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Abstract
In this paper, we present a new perspective of single server private informa-
tion retrieval (PIR) schemes by using the notion of linear error-correcting codes. 
Many of the known single server schemes are based on taking linear combina-
tions between database elements and the query elements. Using the theory of linear 
codes, we develop a generic framework that formalizes all such PIR schemes. This 
generic framework provides an appropriate setup to analyze the security of such PIR 
schemes. In fact, we describe some known PIR schemes with respect to this code-
based framework, and present the weaknesses of the broken PIR schemes in a uni-
fied point of view.
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1  Introduction

Private information retrieval (PIR) was first introduced in [1] to cope with the fol-
lowing problem: retrieving an element from a database, without revealing to the 
untrusted source managing the database any information about that element. Since 
its introduction, it has attracted many researchers and several works have addressed 
their focus on it. There have been proposed two solutions to this problem, namely, 
the information theoretical one and the computational one. The first one aims to 
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guarantee that the server gets no information about the file that the user wants to 
retrieve. Solutions for multiple servers were presented in [2–7]. In the case of a 
single server, the trivial solution, i.e., downloading the whole database, is the only 
possibility to ensure information theoretical privacy. However, the trivial solution is 
not satisfactory as it comes with a very large communication cost, which basically 
implies that it is impractical. On the contrary, in computational PIR, the privacy is 
guaranteed assuming that the server has limited computational power. Hence, the 
computational PIR (cPIR) is the only practical solution in case of a single server.

Most of the early cPIR schemes are based on the difficulty of number-theoret-
ical problems, such as integer factorization (see for example [8–11]). The known 
(non-trivial) single server cPIR constructions require to perform some cryptographic 
operations on each database element, which increase the computational cost of these 
schemes in comparison to the information theoretical ones. In [12], Sion and Carbu-
nar showed that the number-theoretical PIR schemes are not practical, and comput-
ing a PIR reply is always less efficient than sending the whole database. Moreover, 
such schemes, based on factoring an integer, will be insecure in the era of quantum 
computers [13].

Some recent constructions of PIR schemes use a fully homomorphic encryption 
(FHE) scheme. Yi et  al. presented in [14] a generic way to construct a PIR from 
an FHE. Following this construction many PIR protocols have been proposed using 
FHE schemes based on problems in lattices and learning with error (LWE) prob-
lems [15–18]. Recently, Aguilar-Melchor et al. presented in [16] XPIR, a PIR con-
struction using a Ring-LWE based FHE scheme, that is computationally efficient but 
comes with a large communication cost. Following [16], Angel et al. in [17] were 
able to significantly improve its communication cost with only slightly more compu-
tations compared to XPIR. Along with the scheme of Angel et al., the recent work of 
Ali et al. [18] represent the state-of-the-art efficiency for PIR schemes.

Recently, Holzbaur, Hollanti and Wachter-Zeh have proposed in [19] the first 
single server PIR based on coding theory. However, their proposal was attacked in 
[20]. The primary idea in [19] is to generate the query by hiding carefully chosen 
error vectors using codewords from a random linear code. The linear code is kept 
secret by the user in order to obtain privacy. The same idea was previously used by 
Aguilar-Melchor and Gaborit in a lattice-based PIR scheme [21], without using the 
notion of linear codes. The scheme was later attacked by Liu and Bi [22] using lat-
tice reduction algorithms.

Interestingly, the idea of hiding query information using linear codes can be 
observed, directly or indirectly, in several other PIR schemes. In this paper, we 
develop a unified framework that describes all such PIR schemes. In particular, this 
framework characterizes all the single server PIR schemes that generate replies by 
contracting the database elements and the query elements using linear combinations. 
The main aim of this paper is to provide a survey on several existing single server 
PIR schemes in a unified coding theoretic perspective. This allows a deeper theoreti-
cal insight on the security of these PIR schemes.

The framework is based on two key elements: a linear code that hides the query 
information, and a retrieval function that allows the user to retrieve the desired file 
from a linearly entangled reply. On one hand, the notion of linear codes describes 
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the common features of several existing PIR schemes, and on the other hand, the 
retrieval function describes the key differences between the schemes. In terms of the 
framework, the privacy of a PIR scheme heavily relies on the retrieval function. We 
observe that several choices of retrieval functions are not safe to use, for example, 
finite field homomorphisms and vector space homomorphisms. Moreover, we dis-
cuss the weaknesses of many broken PIR schemes with respect to this code-based 
framework.

The paper is organized as follows: in Sect. 2, we introduce the notation that will 
be used throughout the paper and give the background on single server private infor-
mation retrieval, and linear codes over finite fields and over rings. In Sect. 3, we pre-
sent the code-based framework and discuss the security in a general point of view. 
In Sect. 4, we provide a survey on four different PIR schemes, described in terms 
of the code-based framework. The first one is a basic scheme that uses a finite field 
homomorphism as the retrieval function. Whereas the other three are based on the 
existing PIR schemes [19, 21] and [16], respectively. The latter is the only example 
of a scheme that we present which is still unbroken. For the former two we will also 
describe the existing attacks with respect to the proposed code-based framework. 
Finally, in Sect. 5, we draw some theoretical remarks on the generality of the frame-
work, and on the security of single server PIR schemes.

2 � Preliminaries

In this section we introduce the notation that we use in the paper and we recall some 
background on the theory of single server PIR. Moreover, we introduce the basic 
notions of error-correcting linear codes.

2.1 � Notation

In this paper, we denote by R a ring and by R× the set of invertible elements in the 
ring R . Moreover, let q be a prime power, then we denote by �q the finite field of 
size q.

We use bold lower case, respectively bold upper case letters to denote row vec-
tors, respectively matrices. When we consider column vectors, we use the transpose 
symbol. The identity matrix of size k is denoted by �k . Given a vector � of length 
n and a set S ⊂ {1,… , n} , we denote by �S the projection of � on the coordinates 
indexed by S. In the same way, �S denotes the projection of the k × n matrix � to 
the columns indexed by S.

