, 1597–1611 (1992)

5. Avison, D., Baskerville, R., Myers, M.: Controlling action research projects. Inf. Tech-
nol. People 14(1), 28–45 (2001). doi: 10.1108/09593840110384762. URL http://www.
emeraldinsight.com/10.1108/09593840110384762

6. Babbie, E.R.: Survey Research Methods. Wadsworth, Belmont (1990)
7. Basili, V.R.: Quantitative evaluation of software engineering methodology. In: Proceedings of

the First Pan Pacific Computer Conference, vol. 1, pp. 379–398. Australian Computer Society,
Melbourne (1985)

8. Basili, V.R.: Software development: a paradigm for the future. In: Proceedings of the
13th Annual International Computer Software and Applications Conference, COMPSAC’89,
Orlando, pp. 471–485. IEEE Computer Society Press, Washington (1989)

9. Basili, V.R.: The experimental paradigm in software engineering. In: H.D. Rombach, V.R.
Basili, R.W. Selby (eds.) Experimental Software Engineering Issues: Critical Assessment and
Future Directives. Lecture Notes in Computer Science, vol. 706. Springer, Berlin Heidelberg
(1993)

10. Basili, V.R.: Evolving and packaging reading technologies. J. Syst. Softw. 38(1), 3–12 (1997)
11. Basili, V.R., Weiss, D.M.: A methodology for collecting valid software engineering data.

IEEE Trans. Softw. Eng. 10(6), 728–737 (1984)
12. Basili, V.R., Selby, R.W.: Comparing the effectiveness of software testing strategies. IEEE

Trans. Softw. Eng. 13(12), 1278–1298 (1987)
13. Basili, V.R., Rombach, H.D.: The TAME project: towards improvement-oriented software

environments. IEEE Trans. Softw. Eng. 14(6), 758–773 (1988)
14. Basili, V.R., Green, S.: Software process evaluation at the SEL. IEEE Softw. 11(4), pp. 58–66

(1994)
15. Basili, V.R., Selby, R.W., Hutchens, D.H.: Experimentation in software engineering. IEEE

Trans. Softw. Eng. 12(7), 733–743 (1986)
16. Basili, V.R., Caldiera, G., Rombach, H.D.: Experience factory. In: J.J. Marciniak (ed.)

Encyclopedia of Software Engineering, pp. 469–476. Wiley, New York (1994)

C. Wohlin et al., Experimentation in Software Engineering,
DOI 10.1007/978-3-642-29044-2, © Springer-Verlag Berlin Heidelberg 2012

223

http://www.emeraldinsight.com/10.1108/09593840110384762
http://www.emeraldinsight.com/10.1108/09593840110384762


References

17. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metrics paradigm. In:
J.J. Marciniak (ed.) Encyclopedia of Software Engineering, pp. 528–532. Wiley (1994)

18. Basili, V.R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgård, S., Zelkowitz,
M.V.: The empirical investigation of perspective-based reading. Empir. Soft. Eng. 1(2), 133–
164 (1996)

19. Basili, V.R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgård, S., Zelkowitz,
M.V.: Lab package for the empirical investigation of perspective-based reading. Technical
report, Univeristy of Maryland (1998). URL http://www.cs.umd.edu/projects/SoftEng/ESEG/
manual/pbr package/manual.html

20. Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of experiments.
IEEE Trans. Softw. Eng. 25(4), 456–473 (1999)

21. Baskerville, R.L., Wood-Harper, A.T.: A critical perspective on action research as a method
for information systems research. J. Inf. Technol. 11(3), 235–246 (1996). doi: 10.1080/
026839696345289

22. Benbasat, I., Goldstein, D.K., Mead, M.: The case research strategy in studies of information
systems. MIS Q. 11(3), 369 (1987). doi: 10.2307/248684

23. Bergman, B., Klefsjö, B.: Quality from Customer Needs to Customer Satisfaction. Studentlit-
teratur, Lund (2010)

24. Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from applying
the systematic literature review process within the software engineering domain. J. Syst.
Softw. 80(4), 571–583 (2007). doi: 10.1016/j.jss.2006.07.009

25. Brereton, P., Kitchenham, B.A., Budgen, D.: Using a protocol template for case study
planning. In: Proceedings of the 12th International Conference on Evaluation and Assessment
in Software Engineering. University of Bari, Italy (2008)

26. Briand, L.C., Differding, C.M., Rombach, H.D.: Practical guidelines for measurement-based
process improvement. Softw. Process: Improv. Pract. 2(4), 253–280 (1996)

27. Briand, L.C., El Emam, K., Morasca, S.: On the application of measurement theory in
software engineering. Empir. Softw. Eng. 1(1), 61–88 (1996)

28. Briand, L.C., Bunse, C., Daly, J.W.: A controlled experiment for evaluating quality guidelines
on the maintainability of object-oriented designs. IEEE Trans. Softw. Eng. 27(6), 513–530
(2001)

29. British Psychological Society: Ethical principles for conducting research with human partici-
pants. Psychologist 6(1), 33–35 (1993)

30. Budgen, D., Kitchenham, B.A., Charters, S., Turner, M., Brereton, P., Linkman, S.: Presenting
software engineering results using structured abstracts: a randomised experiment. Empir.
Softw. Eng. 13, 435–468 (2008). doi: 10.1007/s10664-008-9075-7

