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Abstract
This study addresses the complexities of maritime area information collection, particularly in challenging sea
environments, by introducing a multi-agent control model for regional information gathering. Focusing on three key
areas—regional coverage, collaborative exploration, and agent obstacle avoidance—we aim to establish a
multi-unmanned ship coverage detection system. For regional coverage, a multi-objective optimization model
considering effective area coverage and time efficiency is proposed, utilizing a heuristic simulated annealing
algorithm for optimal allocation and path planning, achieving a 99.67% effective coverage rate in simulations.
Collaborative exploration is tackled through a comprehensive optimization model, solved using an improved greedy
strategy, resulting in a 100% static target detection and correct detection index. Agent obstacle avoidance is
enhanced by a collision avoidance model and a distributed underlying collision avoidance algorithm, ensuring
autonomous obstacle avoidance without communication or scheduling. Simulations confirm zero collaborative
failures. This research offers practical solutions for multi-agent exploration and coverage in unknown sea areas,
balancing workload and time efficiency while considering ship dynamics constraints.
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1 Introduction
Maritime area information collection encompasses gath-
ering diverse data in the marine environment, essential for
scientific research, search and rescue operations, landing
and beaching activities, sea area warnings, and ship in-
formation [1]. This process holds immense importance in
developing and utilizing marine resources, safeguarding
the marine environment, rescuing marine accidents, and
maintaining national territorial waters security [2]. How-
ever, the marine environment’s complexity and variabil-
ity, influenced by factors like waves, currents, meteoro-
logical conditions, and marine life, pose significant chal-
lenges. Despite advances in ocean information collection
equipment, including ocean observation ships, satellite re-
mote sensing, and drones, the vastness and ever-changing
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nature of the ocean continue to affect detection accu-
racy, posing challenges to the reliability of ocean detection
equipment.

Current research in complex sea areas has primarily
focused on enhancing the autonomy and efficacy of un-
manned ships, specifically in areas of path planning, dy-
namic task allocation, and collaborative fleet operations
[3]. While recent studies have employed various compu-
tational methods such as artificial intelligence, machine
learning, and heuristic approaches to refine the precision
and dependability of these unmanned systems, several
critical challenges persist [4]. The ocean’s unpredictable
weather patterns and fluctuating sea states can profoundly
impact the stability and performance of unmanned ships
[5]. Furthermore, integrating these vessels into dense mar-
itime traffic, which includes both manned and unmanned
crafts, raises intricate navigational and safety concerns [6].
The necessity for robust communication systems to facil-
itate timely and accurate data exchange between multiple
agents and control centers adds another layer of complex-
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ity to their widespread implementation. Overcoming these
obstacles is pivotal in advancing the capabilities of un-
manned ships and fully unlocking their potential in com-
plex sea operations [7].

To tackle the aforementioned challenges, this study
presents a multi-unmanned ship coverage detection sys-
tem tailored for complex sea areas. Our comprehensive
approach incorporates three key strategies: regional cover-
age, collaborative exploration, and intelligent agent collab-
orative collision avoidance. By adopting these methods, we
aim to enhance the efficiency and safety of unmanned ship
operations in dynamic and challenging maritime environ-
ments. In the subsequent sections of this paper, we delve
into the specifics of our proposed framework, present the
results of our research, and discuss their implications. Ul-
timately, our goal is to contribute to the evolving field of
unmanned ship technology and pave the way for more ef-
fective and safer maritime operations.

2 Previous works
Maritime area information collection is the process of ob-
taining various information in the marine environment,
including marine physics, chemistry, biology, and other
aspects. It is of great significance to the development and
utilization of marine resources and the protection of the
marine environment [8]. Modern ocean information col-
lection technology has developed to a relatively mature
stage, including ocean observation ships, satellite remote
sensing, drones, etc. However, the marine environment is
complex and changeable. It is affected by the interaction
of waves, currents, tides, meteorological conditions, wa-
ter temperature, salinity, marine life, and other factors,
making the marine environment increasingly complex.
In addition, factors such as seabed topography, seabed
sediments, seabed organisms, and marine pollution will
also cause changes in the marine environment, which will
have a greater impact on the detection accuracy of tradi-
tional platform detection loads. In order to cope with the
complex and changeable marine environment, on the one
hand, high target positioning accuracy can be obtained by
observing targets at close range; on the other hand, using
multiple agents to coordinately complete target detection
in designated complex sea areas can effectively improve
detection accuracy and reduce safety risks.

This article conducts multi-agent dynamic planning for
a designated irregular closed sea area. Each agent is re-
quired to achieve effective coverage of the entire area and
ensure that it can detect all static targets in the area. It also
discovers and detects multiple static targets with different
attributes. During the process, it is possible to control sin-
gle or multiple agents to approach a static target at a spec-
ified angle, speed, and direction to complete the observa-
tion action. To solve this problem, it is necessary to realize

three main tasks: regional coverage path planning, explo-
ration task allocation, and collaborative obstacle avoidance
of multi-agent.

2.1 Area coverage path planning
Area coverage path planning refers to using mobile agents
to traverse the target environment area within their physi-
cal contact range or within their sensor sensing range and
try to meet optimization goals such as short task com-
pletion time, few repeated paths, or small untraversed ar-
eas. Full coverage applications of intelligent agents appear
in various aspects such as military, agriculture, industry,
commerce, disaster relief, and urban life, such as automatic
demining, crop harvesting, air traffic inspection, etc. Com-
pared with single-agent coverage path planning, in addi-
tion to considering the traversal and non-duplication of
paths, it also needs to consider the balance of task alloca-
tion, the challenge of resource conflict, the uncertainty of
the number of agents and the task environment, and the
uncertainty of the agent negotiation and conflict, prior in-
formation dependence, algorithm adaptability, and scala-
bility, etc. The work of [9] extended the single-agent spi-
ral spanning tree coverage algorithm to multiple agents
and proposed multi-agent spanning tree coverage (MSTC)
with backtracking optimization, which improved the effi-
ciency and robustness of agent coverage. At present, multi-
agent coverage path planning algorithms can be divided
into three categories: no planning, centralized planning
and discrete planning. The random path planning algo-
rithm [10] does not require map information, and the
agent uses random reactive motion planning. Achieving
ideal coverage results at the expense of time or invest-
ing a large number of agents. The centralized planning
algorithm allocates areas under the condition of obtain-
ing global environmental information, and the agents each
complete the coverage tasks in the allocated areas, which
can produce more efficient paths and greatly shorten the
duration of completing the coverage tasks. However, there
are many limitations in practical applications. The discrete
programming algorithm does not have a centralized task
allocation mechanism, and each agent exchanges informa-
tion through explicit or implicit communication to collab-
orate to complete coverage. The discrete programming al-
gorithm is an online, real-time planning algorithm that can
adapt to coverage in unknown environments, but its effect
is closely related to the algorithm itself.