For a set S we denote by SC its complement. The support of a vector � ∈ �
n
q
 is 

denoted by Supp(�) = {1 ≤ i ≤ n ∣ xi ≠ 0}.

The i-th entry of a vector � ∈ �
n
q
 is denoted by �[i] , for i ∈ {1,… , n}.

Given a set S and a distribution � on S, x ← � represents a sample x from S fol-
lowing the distribution �.
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2.2 � Single server private information retrieval

A single server PIR is a scheme involving two parties, the user and the server. The 
server manages a database containing some public information, and the user is inter-
ested in retrieving some entries of the database, without revealing which item was 
queried.

2.2.1 � Basic description

A basic description of a single server PIR scheme is as follows. Let the database be 
denoted by DB = {db1,… , dbN} , containing N files, and suppose the user wishes to 
retrieve the i-th file dbi . The user first constructs a query Q = {q1,… , qN} , which hides 
the information about the index i, and sends it to the server. The server computes a 
response by performing certain operations between qj and dbj for each j, and returns it 
to the user. The scheme is said to be correct if the user can retrieve the desired file dbi 
from the response.

2.2.2 � Communication and computational cost

A simple solution to preserve the privacy is downloading the whole database. How-
ever, the communication cost of this operation, measured as the total number of bits 
exchanged by user and server, in the trivial case is too high, namely O(N) where N 
is the size of the database. Modern PIR protocols allow the user to retrieve data from 
the database, with a communication complexity much smaller than O(N) . Some com-
mon methods can be used to improve the communication cost of any PIR scheme. In 
Sect. 3.2, we discuss such techniques in detail.

Another important aspect of a single server PIR scheme is the computational cost. 
Since the database has to process each entry of the query, the schemes are computa-
tionally expensive.

2.3 � Linear codes

2.3.1 � Over finite fields

Let � be a vector in � n
q
 . The Hamming weight of � is denoted by wt(�) and it is defined 

as the number of its nonzero entries, i.e., it is the size of its support. The Hamming dis-
tance between two vectors �, � ∈ �

n
q
 is defined as the number of components in which 

the two vectors differ, i.e., d(�, �) = |{i ∣ xi ≠ yi}|.
An [n, k]q linear code C is a k-dimensional subspace of � n

q
 endowed with the Ham-

ming distance and the elements of C are called codewords.
The minimum distance d of C is the quantity

When the minimum distance d of a linear code C is known, then C is denoted by 
[n, k, d]q.

d ∶= min{d(�, �) ∣ �, � ∈ C, � ≠ �}.
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A matrix � ∈ �
k×n
q

 whose rows form a basis for C is called generator matrix 
of C . Hence, we can define the code C as {� ∈ �

n
q
∣ � = ��⊤, � ∈ �

k
q
} . Simi-

larly, we can define the code C as the kernel of a matrix � ∈ �
(n−k)×n
q

 , i.e. 
C ∶= ker(�) = {� ∈ �

n
q
∣ ��⊤ = �} . Such a matrix is called parity-check matrix for 

the code C . An information set of an [n, k, d]q code C is a set I ⊂ {1,… , n} of size k, 
such that ∣ C ∣=∣ CI ∣, where CI denotes the restriction of all codewords to the entries 
indexed by I.

2.3.2 � Over rings

Let R be a commutative ring with identity. A linear code C of length n over R is an 
R-module in the space Rn.

A linear code C of length n over R is called cyclic if � = (c1,… , cn) ∈ C implies 
(cn, c1,… , cn−1) ∈ C . Equivalently, C is an ideal of the ring R[x]∕(xn − 1).

A linear code C of length n over R is called negacyclic if C is an ideal of the ring 
R[x]∕(xn + 1).

3 � Code‑based framework

In this section, we present a generic framework for single server PIR schemes by 
using the notion of error-correcting codes. For simplicity, we present the framework 
using a simple database setup, later we discuss different kinds of database setups 
that can be used to improve the communication complexity.

3.1 � Code‑based framework

Before we describe the framework in detail, we highlight some elements that are 
used in the framework:

•	 We describe the generic framework over a finite commutative ring R using a 
retrieval function f ∶ R → R and three subsets X, Y, Z of R.

•	 The database files belong to the set X.
•	 In order to generate queries, we fix a randomly chosen linear code C over R . 

Each element of the query is the sum of a randomly chosen codeword in C and an 
error vector over R.

•	 To generate the error vectors corresponding to the non-desired files we use the 
set Y, whereas for the desired file we use the set Z.

Setup:
We define a retrieval function f ∶ R → R , and subsets X, Y , Z ⊆ R satisfying: 

1.	 f is a non-zero map.
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2.	 Y ⊆ ker(f ) ∶= {x ∈ R ∶ f (x) = 0} such that any linear combination of elements in 
Y with scalars in X belongs to ker(f ) , i.e., x1y1 + x2y2 +⋯ + xjyj ∈ ker(f ) when-
ever x1,… , xj ∈ X and y1,… , yj ∈ Y .

3.	 Z ⊆ f −1(R×) such that f (y + xz) = xf (z) for all y ∈ ker(f ), x ∈ X and z ∈ Z.

Note that f does not need to be a ring homomorphism, it can be any kind of function 
from R to R satisfying the above three conditions.

Let � = (mi) ∈ XN represent the database, i.e., there are N files in the database. 
Suppose that the user wants to retrieve the b-th file from the database.

Let C be a random linear code over R of length n, i.e., C is an R-submodule of Rn.
Query generation:
Let �1,… , �m be generators of C as an R-module, and let Enc ∶ R

m
→ R

n 
be an encoding map of C . Note that Enc is an R-linear map given by 
(a1,… , am) ↦ a1�1 +⋯ + am�m.