31. Budgen, D., Burn, A.J., Kitchenham, B.A.: Reporting computing projects through structured
abstracts: a quasi-experiment. Empir. Softw. Eng. 16(2), 244–277 (2011). doi: 10.1007/
s10664-010-9139-3

32. Campbell, D.T., Stanley, J.C.: Experimental and Quasi-experimental Designs for Research.
Houghton Mifflin Company, Boston (1963)

33. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI(R): Guidelines for process integration and
product improvement. Technical report, SEI (2003)

34. Ciolkowski, M., Differding, C.M., Laitenberger, O., Münch, J.: Empirical investigation of
perspective-based reading: A replicated experiment. Technical report, 97-13, ISERN (1997)

35. Coad, P., Yourdon, E.: Object-Oriented Design, 1st edn. Prentice-Hall, Englewood (1991)
36. Cohen, J.: Weighted kappa: nominal scale agreement with provision for scaled disagreement

or partial credit. Psychol. Bull. 70, 213–220 (1968)
37. Cook, T.D., Campbell, D.T.: Quasi-experimentation – Design and Analysis Issues for Field

Settings. Houghton Mifflin Company, Boston (1979)
38. Corbin, J., Strauss, A.: Basics of Qualitative Research, 3rd edn. SAGE, Los Angeles (2008)
39. Cruzes, D.S., Dybå, T.: Research synthesis in software engineering: a tertiary study. Inf.

Softw. Technol. 53(5), 440–455 (2011). doi: 10.1016/j.infsof.2011.01.004

224

http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/pbr_package/manual.html
http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/pbr_package/manual.html


References

40. Dalkey, N., Helmer, O.: An experimental application of the delphi method to the use of
experts. Manag. Sci. 9(3), 458–467 (1963)

41. DeMarco, T.: Controlling Software Projects. Yourdon Press, New York (1982)
42. Demming, W.E.: Out of the Crisis. MIT Centre for Advanced Engineering Study, MIT Press,

Cambridge, MA (1986)
43. Dieste, O., Grimán, A., Juristo, N.: Developing search strategies for detecting relevant

experiments. Empir. Softw. Eng. 14, 513–539 (2009). URL http://dx.doi.org/10.1007/s10664-
008-9091-7

44. Dittrich, Y., Rönkkö, K., Eriksson, J., Hansson, C., Lindeberg, O.: Cooperative method
development. Empir. Softw. Eng. 13(3), 231–260 (2007). doi: 10.1007/s10664-007-9057-1

45. Doolan, E.P.: Experiences with Fagan’s inspection method. Softw. Pract. Exp. 22(2), 173–182
(1992)

46. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50(9-10), 833–859 (2008). doi: DOI:10.1016/j.infsof.2008.01.006

47. Dybå, T., Dingsøyr, T.: Strength of evidence in systematic reviews in software engineering.
In: Proceedings of the 2nd ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’08, Kaiserslautern, pp. 178–187. ACM, New York
(2008). doi: http://doi.acm.org/10.1145/1414004.1414034

48. Dybå, T., Kitchenham, B.A., Jørgensen, M.: Evidence-based software engineering for
practitioners. IEEE Softw. 22, 58–65 (2005). doi: http://doi.ieeecomputersociety.org/10.1109/
MS.2005.6

49. Dybå, T., Kampenes, V.B., Sjøberg, D.I.K.: A systematic review of statistical power in
software engineering experiments. Inf. Softw. Technol. 48(8), 745–755 (2006). doi:
10.1016/j.infsof.2005.08.009

50. Easterbrook, S., Singer, J., Storey, M.-A., Damian, D.: Selecting empirical methods for
software engineering research. In: F. Shull, J. Singer, D.I. Sjøberg (eds.) Guide to Advanced
Empirical Software Engineering. Springer, London (2008)

51. Eick, S.G., Loader, C.R., Long, M.D., Votta, L.G., Vander Wiel, S.A.: Estimating software
fault content before coding. In: Proceedings of the 14th International Conference on Software
Engineering, Melbourne, pp. 59–65. ACM Press, New York (1992)

52. Eisenhardt, K.M.: Building theories from case study research. Acad. Manag. Rev. 14(4), 532
(1989). doi: 10.2307/258557

53. Endres, A., Rombach, H.D.: A Handbook of Software and Systems Engineering – Empirical
Observations, Laws and Theories. Pearson Addison-Wesley, Harlow/New York (2003)

54. Fagan, M.E.: Design and code inspections to reduce errors in program development. IBM
Syst. J. 15(3), 182–211 (1976)

55. Fenton, N.: Software measurement: A necessary scientific basis. IEEE Trans. Softw. Eng.
3(20), 199–206 (1994)

56. Fenton, N., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd edn.
International Thomson Computer Press, London (1996)

57. Fenton, N., Pfleeger, S.L., Glass, R.: Science and substance: A challenge to software
engineers. IEEE Softw. 11, 86–95 (1994)

58. Fink, A.: The Survey Handbook, 2nd edn. SAGE, Thousand Oaks/London (2003)
59. Flyvbjerg, B.: Five misunderstandings about case-study research. In: Qualitative Research

Practice, concise paperback edn., pp. 390–404. SAGE, London (2007)
60. Frigge, M., Hoaglin, D.C., Iglewicz, B.: Some implementations of the boxplot. Am. Stat.