Much work has been devoted to improving the perfor-
mance of area coverage path planning. In order to take
advantage of the power of the centralized framework, the
authors of [11] proposed a backward horizon centralized
online homogeneous multi-agent planner based on goal
assignment, which ensures complete coverage of the un-
known workspace and has advantages in coverage comple-
tion time. In [12], it proposed a new multi-agent contin-
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uous coverage strategy, aiming to optimize coverage per-
formance and obtain a more equal coverage path for each
agent, while ensuring the minimization of obstacle avoid-
ance and coverage cycles. The work of [13] provided a new
multi-agent coverage path planning algorithm (MACoPP)
to optimize the load balance between agents by consid-
ering the initial state of the agents while minimizing the
completion of non-convex area monitoring. The authors
of [14] proposed a path planner formulated in continuous
time to improve the reliability probability measure of area
coverage. The study of [15] proposed a complete coverage
path planning (CCPP) algorithm based on energy compen-
sation and obstacle vectoring (ECOV). This algorithm has
the advantages of a low path coverage repetition rate and
high coverage rate and can be adapted to complex map
models. The authors of [16] proposed a coverage method
based on an iterative heuristic algorithm to minimize the
number of coverage lines and thereby reduce the number
of turns in the path. The authors of [17] proposed an agent-
decentralized control strategy based on graphical neural
networks, using communication between agents to display
and share information between adjacent agents for control
decisions, achieving higher coverage quality.

Due to the strong task practicality of area coverage path
planning, many works have proposed algorithms for spe-
cific tasks or scenarios. Many works [18, 19] have studied
the coverage path planning problem of autonomous or het-
erogeneous unmanned aerial vehicles (UAVs) over a lim-
ited area. The study of [20] aimed at finding the optimal
path for a set of UAVs with limited power constraints to
fully cover. For the task of multiple non-overlapping con-
vex polygon regions, a Branch-and-Bound (BnB)-based
method was developed to find the (nearly) optimal path
and a genetic algorithm-based method was developed to
effectively solve large-scale problems under different ob-
jectives. In [21], it proposed a new multi-agent coverage
path planning algorithm which can improve the adaptabil-
ity and robustness of the system in unknown complex envi-
ronments through interaction and collaboration between
agents. The authors of [22] proposed a multi-UAV cover-
age path planning (CPP) framework for detecting large-
scale and complex three-dimensional structures. Aiming
at the problem of full coverage of multi-agent space when
the density function on the domain is initially unknown,
the study of [23] asked a group of mobile agents to learn the
spatial field on a domain at the same time and distribute
themselves in space to optimize the coverage path.

Multi-agent area coverage needs to face challenges such
as agent negotiation and conflict, optimization of coverage
performance, and high computing power and time costs.
For the sea area scenario of this competition, this work uses
the optimal area allocation and coverage path optimiza-
tion based on cellular discrete decomposition and simu-
lated annealing (SA) algorithm for the polygonal sea area

to be explored. In the initial stage, the agent performs cov-
erage and exploration work at the same time. Until the cov-
erage task is completed, all agents switch to the exploration
working mode. This path planning strategy optimizes the
implementation effect of the task, can complete basic full
coverage, and has certain advantages in indicators such as
coverage completion time.

2.2 Multi-agent task allocation
When a multi-agent system handles full coverage actions,
it needs to go through several stages, including task de-
composition, task assignment, task scheduling, etc. These
three stages are collectively called task distribution. Multi-
agent task allocation (MATA) plans the best task execution
sequence for each agent in the system while satisfying var-
ious constraints. The system execution cost is completing
all the tasks required by the system in the smallest possible
case is essentially a combinatorial optimization problem.
The MATA task allocation scheme should cope with the
three factors of acceleration ratio, resource conflict (such
as path conflict), uncertainty in the number of agents (such
as task completion time with deadline), or environmen-
tal uncertainty (such as environmental probabilistic tran-
sition). At present, the main methods to solve multi-agent
task allocation include linear programming method, mar-
ket mechanism-based method, heuristic search algorithm,
etc.

Allocation methods based on mathematical program-
ming can convert multi-agent task planning problems into
mathematical operations through linear programming al-
gorithms. Although the optimal solution can be obtained,
it has high time and space complexity. When the problem
scale increases At this time, the difficulty of solving also
increases sharply, and the time consumption increases ex-
ponentially. The heuristic allocation method [24] gradu-
ally approaches the optimal solution by continuously it-
erating an initial solution. It has the advantages of strong
adaptability and fast search speed, but it generally obtains
a local optimal solution. The method based on the market
mechanism [25] allows multiple agents to bid or negoti-
ate based on market conditions to achieve task allocation,
mainly including auction algorithms and contract network
algorithms. In general, the task allocation strategy based
on heuristic algorithms has better results in solving MATA
problems in complex environments and is the best strategy
to be applied to actual task allocation.