Let �1, �2,… , �N be randomly chosen elements in Rm , and define �i = Enc(�i) for 
all i ∈ {1,… ,N}.

Now, let v be a randomly chosen fixed element in {1,… , n} and we randomly 
choose error vectors �1, �2,… , �N in Rn , such that they satisfy the following conditions 
that allow the reply extraction:

Let �i ∶= (�i, �i + �i) for all i ∈ {1,… ,N} . The query is then given by

Reply generation: The response is generated by computing

Reply extraction: First we perform the decoding by applying the encoding map on 
�1 , and obtain:

After that we can use the retrieval function f on the v-th coordinate,

The above equalities follow from the conditions of the retrieval function. Now, 
since we know f (�b[v]) and we have that f (�b[v]) ∈ f (Z) ⊆ R

× , we can retrieve the 
desired file mb.

�b[v] ∈ Z and �i[v] ∈ Y for all i ≠ b.

Q ∶= {�1, �2,… , �N}.

� =

N∑
i=1

mi�i =

N∑
i=1

(mi�i,mi(�i + �i)) =∶ (�1, �2).

�2 − Enc(�1) =

N∑
i=1

mi�i.

f

(
N∑
i=1

mi�i[v]

)
= f

(∑
i≠b

mi�i[v]

)
+ f (mb�b[v])

= mbf (�b[v]).
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3.2 � Communication complexity and different database setups

With respect to the basic description of the code-based framework, the commu-
nication cost is more than the size of the whole database. Indeed, for each file 
which is an element in R , we are sending a query element in Rn+m . Thus the 
total communication cost is (N + 1) times the size of an element in Rm+n . We can 
improve the communication complexity by using a matrix database setup [1] or 
iterative response techniques:

•	 Matrix setup of database: In order to reduce the communication complexity, 
one can see the database as an s × t matrix, where each element of the matrix 
is a database file. Now, the user generates a query Q = {�1,… , �t} containing 
t elements. For each query, the server replies by sending back the response 
R = {�1,… , �s} , which contains s responses corresponding to the s rows of the 
database matrix. This technique was introduced in [1]. Using this approach 
and assuming s = t =

√
N , the communication complexity is 2

√
N times the 

size of an element in Rm+n.
•	 Iterative reply generation: In this technique, one splits each file into L parts 

and repeats the query to retrieve each part of the file. Since the query is gener-
ated in order to retrieve only small portions of the desired file, the size of the 
ambient space reduces accordingly. Hence, relative to the size of the database, 
the query size reduces by a factor of L, and the response size increases by the 
same factor.

3.3 � Security

The security of a single server computational PIR scheme is based on the dif-
ficulty of identifying the index of the desired file by looking at the query. With 
respect to the code-based framework, we can describe the security using the fol-
lowing distinguishability problem.

Problem 1  (Distinguishability Problem) Consider the notations of the setup and the 
query generation process of the code-based framework. Given the query vectors 
�1, �2,… , �N , determine the index b of the desired file.

The difficulty of solving the distinguishability problem depends highly on the 
choice of the retrieval function f. In the following, we present two generic strate-
gies that can be used to solve this problem. However, the computational cost of 
these strategies directly relies on the choice of the retrieval function and the error 
vectors �1,… , �N . 

1.	 Consider the following matrix consisting of the query vectors 
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 Observe that the vectors 
(
�1[j], �2[j],… , �N[j]

)
 for all j ∈ {1,… , n} belong to 

the column span of � . We recall that the v-th coordinate of the error vectors 
are chosen in a special way, i.e., �b[v] ∈ Z ⊆ f −1(R×) and �i[v] ∈ Y ⊆ ker(f ) 
for all i ≠ b . Hence, one could solve Problem  1 by finding the vector (
�1[v], �2[v],… , �N[v]

)
 in the column span of �.

2.	 Let � be the query matrix as defined above. For each i ∈ {1,… ,N} , let �i be the 
submatrix of � obtained by deleting the i-th row. Clearly, by construction, �b has 
distinct properties compared to �i for any i ≠ b . Thus, if there exists an (algebraic 
or non-algebraic) invariant that can distinguish �b from �i for any i ≠ b , then 
Problem 1 can be solved by computing this invariant for each �1,… ,�N.

4 � Examples of different PIR’s in our framework

In this section, we discuss several examples of single server PIR schemes that are 
based on different kinds of retrieval function. In each case, we analyze the security 
with respect to the distinguishability problem. In Table 1, we summarize all the dif-
ferences among the schemes.

4.1 � Basic PIR scheme using finite field isomorphism

In the following we describe the simplest case of the code-based framework, i.e., by 
considering linear codes over an arbitrary finite field and a field homomorphism for 
the retrieval function.

4.1.1 � Scheme

Setup: Since the identity map is the only non-zero field endomorphism, the retrieval 
function f ∶ �q → �q has to be the identity map. We consider the sets X = �q , 
Y = ker(f ) = {0} and Z = f −1(� ×

q
) = �

×
q

 . It is easy to see that f satisfies all the condi-
tions of a retrieval function.

Let � = (mi) ∈ �
N
q

 represent the database, i.e., there are N files in the database, 
each file is of size q. Let C be a random linear [n, k] code over �q . The code C is kept 
secret by the user.

Query generation: Let � be a generator matrix of C , and let I ⊆ {1,… , n} be 
an information set. We use � to perform the encoding, i.e., the encoding map 
Enc ∶ �

k
q
→ �

n
q
 is given by � ↦ ��.

Let �1,… , �N be randomly chosen vectors in � k
q
 , and define the corresponding 

codewords �i ∶= Enc(�i) = �i� for all i ∈ {1,… ,N}.