43(1), 50–54 (1989)
61. Fusaro, P., Lanubile, F., Visaggio, G.: A replicated experiment to assess requirements

inspection techniques. Empir. Softw. Eng. 2(1), 39–57 (1997)
62. Glass, R.L.: The software research crisis. IEEE Softw. 11, 42–47 (1994)
63. Glass, R.L., Vessey, I., Ramesh, V.: Research in software engineering: An analysis of the

literature. Inf. Softw. Technol. 44(8), 491–506 (2002). doi: 10.1016/S0950-5849(02)00049-6

225

http://dx.doi.org/10.1007/s10664-008-9091-7
http://dx.doi.org/10.1007/s10664-008-9091-7


References

64. Gómez, O.S., Juristo, N., Vegas, S.: Replication types in experimental disciplines. In: Pro-
ceedings of the 4th ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, Bolzano-Bozen (2010)

65. Gorschek, T., Wohlin, C.: Requirements abstraction model. Requir. Eng. 11, 79–101 (2006).
doi: 10.1007/s00766-005-0020-7

66. Gorschek, T., Garre, P., Larsson, S., Wohlin, C.: A model for technology transfer in practice.
IEEE Softw. 23(6), 88–95 (2006)

67. Gorschek, T., Garre, P., Larsson, S., Wohlin, C.: Industry evaluation of the requirements
abstraction model. Requir. Eng. 12, 163–190 (2007). doi: 10.1007/s00766-007-0047-z

68. Grady, R.B., Caswell, D.L.: Software Metrics: Establishing a Company-Wide Program.
Prentice-Hall, Englewood (1994)

69. Grant, E.E., Sackman, H.: An exploratory investigation of programmer performance under
on-line and off-line conditions. IEEE Trans. Human Factor Electron. HFE-8(1), 33–48 (1967)

70. Gregor, S.: The nature of theory in information systems. MIS Q. 30(3), 491–506 (2006)
71. Hall, T., Flynn, V.: Ethical issues in software engineering research: a survey of current

practice. Empir. Softw. Eng. 6, 305–317 (2001)
72. Hannay, J.E., Sjøberg, D.I.K., Dybå, T.: A systematic review of theory use in software

engineering experiments. IEEE Trans. Softw. Eng. 33(2), 87–107 (2007). doi: 10.1109/
TSE.2007.12

73. Hannay, J.E., Dybå, T., Arisholm, E., Sjøberg, D.I.K.: The effectiveness of pair programming:
a meta-analysis. Inf. Softw. Technol. 51(7), 1110–1122 (2009). doi: 10.1016/j.infsof.2009.
02.001

74. Hayes, W.: Research synthesis in software engineering: a case for meta-analysis. In:
Proceedings of the 6th International Software Metrics Symposium, Boca Raton, pp. 143–151
(1999)

75. Hetzel, B.: Making Software Measurement Work: Building an Effective Measurement
Program. Wiley, New York (1993)

76. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research.
MIS Q. 28(1), 75–105 (2004)

77. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects – a comparative study of students
and professionals in lead-time impact assessment. Empir. Softw. Eng. 5(3), 201–214 (2000)

78. Höst, M., Wohlin, C., Thelin, T.: Experimental context classification: Incentives and ex-
perience of subjects. In: Proceedings of the 27th International Conference on Software
Engineering, St. Louis, pp. 470–478 (2005)

79. Höst, M., Runeson, P.: Checklists for software engineering case study research. In:
Proceedings of the 1st International Symposium on Empirical Software Engineering and
Measurement, Madrid, pp. 479–481 (2007)

80. Hove, S.E., Anda, B.: Experiences from conducting semi-structured interviews in empirical
software engineering research. In: Proceedings of the 11th IEEE International Software
Metrics Symposium, pp. 1–10. IEEE Computer Society Press, Los Alamitos (2005)

81. Humphrey, W.S.: Managing the Software Process. Addison-Wesley, Reading (1989)
82. Humphrey, W.S.: A Discipline for Software Engineering. Addison Wesley, Reading (1995)
83. Humphrey, W.S.: Introduction to the Personal Software Process. Addison Wesley, Reading

(1997)
84. IEEE: IEEE standard glossary of software engineering terminology. Technical Report, IEEE

Std 610.12-1990, IEEE (1990)
85. Iversen, J.H., Mathiassen, L., Nielsen, P.A.: Managing risk in software process improvement:

an action research approach. MIS Q. 28(3), 395–433 (2004)
86. Jedlitschka, A., Pfahl, D.: Reporting guidelines for controlled experiments in software

engineering. In: Proceedings of the 4th International Symposium on Empirical Software
Engineering, Noosa Heads, pp. 95–104 (2005)

87. Johnson, P.M., Tjahjono, D.: Does every inspection really need a meeting? Empir. Softw.
Eng. 3(1), 9–35 (1998)

226



References

88. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation. Springer,
Kluwer Academic Publishers, Boston (2001)

89. Juristo, N., Vegas, S.: The role of non-exact replications in software engineering experiments.
Empir. Softw. Eng. 16, 295–324 (2011). doi: 10.1007/s10664-010-9141-9

90. Kachigan, S.K.: Statistical Analysis: An Interdisciplinary Introduction to Univariate and
Multivariate Methods. Radius Press, New York (1986)