The work of [26] aimed at the problem of multi-UAV col-
laborative search and rescue. They considered the prob-
lem that the UAV performing the task could not estab-
lish a connection with the control center. By predicting
the network topology, they set up relay tasks to distribute
and repair the connection to ensure network connectivity
during task execution., combined with the auction algo-
rithm to achieve real-time task allocation. The authors of
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[27] aimed at the MRTA problem under limited commu-
nication range and resource constraints, using a solution
strategy based on multi-hop networks combined with dis-
tributed auctions to solve the real-time optimal allocation
problem under resource and power consumption. In [28],
it aimed at the MATA problem where tasks have execu-
tion time and time windows. Each agent is determined by
battery life and the upper limit of the execution task. They
proposed a method based on dynamic programming com-
bined with a distributed auction algorithm to realize multi-
agent distributed real-time tasks. distribute. In response
to dynamic disturbances or failures, the study of [29] in-
troduced dynamic iterative task allocation graph search
(DITAGS) to achieve resilient task scheduling and mo-
tion planning problems in dynamic environments involv-
ing heterogeneous teams. The authors of [30] considered
the problem of assigning tasks to a team of heterogeneous
mobile agents. The study of [31] proposed a heuristic-
based approach to generate task reassignment suggestions
to handle emergencies and complete tasks faster by multi-
agent teams operating in challenging environments. The
work of [32] designed two group-based distributed auction
algorithms to implement multi-agent dynamic transporta-
tion task allocation problems, and quantified the potential
of the algorithm in terms of the number of agents used and
the capacity of the agents. The authors of [33] innovated
real-time multi-agent task allocation by proposing a hy-
pergraph MRS model and a hypergraph search algorithm
to coordinate heterogeneous multi-agent systems to meet
the frequent reconstruction caused by dynamic produc-
tion needs. Analyzed and solved challenges caused by fre-
quent production process adjustments. The work of [34]
proposed a game theory multi-agent task allocation frame-
work that enables a large group of agents to optimally al-
locate tasks in a dynamically changing environment. The
algorithm enables the agent to learn and asymptotically
achieve optimal smooth task allocation.

Due to the complexity and uncertainty of crowd intelli-
gence tasks and collaborative agents, most task allocation
mechanisms have problems such as a narrow scope of ap-
plication, low matching accuracy, and low allocation effi-
ciency. This work aims at optimizing the efficiency of task
allocation and scheduling. We design a cost function re-
lated to distance and use an improved greedy algorithm
to design a task allocation strategy to dynamically allocate
exploration tasks to each agent in stages, that is, to its near-
est task point., to shorten task allocation time and overall
running time.

2.3 Multi-agent collaborative obstacle avoidance
The obstacle is one of the core technologies of multi-agent
coverage path planning, that is, planning a collision-free
and minimal-cost path between the starting point and the
endpoint. In addition to completing tasks efficiently, intel-
ligent agents must also comply with external constraints to

ensure the safety of the navigation process and not cause
immeasurable losses due to collisions with other agents or
various obstacles. In the early days of research, most schol-
ars focused on static, simple situations with a single ob-
stacle, and achieved good results. However, the real envi-
ronment is complex, dynamic, and even unknown. How
to operate in a dynamically complex, unknown environ-
ment? Medium and high-efficiency obstacle avoidance and
path planning are still a hot and difficult research topic.
Research on obstacle avoidance problems mainly focuses
on the following aspects: 1) Obstacle avoidance with dif-
ferent agent speeds and sizes; 2) Treatment of regular and
irregular obstacles: Regular obstacles gener- ally refer to
obstacles that can be modeled with mathematical models.
Since irregular obstacles cannot be modeled directly, they
are generally handled by vertex approximation methods;
3) Obstacle avoidance in static and dynamic environments;
4) Single agent and multi-agent: a single agent does not
need to consider the interaction between agents. Multi-
agent systems need to consider the non-stationarity of the
environment. It can be divided into centralized and dis-
tributed. The centralized system is coordinated in real-
time through a central controller, while each agent in the
distributed system makes independent decisions based on
onboard sensors, which is suitable for deploying a large
number of agents with a low computing budget.

Traditional obstacle avoidance methods include artificial
potential field method, optimal interactive collision avoid-
ance method, ant colony algorithm, etc. The artificial po-
tential field method is based on the principle that the tar-
get generates gravitational force and the obstacle gener-
ates repulsive force. By establishing a potential field in the
environment, the resultant force generated by the target
and obstacles acts on the agent, thereby guiding the agent’s
motion state [35]. The work of [36] proposed the discrete
artificial potential field (DAPF) algorithm, which imple-
ments a dynamic method by constructing a discrete poten-
tial field. The path length planned by the algorithm is more
reasonable and the running time is shortened. However,
this algorithm requires a known global map. It can be used
only after downloading. The optimal interactive collision
avoidance method (ORCA) transforms the dynamic col-
lision avoidance problem into a quadratic linear program-
ming problem and solves it in the convex region of the ve-
locity plane [37]. In [38], applied the probabilistic velocity
obstacle (PVO) method to dynamic occupancy grids and
proposed a method to estimate collision probability with
uncertainty in the position, shape, and speed of obstacles,
occlusion, and limited sensor range. directly affects calcu-
lations. Experi- ments have proven that the agent can safely
navigate obstacles at a constant linear speed, but it lacks
the ability to handle obstacles at nonlinear speeds. These
algorithms can handle many obstacle avoidance problems,
but they may fall into local optima, and they still need to be
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further improved in terms of adaptability, computational
efficiency, autonomy, and stability. In recent years, artifi-
cial intelligence algorithms have also been widely used in
collaborative obstacle avoidance problems in multi-agent
environments. Based on the powerful environment per-
ception capabilities of deep neural networks, supervised
learning was first applied. Many works use airborne sen-
sors to input motion data into neural networks, and con-
volutional neural networks are commonly used to extract
environmental features and train to output simple obstacle
avoidance instructions [39]. In addition, deep reinforce-
ment learning (DRL) has also received a lot of attention
[40, 41] and has begun to be widely used in the field of ob-
stacle avoidance. Inspired by a recognition neuron of lo-
custs, the authors of [42] proposed an artificial neural net-
work model and optimized the model parameters to en-
hance the adaptability of the model. The model was com-
bined with a visual sensor to realize the intelligent control
of the agent. Dynamic obstacle avoidance.