� =

⎛
⎜⎜⎜⎝

�1
�2
⋮

�N

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

�1 �1 + �1
�2 �2 + �2
⋮

�N �N + �N

⎞
⎟⎟⎟⎠
∈ R

N×(m+n).
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Note that since I is an information set, we have (�i)I = �i�I for all i ∈ {1,… ,N} . 
Recall that in the code-based framework we send �i ’s in the query to facilitate the 
decoding in the reply extraction process. However, in this case, this can equiva-
lently be achieved by adding no errors at the coordinates that are indexed by I. In 
particular, let v be a random element in IC , and we randomly choose error vectors 
�1, �2,… , �N in � n

q
 such that 

1.	 Supp(�i) ⊆ IC for all i ∈ {1,… ,N},
2.	 �i[v] = 0 for all i ≠ b , and �b[v] ≠ 0.

Let �i ∶= �i + �i for all i ∈ {1,… ,N} . The query is then given by

Reply generation:
The database computes

Reply extraction: Write � = � + � , where � ∶=
∑N

i=1
mi�i and � ∶=

∑N

i=1
mi�i.

Since I is an information set and Supp(�) ⊆ IC , we can perform decoding on � by 
computing

We now only consider the v-th coordinate of � and apply the identity retrieval func-
tion, which gives mb�b[v] , as for all i ≠ b we have that �i[v] = 0. Since �b[v] ≠ 0 , we 
can retrieve mb.

4.1.2 � Security

As we discussed in Sect. 3.3, the security of the presented PIR scheme relies on the 
hardness of solving the distinguishability problem (see Problem 1). In this case, the 
distinguishability problem can be solved in polynomial time using the first strategy 
mentioned in Sect. 3.3.

Let � be the matrix containing all the query vectors as rows, i.e.,

with � =

⎛⎜⎜⎝

�1
⋮

�N

⎞⎟⎟⎠
 and � =

⎛⎜⎜⎝

�1
⋮

�N

⎞⎟⎟⎠
 . Since I is an information set, we have

Q ∶= {�1, �2,… , �N}.

� =

N∑
i=1

mi�i ∈ �
n
q
.

� − �I�
−1
I
� = � =

N∑
i=1

mi�i.

� =

⎛⎜⎜⎜⎝

�1
�2
⋮

�N

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

�1 + �1
�2 + �2

⋮

�N + �N

⎞⎟⎟⎟⎠
= � + �,
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This implies that

and hence the vector 
(
�1[v], �2[v],… , �N[v]

)
 belongs to the column span of � . We 

recall that �b[v] ≠ 0 and �i[v] = 0 for all i ≠ b . This means that the b-th unitary vec-
tor, i.e., the all zero vector having the entry 1 at the b-th position, is in the column 
span of �.

An attacker can easily find such a vector by simply going through all N unitary 
vectors and checking their existence in the column span of � . Moreover, existence 
of another vector of Hamming weight one in the column span of � is very unlikely. 
More precisely, given an N × (n − 1) random matrix � where N > n , the probability 
of having a weight one vector in the column span of � is (n − 1)q(n−N) , which is neg-
ligible. Despite having a small probability, there exist at most n unit vectors in the 
column span of � , which leaks information about the index b, since n < N.

4.2 � HHWZ PIR scheme

Recently, Holzbaur, Hollanti and Wachter-Zeh have proposed the first single server 
PIR scheme based on coding theory in [19]. In this PIR scheme the authors consider 
the field extension �qm and secretly choose a partition of the basis over �q . Shortly 
after, this proposal has been attacked in [20], using that the removal of one row 
within the query matrix and checking for the dimension of the rest reveals the posi-
tion of the desired file.

In the following, we describe this PIR scheme presented in [19] with respect to 
our code-based framework. Later, we also present the attack [20] in terms of solving 
the distinguishability problem.

Note that the original PIR scheme differs from our description in the database and 
query setup. In [19], the authors consider the database elements to be L × � matrices 
over the base field �q , and the query elements are also � × n matrices over the base 
field �qm . Note that the authors have used the technique of iterative reply generation, 
i.e., by using the same query to retrieve each of the L rows of the database file. In 
the following description, we consider L = 1 and use an equivalent setup where the 
database files are single elements in �q and the query elements are vectors over �qm.

4.2.1 � Scheme

In this case, we work over an extension of the finite field �q and the retrieval function 
is an �q-linear map.

�I = �I + �I = �I ,

�IC = �IC + �IC

= �I�
−1
I
�IC + �IC

= �I�
−1
I
�IC + �IC .

�IC = �IC − �I�
−1
I
�IC ,
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Setup: Let {�1,… , �m} be a basis of �qm as an �q-vector space. Further, let V be the 
subspace Span

�q
(�1,… , �s) and W be Span

�q
(�s+1,… , �m) , where s is some integer 

in {1,… ,m} . The retrieval function is given as

Let X be the set �q , Y = ker(f ) = W and Z = f −1(� ×
qm
) = V ⧵ {0} . It is easy to check 

that ProjV satisfies all the conditions of the retrieval function.
Let � = (mi) ∈ �

N
q

 be the database, i.e., there are N files in the database, each file 
is of size q. Suppose the user wants to retrieve the b-th file from the database. Let C 
be a random [n, k] linear code over �qm.

Query generation: For the encoding and decoding, we follow the same procedure 
as in Sect. 4.1.

Let � be a generator matrix of C , and let I ⊆ {1,… , n} be an information set. We 
use � to perform the encoding, i.e., the encoding map is Enc ∶ �

k
q
→ �

n
q
 given by 

� ↦ ��.
Let �1,… , �N be randomly chosen vectors in � k

qm
 , and define the corresponding 

codewords �i ∶= Enc(�i) = �i� for all i ∈ {1,… ,N}.

As in Sect. 4.1, we perform the decoding by adding no errors at the coordinates 
that are indexed by I.

Let v be a fixed element in IC . Now, we choose error vectors �1, �2,… , �N ran-
domly in � n

qm
 such that 

1.	 Supp(�i) ⊆ IC for all i ∈ {1,… ,N},
2.	 �i[v] ∈ W for all i ≠ b , and �b[v] ∈ V ⧵ {0}.

Let �i ∶= �i + �i for i ∈ {1,… ,N} . The query is then given by

Reply generation: The response is generated by computing

Reply extraction:
Write � = � + � , where � =

∑N

i=1
mi�i and � =

∑N

i=1
mi�i.