91. Kachigan, S.K.: Multivariate Statistical Analysis: A Conceptual Introduction, 2nd edn.
Radius Press, New York (1991)

92. Kampenes, V.B., Dyba, T., Hannay, J.E., Sjø berg, D.I.K.: A systematic review of effect size
in software engineering experiments. Inf. Softw. Technol. 49(11–12), 1073–1086 (2007).
doi: 10.1016/j.infsof.2007.02.015

93. Karahasanović, A., Anda, B., Arisholm, E., Hove, S.E., Jørgensen, M., Sjøberg, D., Welland,
R.: Collecting feedback during software engineering experiments. Empir. Softw. Eng. 10(2),
113–147 (2005). doi: 10.1007/s10664-004-6189-4. URL http://www.springerlink.com/
index/10.1007/s10664-004-6189-4

94. Karlström, D., Runeson, P., Wohlin, C.: Aggregating viewpoints for strategic software process
improvement. IEE Proc. Softw. 149(5), 143–152 (2002). doi: 10.1049/ip-sen:20020696

95. Kitchenham, B.A.: The role of replications in empirical software engineering – a word of
warning. Empir. Softw. Eng. 13, 219–221 (2008). URL 10.1007/s10664-008-9061-0

96. Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering (version 2.3). Technical Report, EBSE Technical Report EBSE-2007-
01, Keele University and Durham University (2007)

97. Kitchenham, B.A., Pickard, L.M., Pfleeger, S.L.: Case studies for method and tool evaluation.
IEEE Softw. 12(4), 52–62 (1995)

98. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K.,
Rosenberg, J.: Preliminary guidelines for empirical research in software engineering. IEEE
Trans. Softw. Eng. 28(8), 721–734 (2002). doi: 10.1109/TSE.2002.1027796. URL http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1027796

99. Kitchenham, B., Fry, J., Linkman, S.G.: The case against cross-over designs in software
engineering. In: Proceedings of the 11th International Workshop on Software Technology
and Engineering Practice, Amsterdam, pp. 65–67. IEEE Computer Society, Los Alamitos
(2003)

100. Kitchenham, B.A., Dybå, T., Jørgensen, M.: Evidence-based software engineering. In:
Proceedings of the 26th International Conference on Software Engineering, Edinburgh,
pp. 273–281 (2004)

101. Kitchenham, B.A., Al-Khilidar, H., Babar, M.A., Berry, M., Cox, K., Keung, J., Kurniawati,
F., Staples, M., Zhang, H., Zhu, L.: Evaluating guidelines for reporting empirical
software engineering studies. Empir. Softw. Eng. 13(1), 97–121 (2007). doi: 10.1007/
s10664-007-9053-5. URL http://www.springerlink.com/index/10.1007/s10664-007-9053-5

102. Kitchenham, B.A., Jeffery, D.R., Connaughton, C.: Misleading metrics and unsound analyses.
IEEE Softw. 24, 73–78 (2007). doi: 10.1109/MS.2007.49

103. Kitchenham, B.A., Brereton, P., Budgen, D., Turner, M., Bailey, J., Linkman, S.G.: Systematic
literature reviews in software engineering – a systematic literature review. Inf. Softw. Technol.
51(1), 7–15 (2009). doi: 10.1016/j.infsof.2008.09.009. URL http://www.dx.doi.org/10.1016/
j.infsof.2008.09.009

104. Kitchenham, B.A., Pretorius, R., Budgen, D., Brereton, P., Turner, M., Niazi, M., Linkman,
S.: Systematic literature reviews in software engineering – a tertiary study. Inf. Softw.
Technol. 52(8), 792–805 (2010). doi: 10.1016/j.infsof.2010.03.006

105. Kitchenham, B.A., Sjøberg, D.I.K., Brereton, P., Budgen, D., Dybå, T., Höst, M., Pfahl, D.,
Runeson, P.: Can we evaluate the quality of software engineering experiments? In: Proceed-
ings of the 4th ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM, Bolzano/Bozen (2010)

106. Kitchenham, B.A., Budgen, D., Brereton, P.: Using mapping studies as the basis for further
research – a participant-observer case study. Inf. Softw. Technol. 53(6), 638–651 (2011).
doi: 10.1016/j.infsof.2010.12.011

227

http://www.springerlink.com/index/10.1007/s10664-004-6189-4
http://www.springerlink.com/index/10.1007/s10664-004-6189-4
10.1007/s10664-008-9061-0
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1027796
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1027796
http://www.springerlink.com/index/10.1007/s10664-007-9053-5
http://www.dx.doi.org/10.1016/j.infsof.2008.09.009
http://www.dx.doi.org/10.1016/j.infsof.2008.09.009


References

107. Laitenberger, O., Atkinson, C., Schlich, M., El Emam, K.: An experimental comparison of
reading techniques for defect detection in UML design documents. J. Syst. Softw. 53(2),
183–204 (2000)

108. Larsson, R.: Case survey methodology: quantitative analysis of patterns across case studies.
Acad. Manag. J. 36(6), 1515–1546 (1993)

109. Lee, A.S.: A scientific methodology for MIS case studies. MIS Q. 13(1), 33 (1989). doi:
10.2307/248698. URL http://www.jstor.org/stable/248698?origin=crossref