This work uses the optimal interaction speed obstacle
method to handle the obstacle avoidance task. In the op-
timal interaction speed obstacle method, each agent as-
sumes half of the obstacle avoidance responsibility, so it
is only suitable for homogeneous agents to avoid obsta-
cles. Faced with situations such as heterogeneous agents,
stationary obstacles, and asymmetric agents, the evenly di-
vided responsibility allocation mechanism cannot respond
flexibly and limits navigation performance. This work im-
proves this shortcoming. For different obstacle avoidance
situations, the obstacle avoidance responsibilities are flex-
ibly allocated based on priority classification, and the sum
of the responsibilities of each pair of colliding bodies is
ensured to be 1. This improvement expands the two sit-
uations of dynamic obstacle avoidance and static obstacle
avoidance and realizes the optimization of the hierarchical
responsibility allocation mechanism.

3 Methodology
3.1 Problem statement
The ocean environment is complex and changeable, which
has a great impact on the detection accuracy of traditional
platform detection loads. Under normal circumstances,
target observation at close range can achieve higher target
positioning accuracy. In the process of discovering and ex-
ploring multiple static targets with different attributes, it is
necessary to control single or multiple agents to approach
static targets at a specified angle with a steady speed and
direction. The target completes the observation action to
ensure that the target’s high-precision position, speed, im-
age or video information can be obtained. Using intelligent
agents to assist in target detection in designated complex
sea areas can effectively improve detection accuracy and
reduce safety risks. To carry out full area coverage and tar-
get detection within a designated irregular closed sea area,
the following three problems need to be solved:

Area coverage (Problem 1): It is necessary to use multi-
agent to complete effective coverage of the entire area in
the irregular closed sea area to discover all static targets,
and the agent cannot enter the no-navigation zone.

Collaborative exploration (Problem 2): The agent needs
to complete the exploration tasks of all static targets in a
specified way, where the attributes of the static targets will
change dynamically.

Agent obstacle avoidance (Problem 3): The agent needs
to maintain safe navigation and cannot enter the threat ra-
dius of other agents or static targets. It needs to avoid col-
lisions. For the above problems, it is necessary to design
a multi-agent control model for regional information col-
lection. Through the model, dynamic task allocation and
path planning can be performed for multi-agents, so that
multi-agents can collaboratively complete the tasks of re-
gional coverage and static target detection. The following
detailed analysis is made for the three sub-problems.

For Problem 1, it can be transformed by considering the
ship as a particle with a certain detection radius and de-
tection angle range (only regarded as a particle when cov-
ering the path planning) and considering the static target
and the area within the threat radius as obstacles. A multi-
agent collaborative full-coverage path planning problem
in a known closed plane area. Specifically, the goal of this
problem is a minimax problem, so that the agent with the
longest exploration time takes the shortest time, that is, the
task completion time is the shortest. For this problem, it is
necessary to design a region allocation and path planning
algorithm so that the agent can complete the coverage task
of the entire two-dimensional area in the shortest possible
working time.

For Problem 2, considering the detection of static tar-
gets as a task, it is necessary to design an internal decision-
making algorithm for the agent to enable the agent to
choose between the coverage task and the detection task.
To further consider the multi- agent scenario under shared
observation conditions, it is also necessary to design a
multi-agent scheduling algorithm. Through the agent’s in-
ternal decision-making algorithm and scheduling algo-
rithm, the agent can complete the coverage and explo-
ration tasks as much as possible.

For Problem 3, static targets and other agents are re-
garded as static obstacles and dynamic obstacles. It is nec-
essary to design an obstacle avoidance algorithm to ensure
that the agent remains as safe as possible during naviga-
tion. For intelligent agents, autonomous obstacle avoid-
ance should be a basic ability, so the obstacle avoidance
algorithm should be distributed without the need for cen-
tral server scheduling.

3.2 Proposed model
To address the three sub-problems, this paper adopts re-
gional coverage strategy, collaborative exploration strat-
egy, and intelligent agent collaborative collision avoidance
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Figure 1 Multi-unmanned ship coverage detection system in complex sea areas

strategy respectively to form a multi-unmanned ship cov-
erage detection system in complex sea areas, as shown in
Fig. 1.

1) Coverage Problem
In addressing the coverage problem, several challenges

arise, including heterogeneous multi-agent systems, arbi-
trarily shaped areas, and the distribution of no-navigation
zones. To tackle these issues, we adopt a two-step strat-
egy: first, we discretize the target area into a honeycomb-
like grid, and then optimize the path through all cellular
points. However, given the vastness of the site and the high
number of agents involved in practical scenarios, finding
the optimal solution can be computationally intensive and
time-consuming, posing challenges for engineering appli-
cations.

Therefore, we decompose the problem into two smaller
optimization tasks: regional allocation and intra-regional
path planning. After clustering the honeycomb points, we
utilize the simulated annealing algorithm for regional al-
location. Subsequently, leveraging the genetic algorithm,
we smoothly plan the path within each region by bal-
ancing the longest path, the shortest path, and the num-
ber of path turns. This approach ensures efficient plan-
ning within smaller areas, achieving a balance between
computational cost and time. Additionally, by considering
the boundaries of no-navigation zones and regional bor-
ders, we fine-tune the agent’s navigation path by relocating

nearby coverage task points, thereby maintaining optimal
coverage while ensuring efficient detours.

2) Exploration Problem
When addressing the exploration problem, we encounter

several complexities, such as dynamic environmental
changes, numerous exploration constraints, and hetero-
geneous agents. To overcome these difficulties, we employ
an optimal cost-greedy exploration strategy. Upon discov-
ering an agent, we immediately initiate an exploration,
record the static target, and continue with the coverage
tasks. As agents complete their assigned coverage duties,
we dynamically adjust their detection targets by consider-
ing factors like travel time to static targets, exploration in-
tervals, and the number of required probes. This real-time
cost estimation enables intelligent agents to collaborate ef-
ficiently in detecting static targets.