Since I is an information set and Supp(�) ⊆ IC , we can perform the decoding on � 
by computing

ProjV ∶ �qm → �qm ,

m∑
i=1

�i�i ↦

s∑
i=1

�i�i.

Q ∶= {�1, �2,… , �N}.

� =

N∑
i=1

mi�i.

� − �I�
−1
I
� = � =

N∑
i=1

mi�i.
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Now we consider the v-th coordinate of � and apply the retrieval function, which 
gives

This works because �i[v] ∈ W for all i ≠ b , and �b[v] ∈ V ⧵ {0} . Moreover, since we 
know �b[v] , we can retrieve mb.

4.2.2 � Security

The original PIR scheme [19] has been attacked in [20], by solving the distin-
guishability problem. The attack follows the second strategy mentioned in 
Sect. 3.3.

Let � be the matrix containing all the query vectors as rows, i.e.,

with � =

⎛⎜⎜⎝

�1
⋮

�N

⎞⎟⎟⎠
 and � =

⎛⎜⎜⎝

�1
⋮

�N

⎞⎟⎟⎠
.

For each i ∈ {1,… ,N} , let �i be the submatrix of � obtained by deleting the i-th 
row. Then the �q-rank of these matrices satisfy the following proposition.

Proposition 1  [20, Proposition 3.1] Let � be given as above. Then

Moreover, for all i ∈ {1,… ,N}

In the case when N < mn , the query size becomes bigger than the size of the 
database, i.e., the scheme is no better than the trivial PIR protocol of downloading 
entire database. Hence, we assume N ≥ mn and we use the following corollary to 
distinguish the index b in polynomial time.

Corollary 1  [20, Corollary 3.2, Proposition 3.3] Let �i be given as above. Then, with 
high probability, 

1.	 rank
�q
(�b) = mn − s,

2.	 for i ≠ b , we have that rank
�q
(�i) = mn.

ProjV

(
N∑
i=1

mi�i[v]

)
= mb�b[v].

� =

⎛⎜⎜⎜⎝

�1
�2
⋮

�N

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

�1 + �1
�2 + �2

⋮

�N + �N

⎞⎟⎟⎟⎠
= � + �,

rank
�q
(�) = rank

�q
(�) + rank

�q
(�).

rank
�q
(�i) = rank

�q
(�i) + rank

�q
(�i).
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Proof  From Proposition 1, we have that rank
�q
(�i) = rank

�q
(�i) + rank

�q
(�i) for all 

1 ≤ i ≤ N.
In the first case, we have that rank

�q
(�b) = mk and 

rank
�q
(�b) = (n − k − 1)m + (m − s) (with high probability), where the first part 

comes from the columns not indexed by v, which live in the full space �qm = W + V 
and the second part comes from the column indexed by v, which lives in the sub-
space W . Note that the equation rank

�q
(�b) = m(n − k) − s holds true with high 

probability due to the randomness of the matrix entries.
In the case of i ≠ b , we still have that rank

�q
(�i) = mk , but now 

rank
�q
(�i) = (n − k − 1)m + m (with high probability), where the first part comes 

from the columns not indexed by v and the second part comes from the column v 
(observe that in this case all columns are in the full space �qm = W + V ). Note that 
the equation rank

�q
(�i) = m(n − k) holds true with high probability due to the ran-

domness of the matrix entries. 	�  ◻

4.3 � AMG PIR scheme

In the following, we describe the PIR scheme presented in [21] with respect to our 
code-based framework. Later, we also present the lattice-based attack [22] in terms 
of solving the distinguishability problem. Note that the original PIR scheme differs 
from our description in the following way:

•	 Database setup: in [21], the authors consider the database elements to be vectors 
over the base field �p . Moreover, each query element is a matrix over �p . In the 
following description, we use an equivalent setup where the database files are 
single elements in �p and query elements are vectors over �p.

•	 Noise-scrambling matrix � : the authors introduce an invertible diagonal matrix 
� in order to disguise the soft-noise error vectors from the hard-noise error vec-
tors. In our description, we ignore this scrambling matrix � , as we will see in the 
security discussion that � has no effect on the column space of the query matrix.

•	 In [21], the rate k/n of the underlying linear code is fixed k∕n = 0.5 . In our 
description we use an arbitrary rate.

4.3.1 � Scheme

In this scheme, we work over a finite field �p , where p is a prime number. We will 
see �p as {−⌊ p

2
⌋,… , ⌊ p

2
⌋}.

Setup: Assume that the database is of the form � = (mi) ∈ {0, 1,… , 2� − 1}N 
with � = ⌈log2(N)⌉ + 1 , i.e., there are N files in the database each of size � bits. 
Note that if the file size is bigger than � bits, then we split the files in chunks of � 
bits. Suppose the user wants to retrieve the b-th file from the database.

Let p be a prime number greater than 23� and t = 22� . The retrieval function is 
given by the remainder of the Lee weight corresponding to modulo t, i.e.,
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where wtLt denotes the Lee weight on ℤ∕tℤ = {0, 1,… , t − 1} , which is defined as

The set X = {0, 1,… , 2� − 1} , Y = {−1, 1} ⊆ ker(f ) and Z = {t} ⊆ f −1(� ×
p
).

Now observe that a linear combination of elements in Y with scalars from X 
having arbitrary number of terms does not necessarily belongs to ker(f ) . How-
ever, the condition is satisfied when we have at most N number of terms in the 
linear combination: for x1,… , xN ∈ X and y1,… , yN ∈ Y  we have that

and hence

Further we have that for y ∈ Y , x ∈ X and z ∈ Z

since f (z) = f (t) = t − wtLt (t mod t) = t.