110. Lehman, M.M.: Program, life-cycles and the laws of software evolution. Proc. IEEE 68(9),
1060–1076 (1980)

111. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection tech-
niques for software field studies. Empir. Softw. Eng. 10, 311–341 (2005)

112. Linger, R.: Cleanroom process model. IEEE Softw. pp. 50–58 (1994)
113. Linkman, S., Rombach, H.D.: Experimentation as a vehicle for software technology transfer

– a family of software reading techniques. Inf. Softw. Technol. 39(11), 777–780 (1997)
114. Lucas, W.A.: The case survey method: aggregating case experience. Technical Report,

R-1515-RC, The RAND Corporation, Santa Monica (1974)
115. Lucas, H.C., Kaplan, R.B.: A structured programming experiment. Comput. J. 19(2), 136–

138 (1976)
116. Lyu, M.R. (ed.): Handbook of Software Reliability Engineering. McGraw-Hill, New York

(1996)
117. Maldonado, J.C., Carver, J., Shull, F., Fabbri, S., Dória, E., Martimiano, L., Mendonça, M.,

Basili, V.: Perspective-based reading: a replicated experiment focused on individual reviewer
effectiveness. Empir. Softw. Eng. 11, 119–142 (2006). doi: 10.1007/s10664-006-5967-6

118. Manly, B.F.J.: Multivariate Statistical Methods: A Primer, 2nd edn. Chapman and Hall,
London (1994)

119. Marascuilo, L.A., Serlin, R.C.: Statistical Methods for the Social and Behavioral Sciences.
W. H. Freeman and Company, New York (1988)

120. Miller, J.: Estimating the number of remaining defects after inspection. Softw. Test. Verif.
Reliab. 9(4), 167–189 (1999)

121. Miller, J.: Applying meta-analytical procedures to software engineering experiments. J. Syst.
Softw. 54(1), 29–39 (2000)

122. Miller, J.: Statistical significance testing: a panacea for software technology experiments? J.
Syst. Softw. 73, 183–192 (2004). doi: http://dx.doi.org/10.1016/j.jss.2003.12.019

123. Miller, J.: Replicating software engineering experiments: a poisoned chalice or the holy grail.
Inf. Softw. Technol. 47(4), 233–244 (2005)

124. Miller, J., Wood, M., Roper, M.: Further experiences with scenarios and checklists. Empir.
Softw. Eng. 3(1), 37–64 (1998)

125. Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, New York (2000)
126. Myers, G.J.: A controlled experiment in program testing and code walkthroughs/inspections.

Commun. ACM 21, 760–768 (1978). doi: http://doi.acm.org/10.1145/359588.359602
127. Noblit, G.W., Hare, R.D.: Meta-Ethnography: Synthesizing Qualitative Studies. Sage

Publications, Newbury Park (1988)
128. Ohlsson, M.C., Wohlin, C.: A project effort estimation study. Inf. Softw. Technol. 40(14),

831–839 (1998)
129. Owen, S., Brereton, P., Budgen, D.: Protocol analysis: a neglected practice. Commun. ACM

49(2), 117–122 (2006). doi: 10.1145/1113034.1113039
130. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity model for software.

Technical Report, CMU/SEI-93-TR-24, Software Engineering Institute, Pittsburgh (1993)
131. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software

engineering. In: Proceedings of the 12th International Conference on Evaluation and
Assessment in Software Engineering, Electronic Workshops in Computing (eWIC). BCS,
University of Bari, Italy (2008)

132. Petersen, K., Wohlin, C.: Context in industrial software engineering research. In: Proceedings
of the 3rd ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, Lake Buena Vista, pp. 401–404 (2009)

228

http://www.jstor.org/stable/248698?origin=crossref


References

133. Pfleeger, S.L.: Experimental design and analysis in software engineering part 1–5. ACM
Sigsoft, Softw. Eng. Notes, 19(4), 16–20; 20(1), 22–26; 20(2), 14–16; 20(3), 13–15; 20,
(1994)

134. Pfleeger, S.L., Atlee, J.M.: Software Engineering: Theory and Practice, 4th edn. Pearson
Prentice-Hall, Upper Saddle River (2009)

135. Pickard, L.M., Kitchenham, B.A., Jones, P.W.: Combining empirical results in software
engineering. Inf. Softw. Technol. 40(14), 811–821 (1998). doi: 10.1016/S0950-5849(98)
00101-3

136. Porter, A.A., Votta, L.G.: An experiment to assess different defect detection methods for
software requirements inspections. In: Proceedings of the 16th International Conference on
Software Engineering, Sorrento, pp. 103–112 (1994)

137. Porter, A.A., Votta, L.G.: Comparing detection methods for software requirements inspection:
a replicated experiment. IEEE Trans. Softw. Eng. 21(6), 563–575 (1995)

138. Porter, A.A., Votta, L.G.: Comparing detection methods for software requirements inspection:
a replicated experimentation: a replication using professional subjects. Empir. Softw. Eng.
3(4), 355–380 (1998)

139. Porter, A.A., Siy, H.P., Toman, C.A., Votta, L.G.: An experiment to assess the cost-benefits
of code inspections in large scale software development. IEEE Trans. Softw. Eng. 23(6),
329–346 (1997)