3) Collision Avoidance Problem
To enhance collaborative effectiveness and address col-

lision avoidance between agents and static targets during
navigation and exploration, we adopt the optimal recipro-
cal collision avoidance (ORCA) algorithm. We introduce
the concept of agent navigation priority, giving the high-
est priority to agents in the exploration state. This allows
agents with lower priorities to bear more speed variations.
Even in the absence of communication, ship speeds can be
controlled through predefined consensus to prevent col-
lisions. This approach ensures collision avoidance among
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Table 1 Description of symbols

S Mission area (excluding no-navigation zones)
Si Task sub-area
NA The number of agents
NO The number of static targets
A = {A1,A2, . . . ,Ai , . . . ,ANA } Agent collection
O = {O1,O2, . . . ,Oi , . . . ,ONO } Static target set
vsail Agent attributes: Maximum sailing speed
vdetect Agent properties: Maximum exploration speed
rdetect Agent properties: Agent detection target distance
rthreat Agent attributes: Agent threat range
tdetect The time for an agent to complete continuous exploration of the same target
Pi The agent Ai ’s navigation path in the task area

agents without compromising the completion of explo-
ration activities.

By incorporating these strategies, we aim to enhance the
efficiency and effectiveness of multi-agent systems in var-
ious scenarios, including coverage, exploration, and colli-
sion avoidance.

3.3 Assumptions
Some of the details of this model are assumed as follows:

1) Agents share global observation information and the
synchronization of information is without delay. For exam-
ple, as long as a static target enters the maximum detection
target distance of an agent, the attributes of the static target
can be synchronized to all agents immediately. The body
is knowable.

2) It is assumed that there are no unexpected situations
during the navigation and exploration process of the agent,
and it can run according to the set state and speed.

3.4 Notations
The notations of the model are shown in Table 1.

3.5 The area coverage model
Regarding the area coverage problem in unknown sea
areas, since the boundaries of the task area are known,
the area coverage of multi-agent can be divided into two
sub-problems, namely the area division problem and the
single-agent coverage path problem. First, the task area is
assigned to each agent through a reasonable regional di-
vision. Each agent is responsible for a sea area and com-
pletes the coverage path solution of a single agent in the
sea area. Combining the solutions of the two sub- prob-
lems can solve the problem of effective coverage of the en-
tire area by multi-agents in irregular closed sea areas.

When dividing the area, the task area S needs to be di-
vided into sub-areas Si.

S = UNA
i=1 Si. (1)

We can determine a series of points in the task area and
use these points to draw circles with a certain radius so that

Figure 2 An illustration of minimum circle covering rectangular area

the task area is completely covered by a series of circles.
The work of [43] proposed a minimum circle complete
coverage method. The hexagonal mesh structure is formed
after the circle centers are connected. Figure 2 shows a
schematic diagram of the minimum circle covering a rect-
angular area.

Then, assuming that the task area Si is assigned to agent
Ai for coverage, the path Pi = {Pj

i, j = 1, 2, . . . , } of the agent
Ai should satisfy the following:

Si = UjD
(
Pj

i, rdetect
)
, (2)

where Pj
i is the point that constitutes the path Pi, D(P, r) =

{Q|‖Q – P‖ < r} representing a circular area with the point
P as the center and r as the radius.

Since the information inside the mission area is un-
known before coverage begins, obstacle avoidance of static
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targets in the area and detection while covering cannot be
considered in advance when dividing the area. In order to
achieve efficient regional coverage, when the divided area
is assigned to a single agent for coverage, each agent must
plan a path as short as possible.

In summary, the multi-agent area coverage problem can
be formulated as a constrained optimization problem:

minmax
(|P1|, |P2|, . . . , |PA|), (3)

s.t. S = UNA
i=1 Si = UNA

i=1 UiD
(
Pj

i, rdetect
)
. (4)

However, considering that in practical applications, ef-
fective coverage and coverage time in the entire area of-
ten require balance and trade-offs, and full coverage is not
a strong constraint, it is more reasonable to express this
problem with the following multi-objective optimization
model:

max
∣∣UNA

i=1 Si
∣∣ =

∣∣UNA
i=1 UjD

(
Pj

i, rdetect
)∣∣. (5)

For the aforementioned coverage path problem, optimal
area allocation and coverage path optimization based on
a simulated annealing (SA) algorithm are used. Consider-
ing that the initial positions and speeds of the agents are
different, the area that each agent is responsible for cover-
ing should be allocated according to certain optimal crite-
ria. Therefore, the shortest time for an agent to traverse all
cellular points starting from its respective starting point is
considered as the goal, and a heuristic algorithm is used
for point allocation and path planning of each agent. In
terms of specific implementation, a simulated annealing
algorithm is used, and the solution is defined as a sequence
of cellular points that an agent passes through. The se-
quence elements are the numbers of each cellular point.
The total number of elements in each sequence is the cel-
lular points that the corresponding agent passes through.
The sequence of the inner elements represents the order of
the honeycomb points on the path. Through SA optimiza-
tion, a solution that minimizes the target value is finally
obtained, that is, the optimal coverage path of each agent.

3.6 The collaborative exploration model
The problem of collaborative exploration of static targets,
it is decomposed into two problems: internal decision-
making of agents and scheduling between agents. The in-
ternal decision-making problem of the agent refers to the
fact that the agent needs to make local decisions while per-
forming the coverage task, and decide whether it needs to
complete the exploration task of the observed static target
nearby. Since there is a time interval for the agent to de-
tect the same static target in the review phase, it is a good
strategy to detect a new static target every time it is discov-
ered in the coverage phase, which can greatly reduce the

workload of the exploration phase. Scheduling between
agents refers to: after the agents complete their own cov-
erage tasks, they enter the collaborative exploration stage.
If there are still unexplored static targets in the area at this
time, the central server needs to schedule the agents to the
corresponding static target points to complete the explo-
ration mission.