Let C be a random linear [n, k] code over �p , which is kept secret by the user.
Query generation: For the encoding and decoding, we follow the same proce-

dure as in Sects. 4.1 and 4.2.
Let � be a generator matrix of C , and let I ⊆ {1,… , n} be an information set. 

We use � to perform the encoding, i.e., the encoding map is Enc ∶ �
k
q
→ �

n
q
 given 

by � ↦ ��.
Let �1,… , �N be randomly chosen vectors in � k

q
 , and define the corresponding 

codewords �i ∶= Enc(�i) = �i� for all i ∈ {1,… ,N}.
As in Sects 4.1 and 4.2, we perform the decoding by adding no errors at the 

coordinates that are indexed by I.
Let v be a fixed element in IC . Now, we choose error vectors �1, �2,… , �N ran-

domly in � n
qm

 such that 

f ∶ �p → �p,

x ↦ x − wtLt (x mod t),

wtLt (z) ∶= min{z, t − z}.

|x1y1 +⋯ + xNyN| ≤ N2𝓁 <
t

2
,

f

(
N∑
i=1

xiyi

)
=

N∑
i=1

xiyi − wtLt

(
N∑
i=1

xiyi mod t

)

=

N∑
i=1

xiyi −

N∑
i=1

xiyi = 0.

f (y + xz) = f (y + xt)

= y + xt − wtLt (y + xt mod t)

= y + xt − wtLt (y mod t)

= y + xt − y

= xt = xf (t),
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1.	 Supp(�i) ⊆ IC for all i ∈ {1,… ,N},
2.	 �i[v] ∈ {±1} for all i ≠ b , and �b[v] = t.

Let �i ∶= �i + �i for all i ∈ {1,… ,N} . The query is then given by

Reply generation: The response is generated by computing

Reply extraction:
Write � = � + � , where � =

∑N

i=1
mi�i and � =

∑N

i=1
mi�i.

Since I is an information set and Supp(�) ⊆ IC , we can perform the decoding on � by 
computing

We will only focus on the v-th coordinate of � and apply the retrieval function to 
obtain

This works since

and hence

Q ∶= {�1, �2,… , �N}.

� =

N∑
i=1

mi�i.

� − �I�
−1
I
� = � =

N∑
i=1

mi�i.

f

�
N�
i=1

mi�i[v]

�
=

N�
i=1

mi�i[v] − wtLt

�
N�
i=1

mi�i[v] mod t

�

=

⎛⎜⎜⎜⎜⎜⎝

N�
i = 1

i ≠ b

mi�i[v] − wtLt

⎛⎜⎜⎜⎜⎜⎝

N�
i = 1

i ≠ b

mi�i[v] mod t

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

+ mb�b[v]

= mb�b[v] = mbt.

|
N∑

i = 1

i ≠ b

mi�i[v]| < t∕2 and mb�b[v]is a multiple oft,
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Now since gcd(t, p) = 1 , we can retrieve mb.

4.3.2 � Security

In [22], Liu et  al. presented a lattice-based attack on the AMG PIR scheme. The 
method used in the attack can be described as per the first strategy, mentioned in 
Sect. 3.3, to solve the distinguishability problem.

Let � be the matrix containing all the query vectors as rows, i.e.,

As discussed in Sect. 4.1, the vector 
(
�1[v], �2[v],… , �N[v]

)
 belongs to the column 

span of �.
Recall that by construction, the vector 

(
�1[v], �2[v],… , �N[v]

)
 has N − 1 entries 

from {−1,+1} and one entry with value equal to t. If we delete the b-th row of � , 
call it the matrix �b , then the vector

will be, with a very high probability, the shortest vector in the p-ary lattice generated 
by the columns of �b . More precisely, the lattice is generated by the n columns of 
[�b|p��N−1] . However, it is still infeasible to find this vector due to the large dimen-
sion of the lattice.

In [22], the authors construct multiple small dimensional lattices. Let k ≤ s ≤ N , 
and let �(1),… ,�(⌈N∕s⌉) be a row-wise partitioning of the matrix � , i.e., �(i) is the 
s × n matrix given by s rows of � indexed by {(i − 1)s + 1,… , is} . Now, let Li be 
the p-ary lattice generated by the columns of �(i) . Note that the dimension of the 
lattices Li is s, hence the attacker chooses s such that implementing basis reduction 
algorithms for Li is feasible. In order to find the index b, the attacker goes through 
each of these lattices.

Note that the index b of the desired file corresponds to the lattice L⌊b∕s⌋ , which the 
attacker is able to find, and then the attacker finds the index b by solving the closest 
vector problem for L⌊b∕s⌋.

More in detail, in the case of i ≠ ⌊b∕s⌋ , we observe that the shortest vector in 
Li corresponds to the vector (�(i−1)s+1[v],… , �is[v]) having entries in {−1,+1} . This 
observation does not hold in the case of i = ⌊b∕s⌋ due to the existence of large t. The 

wtLt

�
N�
i=1

mi�i[v] mod t

�
= wtLt

⎛
⎜⎜⎜⎜⎜⎝

N�
i = 1

i ≠ b

mi�i[v] mod t

⎞
⎟⎟⎟⎟⎟⎠

=

N�
i = 1

i ≠ b

mi�i[v].

� =

⎛⎜⎜⎜⎝

�1
�2
⋮

�N

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

�1 + �1
�2 + �2

⋮

�N + �N

⎞⎟⎟⎟⎠
.

(
�1[v],… , �b−1[v], �b+1[v],… , �N[v]

)
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attacker uses the lattice reduction algorithms to find the shortest vector in each Li , 
and consequently finds the corresponding lattice L⌊b∕s⌋.