140. Potts, C.: Software engineering research revisited. IEEE Softw. pp. 19–28 (1993)
141. Rainer, A.W.: The longitudinal, chronological case study research strategy: a definition, and

an example from IBM Hursley Park. Inf. Softw. Technol. 53(7), 730–746 (2011)
142. Robinson, H., Segal, J., Sharp, H.: Ethnographically-informed empirical studies of software

practice. Inf. Softw. Technol. 49(6), 540–551 (2007). doi: 10.1016/j.infsof.2007.02.007
143. Robson, C.: Real World Research: A Resource for Social Scientists and Practitioners-

Researchers, 1st edn. Blackwell, Oxford/Cambridge (1993)
144. Robson, C.: Real World Research: A Resource for Social Scientists and Practitioners-

Researchers, 2nd edn. Blackwell, Oxford/Madden (2002)
145. Runeson, P., Skoglund, M.: Reference-based search strategies in systematic reviews. In:

Proceedings of the 13th International Conference on Empirical Assessment and Evaluation
in Software Engineering. Electronic Workshops in Computing (eWIC). BCS, Durham
University, UK (2009)

146. Runeson, P., Höst, M., Rainer, A.W., Regnell, B.: Case Study Research in Software
Engineering. Guidelines and Examples. Wiley, Hoboken (2012)

147. Sandahl, K., Blomkvist, O., Karlsson, J., Krysander, C., Lindvall, M., Ohlsson, N.: An
extended replication of an experiment for assessing methods for software requirements.
Empir. Softw. Eng. 3(4), 381–406 (1998)

148. Seaman, C.B.: Qualitative methods in empirical studies of software engineering. IEEE Trans.
Softw. Eng. 25(4), 557–572 (1999)

149. Selby, R.W., Basili, V.R., Baker, F.T.: Cleanroom software development: An empirical
evaluation. IEEE Trans. Softw. Eng. 13(9), 1027–1037 (1987)

150. Shepperd, M.: Foundations of Software Measurement. Prentice-Hall, London/New York
(1995)

151. Shneiderman, B., Mayer, R., McKay, D., Heller, P.: Experimental investigations of the utility
of detailed flowcharts in programming. Commun. ACM 20, 373–381 (1977). doi: 10.1145/
359605.359610

152. Shull, F.: Developing techniques for using software documents: a series of empirical studies.
Ph.D. thesis, Computer Science Department, University of Maryland, USA (1998)

153. Shull, F., Basili, V.R., Carver, J., Maldonado, J.C., Travassos, G.H., Mendonça, M.G., Fabbri,
S.: Replicating software engineering experiments: addressing the tacit knowledge problem.
In: Proceedings of the 1st International Symposium on Empirical Software Engineering, Nara,
pp. 7–16 (2002)

154. Shull, F., Mendoncça, M.G., Basili, V.R., Carver, J., Maldonado, J.C., Fabbri, S., Travassos,
G.H., Ferreira, M.C.: Knowledge-sharing issues in experimental software engineering.
Empir. Softw. Eng. 9, 111–137 (2004). doi: 10.1023/B:EMSE.0000013516.80487.33

229



References

155. Shull, F., Carver, J., Vegas, S., Juristo, N.: The role of replications in empirical software
engineering. Empir. Softw. Eng. 13, 211–218 (2008). doi: 10.1007/s10664-008-9060-1

156. Sieber, J.E.: Protecting research subjects, employees and researchers: implications for
software engineering. Empir. Softw. Eng. 6(4), 329–341 (2001)

157. Siegel, S., Castellan, J.: Nonparametric Statistics for the Behavioral Sciences, 2nd edn.
McGraw-Hill International Editions, New York (1988)

158. Singer, J., Vinson, N.G.: Why and how research ethics matters to you. Yes, you! Empir. Softw.
Eng. 6, 287–290 (2001). doi: 10.1023/A:1011998412776

159. Singer, J., Vinson, N.G.: Ethical issues in empirical studies of software engineering. IEEE
Trans. Softw. Eng. 28(12), 1171–1180 (2002). doi: 10.1109/TSE.2002.1158289. URL http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1158289

160. Simon S.: Fermat’s Last Theorem. Fourth Estate, London (1997)
161. Sjøberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic, A., Liborg, N.-

K., Rekdal, A.C.: A survey of controlled experiments in software engineering. IEEE Trans.
Softw. Eng. 31(9), 733–753 (2005). doi: 10.1109/TSE.2005.97. URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=1514443

162. Sjøberg, D.I.K., Dybå, T., Anda, B., Hannay, J.E.: Building theories in software engineering.
In: Shull, F., Singer, J., Sjøberg D. (eds.) Guide to Advanced Empirical Software Engineering.
Springer, London (2008)

163. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley, Wokingham, England/
Reading (2010)

164. Sørumgård, S.: Verification of process conformance in empirical studies of software devel-
opment. Ph.D. thesis, The Norwegian University of Science and Technology, Department of
Computer and Information Science, Norway (1997)

165. Stake, R.E.: The Art of Case Study Research. SAGE Publications, Thousand Oaks (1995)
166. Staples, M., Niazi, M.: Experiences using systematic review guidelines. J. Syst. Softw. 80(9),

1425–1437 (2007). doi: 10.1016/j.jss.2006.09.046
167. Thelin, T., Runeson, P.: Capture-recapture estimations for perspective-based reading – a

simulated experiment. In: Proceedings of the 1st International Conference on Product
Focused Software Process Improvement (PROFES), Oulu, pp. 182–200 (1999)