First, assuming that the agent already knows the at-
tributes of all static targets in the task area, and all agents
only perform exploration tasks, then for such a problem,
the goal is to complete more effective explorations in a
shorter time. Since a static target may have multiple ex-
ploration tasks, all the tasks to be explored in the task area
are recorded as TASK = {TASK1, TASK2, . . . , TASKj, . . .},
including a total of tasks

∑NO
i ni. The set of exploration

tasks completed by the agent Ai is recorded as taski.
The time it takes to complete the exploration includes

the time it takes for the agent to travel from its current
position to the exploration starting point, and the waiting
time tdetect (if any) for the same agent to continuously ex-
plore the same static target. Then the time objective of this
problem can be expressed as:

{
min max( |Pi|

Vsail
+ tdetect), i = 1, 2, . . . , NA,

s.t. UNA
i=1 taski = TASK.

(6)

However, considering that in practical applications,
complete exploration of all targets and exploration time
often require balance and trade-offs, and full exploration
is not a strong constraint, it is more reasonable to express
the problem with the following multi-objective optimiza-
tion model:

{
min max( |Pi|

Vsail
+ tdetect), i = 1, 2, . . . , NA,

max |UNA
i=1 taski|.

(7)

The premise of the above model is that the agent com-
pletes area coverage and static target detection respec-
tively. In the actual environment, the agent may perform
detection at the same time during the navigation process,
that is, multiple agents navigate in a location-based envi-
ronment, and the environment becomes partial over time.
It can be seen that in this case, the multi-agent must con-
tinue to carry out area coverage and static target detection
at the same time. The optimization model of this compre-
hensive problem can be established as:

⎧
⎪⎨

⎪⎩

min max( |Pi|
Vsail

+ tdetect), i = 1, 2, . . . , NA,
max |UNA

i=1 taski|,
max |UNA

i=1 Si| = |UNA
i=1 UjD(Pj

i, rdetect)|.
(8)

In view of the above multi-objective optimization model,
this paper proposes an improved greedy algorithm to
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Algorithm 1 The improved greed algorithm for exploration
1 for agent Ai do
2 if Ai has completed the coverage task then
3 traverse all static targets in the system, calculate Ai’s cost of detecting each target, and select the static

target with the smallest detection cost Ox;
4 if the number of probes required m for Ox is less than the number of agents selected for probing n then
5 select the agent Aj with the highest current exploration cost among these agents; if Aj’s

exploration action has not yet started, reassign the static target to it;
6 else
7 let the agent Ai go and explore Ox;
8 End if
9 Else
10 let the agent Ai go and explore Ox;
11 End if
12 End for

achieve scheduling between agents. This method is a dy-
namic scheduling method that can make real-time and dy-
namic decisions for agents. In the improved greedy algo-
rithm in the exploration phase, the central server imple-
ments scheduling between agents by assigning agents to
perform exploration tasks at the static target point with
the smallest exploration cost. The calculation of the explo-
ration cost is based on the distance between the agent and
the static target and the remaining distance of the target.
interval time. Specifically, the central server will estimate
the time it takes to explore the target based on the distance
between the agent and the static target, compare it with the
remaining interval time of the target, take the larger value
between the two, and traverse the system. From all discov-
ered static target points, the static target with the lowest
cost is selected and assigned to the agent to explore.

The innovation of this improved greedy algorithm is that
the “static target grabbing” part is added to the algorithm.
Specifically, after the central server assigns a static target
O to agent A, it will update the cost of agent A′’s detection
of the static target O in real-time. When allocating static
targets to other agents, if an agent A′ detects the static tar-
get O and the cost is much less than that of the agent A.
The central server will schedule the agent A′ to explore the
static target O according to the situation and assign a new
static target to the agent A. The specific process of the im-
proved greedy algorithm is shown in Algorithm 1.

3.7 The agent obstacle avoidance model
Since the current multi-agent is performing tasks in a
large-scale sea scene, the key issue that needs to be consid-
ered is the efficient regional information collection (cov-
erage and exploration) multi-agent control method in the
overall task area. Therefore, the agent does not avoid ob-
stacles. Considering the optimization models of the previ-
ous two sections, it is only regarded as the local adjustment
and planning that needs to be carried out after the agent

solves the path. The following is a problem modeling of the
obstacle avoidance sub-problem of the agent.

For the agent obstacle avoidance problem, the distributed
optimal reciprocal collision avoidance (ORCA) method is
adopted in this study. The dynamic collision avoidance
problem is transformed into a quadratic linear program-
ming problem and solved in the convex area of the velocity
plane. This algorithm is the first method that can ensure
the local collision-free motion of a large number of agents
in a cluttered workspace, but it is not considered the prob-
lem of static obstacles appearing in the environment. This
model limits the speed direction of a plane. As long as the
agent’s speed falls within this half-plane, the collision can
be avoided.

For the two agents, recorded as A1, A2, their positions
can be expressed as coordinates p1, p2, and their speeds
can be expressed as v1, v2. Based on the position and speed
of A2, the agent A1 plans to derive speed obstacles and col-
lision avoidance speed offset vectors. The mathematical
expression of the speed obstacle and collision avoidance
speed offset vector is as follows:

VOτ
A1|A2 =

{
v|∃t ∈ (0, τ ), tv ∈ D(p2 – p1, rthreat)

}
. (9)

Regarding the minimum offset vector u of VOτ
A1|A2

, it is
represented as:

u =
(

argmin
v∃VOτ

A1 |A2

∥∥v –
(
v–

1 – v–
2
)∥∥

)
–

(
v–

1 – v–
2
)
). (10)

Denote −→n as the outer normal vector of the speed obsta-
cle area at the collision avoidance speed offset vector point.
For the obstacle avoidance offset vectors of all surround-
ing obstacles (agents other than itself ), the agent A1 gener-
ates allowed velocity half-planes, and intersects all velocity
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Figure 3 Schematic diagram of ORCA obstacle avoidance algorithm
selecting the obstacle avoidance speed of agents A1 and A2

half-planes to obtain the final optional velocity set:

ORCAτ
A1 =

{
v|(v –

(
v–

1 + α × ui
)) · −→ni ≥ 0,

i = 2, 3, . . . , NO
}

, (11)

in which, α represents the responsibility distribution co-
efficient, which is set to 0.5 when avoiding obstacles be-
tween agents, that is, both parties avoiding obstacles share
the same responsibility for speed changes in pairs.