Now, the index b can be located using solving the closest vector problem. Let 
j = ⌊b∕s⌋ . Then observe that (�(j−1)s+1[v],… , �js[v]) ∈ Lj is the closest lattice vector 
to (0,… , 0, t, 0,… , 0) (with t at the b-th position). To find the index b, we can use 
Kannan’s embedding technique [23] to solve (at most) s instances of the closest vec-
tor problem with inputs vector of the form (0,… , 0, t, 0,… , 0).

4.4 � Ring‑LWE based PIR schemes

In the section, we describe the PIR schemes constructed using the Ring-LWE 
(RLWE) based homomorphic encryption schemes. In particular, we consider the 
construction of XPIR scheme [16] that uses the Ring-LWE based homomorphic 
encryption scheme presented in [24].

The original PIR scheme differs from our description in the error distribution 
as follows. In [16], the authors use two different distributions � and � ′ to sample 
errors. The distribution � is used to generate the public key and the distribution � ′ , 
having larger variance, is used for encryption. In the following description, we con-
sider only one distribution, mimicking � ′ , to sample error vectors in the query gen-
eration process.

We would like to remark that in the following description, the database elements 
and the query elements are polynomials of degree smaller than n with coefficients in 
R , which can also be represented by vectors in Rn.

4.4.1 � Scheme

In this scheme, we work over a finite ring ℤ∕qℤ , where q is a positive integer. 
Instead of a random linear code over ℤ∕qℤ , we consider a random negacyclic code 
over ℤ∕qℤ.

Setup: Let q,  t be positive integers with t < q and gcd(t, q) = 1 . The retrieval 
function is given by

Let � be a discrete Gaussian distribution with standard deviation � . The parameters 
q, n, t, � are chosen such that they satisfy Nt2𝜎

√
n < q∕2 , where n is the length of 

the linear code that will be used in query generation.
Now, we define the subsets

Observe that for x1, x2,… , xN ∈ X and ty1, ty2,… , tyN ∈ Y  we have that

f ∶ ℤ∕qℤ → ℤ∕qℤ,

x ↦ x (mod t).

X = {0,… , t − 1} ⊆ ℤ∕qℤ,

Y = {ty ∣ y is sampled from the distribution 𝜒},

Z = {ty + 1 ∣ y is sampled from the distribution 𝜒}.
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This works since the choice of parameters q, n, t, � implies that �∑N

i=1
xityi� < q∕2 

with very high probability. And for x ∈ X, ty ∈ Y  and tz + 1 ∈ Z we have that

since |ty + x(tz + 1)| < q∕2.
Let n be a power of 2, and let Rq ∶= (ℤ∕qℤ)[x]∕(xn + 1) . Let 

� = (mi) ∈ (X[x]∕(xn + 1))N , i.e., there are N files in the database and each file is 
an element in Rq with coefficients in X. In particular, each file is of size log2(tn) 
bits. Suppose the user wants to retrieve the b-th file from the database.

Let C be a negacyclic code of length n over ℤ∕qℤ generated by some randomly 
chosen s ∈ Rq , i.e., C is a ideal in Rq generated by s. The code is kept secret by the 
user.

Query generation: We use the generating polynomial s to define the encoding 
map, i.e., Enc ∶ Rq → Rq is given by a ↦ as.

Let a1, a2,… , aN be randomly chosen elements in Rq , and define N codewords 
ci ∶= ais for all i ∈ {1,… ,N}.

Now, we choose the errors e1, e2,… , eN in Rq such that they satisfy the follow-
ing two conditions that allow the reply extraction: 

1.	 ei = tyi , with yi sampled from the distribution � , for all i ≠ b,
2.	 eb = tyb + 1 with yb sampled from �.

Let �i ∶= (ai, ci + ei) for all i ∈ {1,… ,N} . The query is then given by

Reply generation: The response is generated by computing

Reply extraction:
By applying the encoding map Enc on r1 , we first decode r2 to obtain the error 

part, i.e.,

After that we can use the retrieval function f,

f

(
N∑
i=1

xityi

)
=

N∑
i=1

xityi mod t

= 0.

f (y + xz) = ty + x(tz + 1) mod t

= x mod t = x = xf (z),

Q ∶= {�1, �2,… , �N}.

� =

N∑
i=1

mi�i =

N∑
i=1

(miai,mici + miei) =∶ (r1, r2).

r2 − Enc(r1) = r2 − sr1 =

N∑
i=1

miei.
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Note that here we apply f on an element of Rq , which is done by applying f on each 
coefficient.

The last equality follows from the conditions on the parameters n, q, t, � , since 
the maximal coefficient of 

∑N

i=1
miei is, with high probability, upper bounded by 

Nt2�
√
n (see [24, Lemma 1]), which is less than q/2.

4.4.2 � Security

As mentioned above, the XPIR scheme [16] uses the fully homomorphic encryption 
scheme presented in [24], whose security is based on the hardness of solving the 
polynomial learning with error (PLWE) problem, which is a simplified version of 
the ring LWE problem.

Let Rq = ℤ∕qℤ[x]∕(xn + 1) , and let � be a narrow discrete Gaussian distribution 
on Rq . Then the PLWE assumption states that it is computationally hard to distin-
guish a polynomial number of samples of the form (ai, ais + ei) and the same num-
ber of samples of the form (ai, ui) , where s, ai ’s and ui ’s are sampled uniformly from 
Rq and the ei ’s are sampled from �.

Moreover, [24, Proposition 1] states that if the samples are of the form 
(ai, ais + tei) , where ai, s, ei are as above and t ∈ (ℤ∕qℤ)× , then distinguishing such 
samples from the uniform samples is equivalent to the PLWE assumption.

Let � be the query matrix and �i be the submatrix of � obtained by deleting 
the i-th row. Translating the above mentioned approach [24, Proposition 1] to our 
generic framework means that distinguishing �b from an uniformly sampled matrix 
is equivalent to the PLWE problem.

However, the second strategy mentioned in Sect. 3.3 aims in a different direction: 
that is to distinguish between Ai for i ≠ b and Ab . Thus, this might lead to new secu-
rity analyses of such PIR schemes.