168. Thelin, T., Runeson, P., Wohlin, C.: An experimental comparison of usage-based and
checklist-based reading. IEEE Trans. Softw. Eng. 29(8), 687–704 (2003). doi: 10.1109/
TSE.2003.1223644

169. Tichy, W.F.: Should computer scientists experiment more? IEEE Comput. 31(5), 32–39
(1998)

170. Tichy, W.F., Lukowicz, P., Prechelt, L., Heinz, E.A.: Experimental evaluation in computer
science: a quantitative study. J. Syst. Softw. 28(1), 9–18 (1995)

171. Trochim, W.M.K.: The Research Methods Knowledge Base, 2nd edn. Cornell Custom
Publishing, Cornell University, Ithaca (1999)

172. van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: A Practical Guide
for Quality Improvement and Software Development. McGraw-Hill International,
London/Chicago (1999)

173. Verner, J.M., Sampson, J., Tosic, V., Abu Bakar, N.A., Kitchenham, B.A.: Guidelines for
industrially-based multiple case studies in software engineering. In: Third International
Conference on Research Challenges in Information Science, Fez, pp. 313–324 (2009)

174. Vinson, N.G., Singer, J.: A practical guide to ethical research involving humans. In: Shull, F.,
Singer, J., Sjøberg, D. (eds.) Guide to Advanced Empirical Software Engineering. Springer,
London (2008)

175. Votta, L.G.: Does every inspection need a meeting? In: Proceedings of the ACM SIGSOFT
Symposium on Foundations of Software Engineering, ACM Software Engineering Notes,
vol. 18, pp. 107–114. ACM Press, New York (1993)

176. Wallace, C., Cook, C., Summet, J., Burnett, M.: Human centric computing languages and
environments. In: Proceedings of Symposia on Human Centric Computing Languages and
Environments, Arlington, pp. 63–65 (2002)

230

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1158289
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1158289
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1514443
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1514443


References

177. Wohlin, C., Gustavsson, A., Höst, M., Mattsson, C.: A framework for technology introduction
in software organizations. In: Proceedings of the Conference on Software Process Improve-
ment, Brighton, pp. 167–176 (1996)

178. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering: An Introduction. Kluwer, Boston (2000)

179. Wohlin, C., Aurum, A., Angelis, L., Phillips, L., Dittrich, Y., Gorschek, T., Grahn, H.,
Henningsson, K., Kågström, S., Low, G., Rovegård, P., Tomaszewski, P., van Toorn, C.,
Winter, J.: Success factors powering industry-academia collaboration in software research.
IEEE Softw. (PrePrints) (2011). doi: 10.1109/MS.2011.92

180. Yin, R.K.: Case Study Research Design and Methods, 4th edn. Sage Publications, Beverly
Hills (2009)

181. Zelkowitz, M.V., Wallace, D.R.: Experimental models for validating technology. IEEE
Comput. 31(5), 23–31 (1998)

182. Zendler, A.: A preliminary software engineering theory as investigated by published ex-
periments. Empir. Softw. Eng. 6, 161–180 (2001). doi: http://dx.doi.org/10.1023/A:
1011489321999

231



Index

Absolute scale, 39
Admissible transformation, 38
Alternative hypothesis, 91
Analysis and interpretation, 80, 123
ANalysis Of VAriance (ANOVA), 97, 98, 172

One factor, more than two treatments, 143
Analytical method, 6
Anonymity

data, 35
participation, 35

Applied research, 111
Assumptions of statistical tests, 104, 135
Average, 124

Balancing, 95
Binomial test, 133, 138
Blocking, 94
Box plot, 129, 131, 169

Capitalization cycle, 27
Case study, 10, 14, 55

data analysis, 65
data collection, 61
planning, 58
process, 58
protocol, 60
reporting, 69

Casual relation, 149
Central tendency, 124
Chi-2, 130, 135

goodness of fit, 147
k independent samples, 146

Cluster analysis, 128
Coefficient of varation, 126
Company baseline, 15

Completely randomized design, 95, 97
Conclusion validity, 104
Confidentiality, 34
Confounding effects, 15
Confounding factors, 15, 149
Consent, 118
Construct validity, 108
Context, 11, 86, 89

case study, 56
in vitro, 25
in vivo, 25

Control cycle, 27
Convenience sampling, 93
Correlation coefficient, 128
Covariance, 128
Crossover design, 96, 151
Cumulative histogram, 130

Data
analysis, 65
collection, 61, 120
reduction, 131
validation, 121, 131

Dependency, 127
Dependent variable, 92
Descriptive statistics, 123
Descriptive synthesis, 50
Design

completely randomized, 95, 97
crossover, 96, 151
2*2 factorial, 98
2k factorial, 99
2k fractional factorial, 99
hierarchical, 98
nested, 98
paired comparison, 96

C. Wohlin et al., Experimentation in Software Engineering,
DOI 10.1007/978-3-642-29044-2, © Springer-Verlag Berlin Heidelberg 2012

233



234 Index

randomized complete block, 97
tests for, 136
two-stage nested, 98

Design principles, 94
Design threats, 108
Disclosure, 119
Discriminant analysis, 128
Dispersion, 126