The schematic diagram of the above ORCA obstacle
avoidance algorithm is shown in Fig. 3.

A hierarchical responsibility allocation mechanism is
implemented for both dynamic obstacle avoidance and
static obstacle avoidance situations. The same ORCA ob-
stacle avoidance strategy is used for static obstacles, but
the obstacle avoidance responsibility is assigned to the
agent, which improves the agent’s obstacle avoidance flex-
ibility. Within the final set of optional speeds, the agent
will choose the speed solution closest to the current speed,
which is the final collision avoidance speed.

When an individual is in a high-density scene, its ORCA
half-plane intersection at a certain moment is likely to be
an empty set. At this time, a speed with the smallest penalty
is usually selected as the new individual speed. The penalty
size is often selected as the maximum value of the Eu-
clidean distance from the speed to the half-plane dividing
line, and the agent will choose the speed with the smallest
value of the penalty term.

4 Experiments and analysis
4.1 Performance evaluation

1) Regional effective coverage.
Regional effective coverage = (actual coverage area of the

agent - overlapping coverage area of the agent) / area. Ac-
cording to the regional coverage rate of 100%, it is worth
10 points, 80% is worth 3 points, and 0% is worth 0 points.
A linear piecewise function is constructed to calculate the
score.

2) Effective detection of static targets.
When the agent enters the detection range of a static tar-

get, it counts as one valid detection, and the number of
times the target attribute needs to be detected is –1. The
effective detection rate of static targets = 1 - the remaining
number of detections of static targets / the total number
of detections of static targets = the number of correct de-
tections / the total number of detections of static targets.
A static target effective detection rate of 100% is worth 10
points, 80% is worth 6 points, and 0% is worth 0 points.
A linear piecewise function is constructed to calculate the
score.

3) Correct detection of static targets.
The agent completes the target approach detection ac-

tion according to the specified angle, and the number of
correct detections is counted. The correct detection rate
of the static target = the number of correct detections/the
total number of detection executions. A 100% correct de-
tection rate for static targets is worth 10 points, and a 0%
rate is worth 0 points. A linear function is constructed to
calculate the score.

4) Collaborative effectiveness.
When each agent enters the target threat area or the safe

area of other agents, a collaboration failure will be counted.
According to the total number of collaborative failures, a
linear piecewise function is constructed to calculate the fi-
nal score. 0 times is worth 10 points, 5 times is worth 6
points, and 10 times or more is worth 0 points.

4.2 The running interface
The algorithm is simulated and tested on the Galaxy Kylin
V10 SP1 system, and various indicators and scores are cal-
culated. Figure 4 shows the visual running interface of the
algorithm. In the current state, the ships have cooperated
to complete the full coverage of the area and the detec-
tion of static targets. In the figure, the gray polygonal area
represents the target sea area; the red polygonal area repre-
sents the no-navigation zone; the graphic composed of red
and blue circles represents the unmanned ship, in which
the dark blue double-sector area represents the detection
range, and the red circle in the center represents its threat
range; The graphic composed of a red circle and a blue sec-
tor represents a static target, in which the dark blue sector
represents its detection range and the red circle represents
its threat range.
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Figure 4 The interface of algorithm visual running

4.3 Experiment settings
The experimental scenario includes the longitude and lat-
itude of the boundary point of the mission area, the set of
no-navigation zones (including the longitude and latitude
of each no-navigation zone boundary point), the number
of the shipping agent, the initial position longitude and lat-
itude, the detection angle range, the detection radius, the
threat radius, the maximum sailing speed, and the maxi-
mum Probing speed. The status information of the agent
includes the agent number, current timestamp, longitude
and latitude, navigation speed, heading angle, accelera-
tion, angular velocity, attitude information, and discovered
static target information (in list form, if none, it is an empty
list). If a static target appears within the detection range
of an agent, the information in the static target list in-
cludes the static target’s number, latitude and longitude,
detectable angle, remaining number of detections, threat
radius, detection radius, and detection interval.

An example scenario without a no-go zone is shown in
Fig. 5, which contains information about all static targets.
The red area is the threat area of the agent and static tar-
gets, which can be used to represent the collision volume
or attack range; the blue area is the detection range of the
agent, the green area is the detection radius coverage of
the agent, and the black dotted line represents the static
target. The angles that can be explored, the numbers be-
low the static target and the agent are their numbers, and

Figure 5 The simulation scenario

Figure 6 Results of the simulation

the number in the center of the static target is the initial
number of times to be explored.

4.4 Results
The threat radius of all agents is 100 meters, the detec-
tion radius is 300 meters, the maximum sailing speed is
20 knots, the maximum detection speed is 10 knots; the
threat radius of all static targets is 100 meters, the detec-
tion radius is 200 meters, The total number of explorations
to be performed is displayed in the center of the static tar-
get, its number is displayed below, and its exploration an-
gle is displayed with a black dotted line. The interval be-
tween two explorations by the same agent is 120 seconds.
Based on the simulation results (Fig. 6), it can be seen that:

1) Regional effective coverage.
After simulation testing, the regional coverage rate is

99.67%, and the regional effective coverage index score is
9.94 points. Since this algorithm also adds new path points
to the corner areas that may be missed based on the cellu-
lar points, regional omissions should not occur. Analysis
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suggests that the reasons are as follows: The ship is sub-
ject to dynamic constraints and cannot turn on the spot. It
may produce a certain path deviation when turning, which
is inconsistent with the planned path, resulting in a small
area being covered and missing.