5 � Theoretical remarks

5.1 � Generic PIR scheme vs code‑based framework

A natural question would be to ask whether any single server PIR scheme can be 
described in terms of the code-based framework. The answer is no, as the number 
theoretic PIR scheme by Kushilevitz and Ostrovsky [25] does not fit the framework. 
However, if we restrict to the class of PIR schemes that generates replies by con-
tracting the database elements and the query elements using linear combinations 
(which will be denoted from now on as additive PIR schemes), then the answer 
is yes. In the following, we discuss the requirements of an arbitrary additive PIR 

f

(
N∑
i

miei

)
=

N∑
i=1

mityi + mb (mod t)

= mb.
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scheme and argue the necessity of the elements in the code-based framework to ful-
fil those requirements: 

1.	 Ambient space: An additive PIR scheme needs two operations: multiplication (∗) 
between database and query elements, and addition (+) of those products. Hence, 
the canonical choice of the ambient space is rings. For practical reasons, the rings 
should be finite.

2.	 Retrieval: Let the database be denoted by DB = {db1,… , dbN} , and the cor-
responding query be given by Q = {q1,… , qN} . Suppose that the user wants to 
retrieve the b-th file. In an additive PIR scheme, the reply is 

∑N

i=1
dbi ∗ qi and user 

wants to retrieve dbb from the reply. The operation 
∑N

i=1
dbi ∗ qi ↦ dbb , denoted 

by g, is an analogue to the retrieval function used in the code-based framework. 
First we note that g annihilates 

∑
i≠b dbi ∗ qi in such a way that we are only left 

with g(dbb ∗ qb) . And then dbb is recovered from g(dbb ∗ qb) . These two proper-
ties imply that dbi ’s and qi ’s live in special subsets of the ambient space R. Let X 
denote the space of database elements, Y denote the space of query elements that 
are not associated with the desired file and Z denote the space of query element 
associated with the desired file. The requirements on g imply that: (1) a linear 
combination of elements in Y with scalars in X belongs to the kernel of g, and 
(2) g(x ∗ z) = x ∗ g(z) and g(z) is an invertible element, for any x ∈ X and z ∈ Z . 
These two conditions are the basis of the conditions of the retrieval function used 
in the code-based framework.

3.	 Privacy: Another important aspect of a PIR scheme is privacy, i.e., given a query 
Q, it should be computationally infeasible to determine the index b of the desired 
file. Let us look at the scenario where we directly use elements in Y and Z to gen-
erate query elements. Then the privacy relies on the hardness of the following 
decisional problem: given q ∈ Y ∪ Z , decide whether q ∈ Y  or q ∈ Z . In general 
this may not be a hard problem, as one can apply the retrieval function to distin-
guish the elements between Y and Z. Therefore, to ensure privacy we must add 
some randomness to the query elements. Moreover, the user should be able to 
remove this randomness even after receiving the reply that contains their linear 
combinations. This is exactly the rationale of linear error-correcting codes. We 
treat the elements of Y and Z as errors, and the added randomness belongs to a 
random linear code.

5.2 � On security of PIR schemes

In terms of the code-based framework, the security of a PIR scheme relies on the 
type of the underlying retrieval function. As we have noticed from the examples in 
Sect. 4, the following type of retrieval functions are not safe to use. 

1.	 Field homomorphisms: In the case where the retrieval function is a non-trivial 
field homomorphism, the PIR scheme is then equivalent to the one described 
in Sect. 4.1. The kernel of the retrieval function must be {0} , as {0} is the only 
proper ideal in any field. As a consequence, determining the index of the desired 
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file becomes an easy task of finding a unitary vector in the column space of the 
query matrix, thus it suffers from the first attack strategy discussed in Sect. 3.3.

2.	 Vector space homomorphisms: In this case, the resulting PIR scheme is equivalent 
to HHWZ PIR scheme [19], described in Sect. 4.2. The kernel of a non-trivial 
linear map is a proper subspace of the parent vector space. This results in an 
exceptionally low rank of the matrix that is obtained from the query matrix by 
deleting the row that corresponds to the desired file, thus it suffers from the sec-
ond attack strategy discussed in Sect. 3.3.

We can generalize these two cases to more types of retrieval functions. Clearly, 
the weakness of vector space homomorphisms can also be observed in the case of 
free module homomorphims, because of the existence of the notion of rank and 
dimension for free modules. On the other hand, the weakness of field homomor-
phisms can be seen in the case of local ring homomorphims. Let R be a finite local 
ring with maximal ideal M, then the kernel of the retrieval function is a subideal 
of M. Note that there exists an integer � such that M� = {0} and M�−1 ≠ {0} . Let 
a ∈ M�−1 ⧵ {0} , then note that ar = 0 for all r ∈ M . This implies that the special 
column vector (�1[v],… , �N[v]) , when multiplied by a, results in a unit vector. 
Hence, similar to the field homomorphism case, we observe the existence of a unit 
vector in the column space of the query matrix.

The other two schemes, presented in Sects. 4.3 and 4.4 respectively, do not use 
additive retrieval functions. Both the schemes work on the idea of using small mod-
ulus errors in a large modulus ambient space. Due to which the security eventually 
relies on finding short vectors in a high dimensional lattice, which is a computation-
ally hard problem. However, in the case of AMG PIR scheme, the problem breaks 
down over multiple small dimensional lattices and hence the attack becomes feasi-
ble. Whereas in the case of LWE-based PIR schemes, this new perspective may have 
a potential in introducing new approaches for their security analysis.

In order to construct an additive PIR scheme, one may investigate the cases of 
structured morphisms like ring homomorphisms and module homomorphisms, or 
the cases of unstructured morphisms like the functions used in AMG scheme and 
LWE-based schemes.

Furthermore, if one constructs an additive PIR scheme independently, then it 
would be worth translating the scheme in terms of the code-based framework to 
check for possible security issues.
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