Effect size, 38
Empirical methods, 6, 18
Engineering method, 6
Ethical Review Board, 34
Ethics, 33, 118
Execution control, 18
Exercises, xiv, 203
Expectation

experimenter, 35, 110
stochastic variable, 124

Experience base, 27
Experience Factory, 24, 27
Experience models, 27
Experiment, 11, 16, 73

design, 75, 93
human-oriented, 16, 76
off-line, 16, 90
on-line, 16, 90
process, 76
reporting, 153
technology-oriented, 16, 76

External attribute, 41
External validity, 110

2*2 factorial design, 98
2k factorial design, 99
2k fractional factorial design, 99
F-test, 140
Factor, 75, 95
Factor analysis, 132
Factorial design, 98
Fixed design, 9, 76
Flexible design, 9, 76
Forest plot, 50
Fractional factorial design, 99
Frequency, 126

Goal/Question/Metric (GQM) method, 24, 85
Goodness of fit, 145
GQM. See Goal/Question/Metric method
Graphical visualization, 128

Hierarchical design, 98
Histogram, 130
Hypothesis, 73, 91
Hypothesis testing, 132

Independent variable, 92
Inducements, 119
Informed consent, 33, 34
Instrumentation, 101, 107, 119
Internal attribute, 41
Internal validity, 106
Interval scale, 39
Interviewer, 14
Interviews, 13
Investigation cost, 18

Kendall rank-order correlation coefficient, 128
Kruskal-Wallis, 97, 144

Linear regression, 127
Longitudinal study, 19

Mann-Whitney, 96, 139
Mapping studies, 23, 52
Mean

arithmetic, 124
geometric, 125

Meaningful statement, 38
Meaningless statement, 38
Measure, 37

direct, 41
indirect, 41
objective, 40
subjective, 40
valid, 38

Measurement, 37
Measurement control, 18
Median, 124
Meta-analysis, 23, 48
Metrics, 37
Mode, 125
Mortality, 107
Multiple groups threats, 107
Multivariate statistical analysis, 73, 128

Narrative synthesis. See Descriptive synthesis
Nested design, 98
Nominal scale, 39
Non-parametric tests, 135



Index

Non-probability sample, 93
Normal distribution, 130
Normality, 130, 135, 146
Null hypothesis, 91, 132

Object, 75
Object of study, 85
Operation, 80
Ordinal scale, 39
Outliers, 123, 129–131, 170

Paired comparison design, 96
Parametric tests, 135
Pearson correlation coefficient, 128
Percentile, 125
Personal Software Process (PSP), 161
Perspective, 86
Pie chart, 130
Planning, 58, 78, 89
Population, 92
Power, 92, 104, 134, 136
Presentation and package, 80
Principal component analysis (PCA), 128, 132
Probability sample, 93
Process, 41
Product, 41
PSP. See Personal Software Process (PSP)
Publication bias, 47
Purpose, 85

Qualitative research, 9
Quantitative research, 9
Quality focus, 85
Quality Improvement Paradigm, 24, 26
Quasi-experiment, 8, 11, 73, 86, 174
Questionnaires, 13
Quota sampling, 93

Random sampling, 93
Randomization, 94
Randomized complete block design, 97
Range, 126
Ratio scale, 40
Relative frequency, 126
Reliability, 105
Replication, 18

close, 20
differentiated, 20

Rescaling, 38
Resources, 41

Sampling
convenience, 93
non-probability, 93
probability, 93
quota, 93
random, 93
stratified random, 93
systematic, 93

Scale, 38
Scale type, 39
Scatter plot, 128
Scientific method, 6
Scoping, 78, 85
Scoping studies. See Mapping studies
Selection of subjects, 92, 107

interactions, 107
Sensitive results, 118
Sign test, 96, 142
Simulation, 5
Single group threats, 106
Snowballing, 23, 47
Social threats, 108, 109
Spearman rank-order correlation coefficient,

128
Standard deviation, 126
Statistical regression, 107
Statistical test

one-sided, 133
two-sided, 133

Stratified random sampling, 93
Subjects, 75, 92

inducement, 35
students, 35, 90, 174

Survey, 10, 12
descriptive, 13
explanatory, 13
explorative, 13

Synthesis, 22
descriptive, 50

Systematic literature reviews, 22, 45
Systematic sampling, 93

t-test, 96, 138
paired, 96, 141

Technology transfer, 30
Test, 76, 94
Theory

software engineering, 21
testing, 111

Threats to validity, 102
design, 108
multiple group, 107
priorities, 111

235



Index

single group, 106
social, 108, 109

Transformation, 38, 127
Treatment, 75, 95
Two-stage nested design, 98
Type-I-error, 91
Type-II-error, 91

Validity, 68, 102, 104, 111
conclusion, 104
construct, 108

external, 110
internal, 106

Variable, 74, 92
dependent, 74, 92
independent, 74, 92
response, 74

Variance, 126
Variation interval, 126

Whiskers, 129, 169
Wilcoxon, 96, 142

236


	Appendices
	AppendixA Exercises
	A.1 Training
	A.1.1 Normally Distributed Data
	A.1.2 Experience
	A.1.3 Programming
	A.1.4 Design
	A.1.5 Inspections

	A.2 Reviewing
	A.3 Assignments
	A.3.1 Unit Test and Code Reviews
	A.3.2 Inspection Methods
	A.3.3 Requirements Notation


	AppendixB Statistical Tables

	References
	Index