2) Effective detection of static targets.
Effective detection is the process in which the agent

completes the detection action towards the target, from
outside the detection range to within the detection range.
After simulation testing, the total number of times the
static target needs to be probed is 136 times, and the num-
ber of correct probes performed is 136 times. The effective
detection rate of static targets is 100%, and the effective de-
tection index score of static targets is 10 points.

3) Correct detection of static targets.
If the effective detection meets the time, angle, and speed

constraints, it will be recorded as a correct detection. After
simulation testing, the total number of probe executions
was 136, and the correct number of probes was 136. The
correct detection rate of static targets is 100%, and the cor-
rect detection index score of static targets is 10 points.

4) Collaborative effectiveness.
During the simulation test, the agent will not enter the

threat range of other agents or static targets, and the num-
ber of collaboration failures is 0. The collaborative effec-
tiveness index score is 10 points.

In a word, almost all indicators reached full wind, prov-
ing that our algorithm can achieve almost 100% coverage
of the scene in this scenario and complete the correct ex-
ploration of all targets.

4.5 Discussion
The area division algorithm and coverage algorithm pro-
posed and adopted in this article can be extended to two-
dimensional operating sea areas with different periph-
eral boundaries, different areas, and heterogeneous multi-
agents. This algorithm uses honeycomb hexagons to cover
the entire two-dimensional task area, obtains the center
point set of all hexagons, and adjusts the discrete point
distribution of the task boundary area to ensure complete
coverage while reducing time consumption as much as
possible. Suitable for a variety of task area shapes; after
converting the task area into several discrete points, based
on the agent’s initial position, coverage radius, navigation
speed and other conditions, use the clustering method to
convert the discrete points into several sub-areas, and then
use heuristics. The simulated annealing algorithm allo-
cates sub-regions to each agent; at the same time, consider-
ing the actual kinematic model of the agent, the movement
path of the agent in the sub-region is smoothly optimized
to reduce the number of turns and the energy consumption
of the actual ship, making it easier to transfer the model to
Introduce practical applications.

The improved greedy collaborative exploration algo-
rithm proposed in this article can ensure the load balance

of the agent as much as possible and reduce the task com-
pletion time. On the one hand, during the coverage pro-
cess, the agent immediately explores the static target ev-
ery time it finds it, reducing the number of tasks in the
exploration phase; when the agent completes the assigned
coverage task, it will enter the collaborative exploration
phase, and the center. The server uses an improved greedy
algorithm to continuously select the static target with the
smallest exploration cost and assign it to the agent. In ad-
dition, after the central server allocates a static target, it
updates the cost required for the agent to detect the target
in real-time. Once it is found that the number of agents
going to detect the static target is more than the number
of explorations required for the static target if other agents
detect the target, the cost is smaller, and the central server
will adjust the current allocation results, always achieve
the detection of static targets at the minimum cost, reduce
the task completion time, be suitable for various unknown
scenarios, and ensure the load balance of the agent.

The underlying collision avoidance algorithm ORCA
used in this article has a small amount of calculation and
can be deployed on unmanned ships in a distributed man-
ner. The ORCA algorithm is a distributed collision avoid-
ance algorithm with a wide range of application scenar-
ios. Through this algorithm, the optimal collision avoid-
ance speed of the agent under different speed targets (such
as maintaining the current speed, maximizing the speed
as much as possible, etc.) can be solved. This algorithm
only needs to know the position, speed, and other infor-
mation of the agent itself and potential collision objects
and can use linear programming to solve the problem in
polynomial time. According to the different states of the
agent when performing tasks, corresponding responsibil-
ities can be set for the agent’s obstacle avoidance. Agents
who perform important tasks bear lower responsibilities
when avoiding obstacles. Responsibilities can be flexibly
allocated in various tasks to achieve the generalization of
the general model. In general engineering scenarios, the
algorithm only needs to be estimated or measured by the
agent to estimate or measure parameters such as position
and speed required by the algorithm, and the algorithm
can be directly deployed in a distributed manner.

5 Conclusion
This study has successfully developed and evaluated a
comprehensive multi-agent system for regional coverage
and static target exploration in complex maritime environ-
ments. Through the implementation of a multi-objective
optimization model, and employing strategies such as sim-
ulated annealing for area coverage and a modified greedy
algorithm for task allocation, we have achieved near-
perfect effectiveness in both regional coverage and target
detection, as demonstrated by our simulation results. The
proposed model has proven robust and adaptable, suitable
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for various marine conditions, and capable of optimizing
both time efficiency and resource allocation among multi-
ple unmanned ships. This adaptability is crucial for prac-
tical applications ranging from environmental monitoring
to maritime rescue operations, where dynamic conditions
and unpredictable obstacles are common.

The proposed algorithms, though effective in simula-
tions, have yet to undergo rigorous real-world testing,
which is crucial to assessing their robustness and adapt-
ability to the unpredictable dynamics of the marine en-
vironment. Additionally, the study’s focus on static tar-
get exploration necessitates the integration of dynamic
target tracking and response mechanisms to enhance its
practical applications. Furthermore, the heterogeneity of
unmanned ships and their kinematic constraints, as well
as the communication requirements and limitations, re-
main understudied areas that future research must ad-
dress. Therefore, real-world testing, the incorporation of
dynamic target tracking, consideration of a wider range
of ship types, and the development of robust communica-
tion protocols represent avenues for further improving the
system’s capabilities, robustness, and adaptability for mar-
itime exploration. Future work should explore the integra-
tion of more advanced artificial intelligence techniques to
further enhance the autonomy and decision-making capa-
bilities of unmanned vessels. Additionally, expanding the
system to incorporate varying types of maritime vehicles
and testing in real-world scenarios will be vital to validate
and refine our proposed models. Through this research,
we contribute to the field of autonomous maritime explo-
ration, offering a scalable and efficient solution to navigate
and monitor complex sea areas, which is essential for ad-
vancing marine science and technology.
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