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Abstract. The main drawbacks of classical direct torque control (C-DTC) are: 
the high torque and flux ripples and variable switching frequency. To overcome 
these problems, two intelligent control theories, namely fuzzy logic control 
(FLC) and neuro-fuzzy control (NFC) are introduced to replace the hysteresis 
comparators and lookup table of the C-DTC for induction motor drive. The  
effectiveness and feasibility of the proposed approaches have been demonstrat-
ed through computer simulations. A comparison study between the C-DTC,  
FL-DTC and NF-DTC has been made in order to confirm the validity of the 
proposed schemes. The superiority of the NF-DTC has been proved through 
comparative simulation results. 
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1 Introduction 

The direct torque control (DTC) was proposed by M.Depenbrock [1] and I.Takahashi 
[2]-[3] in 1985. The DTC is an entirely different approach to induction motor control 
that was developed to overcome field oriented control (FOC) relatively poor transient 
response and reliance on induction motor parameters [4]-[5]-[6]. Classical DTC is a 
popular torque control method for induction motors; therefore it is widely used in the 
area of the EV’s motor control. Unfortunately the classical DTC algorithm has some 
significant limitations. It is difficult to distinguish between small and large variations 
in reference values. Also the variation of flux and torque over one sector is considera-
ble [7]-[8]. Another problem is that adapting classical DTC to the confines of a DSP’s 
sampling period can significantly deteriorate its performance [9]. To overcome these 
problems, two intelligent control theories, including fuzzy logic control (FLC) and 
neuro-fuzzy control (NFC) are introduced to replace the conventional comparators 
and selection table of direct torque control for induction motor drive. 

Fuzzy logic can deal with vague concepts which have relative degrees of truth ra-
ther than just the usual true or false, it allows machines to perform jobs that in the past 
required a human being's ability to think and reason [10]-[11]. Conventional control 
systems express control contents by using control expressions such as equations or 
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logical expressions. This requires a huge amount of information, and some kinds of 
control are difficult or impossible to model this way. Fuzzy logic control usually re-
quires only one tenth or less of the information required by conventional methods 
[12]. This is also associated with a high reliability and fast processing speed. Fuzzy 
logic also deals effectively with a non-linear time varying system. 

There is a rapidly growing interest in the fusion of fuzzy systems and neural net-
works to obtain the advantages of both methods while avoiding their individual draw-
backs. The possibility of integration of these two paradigms has given rise to a rapidly 
emerging field of fuzzy neural networks.  There are two distinctive approaches for 
fuzzy-neural integration. On the one hand, many paradigms that have been proposed 
simply view a fuzzy-neural system as any ordinary multilayered feed-forward neural 
network which is designed to approximate a fuzzy control algorithm [13]-[14]. On the 
other hand, there are those approaches which aim to realize the process of fuzzy rea-
soning and inference through the structure of a connectionist network [15]. Fuzzy-
neural networks are, in general, neural networks whose nodes have 'localized fields' 
which can be compared with fuzzy rules and whose connection weights can similarly 
be equated to input or output membership functions.  The simplest attempt in merg-
ing of fuzzy logic and neural controllers is to make the neural networks (NN) learn 
the input-output characteristics of a fuzzy controller [16]. The NN in this case imitates 
the fuzzy controller but the only advantage is that the trained NN output has more 
smoothing robust actions than that of the fuzzy controller. 

This paper is organized as follows: The principle of direct torque control is pre-
sented in the second part, the fuzzy logic direct torque control is developed in the 
third section, section four presents a neuro-fuzzy direct torque control, and the fifth 
part is devoted to illustrate the simulation performance of this control strategy, a con-
clusion and reference list at the end. 

2 Classical Direct Torque Control  

In a C-DTC motor drive, the machine torque and flux linkage are controlled directly 
without a current control. The principles of C-DTC can be explained by looking at the 
following torque and current equations of an induction motor: 

 (1)

 (2)

Substituting Eq. (1) in Eq. (2) we obtain: 
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where α is the angle between the stator and rotor flux linkage vectors [8]. The deriva-
tive of Eq. (3) can be represented approximately as: 
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The machine voltage equation can be represented and approximated in a short in-
terval of Δt as: 
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The rotor flux linkage vector is sluggish in response to a voltage vector during Δt 
as it is related to the stator flux linkage vector by a first order delay as in 
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Symbols: 
Rs , Rr        stator and rotor resistance [Ω] 
isd , isq         stator current dq axis [A] 
vsd , vsq       stator voltage dq axis [V] 
Ls , Lr         stator and rotor self inductance [H] 
Lm  mutual inductance [H] 
λsd,  λsq dq stator flux [Wb] 
λrd, λrq dq rotor flux [Wb] 
Te electromagnetic torque [N.m] 
ETe electromagnetic torque error [N.m] 
Eλs stator flux error [Wb] 
φs stator flux angle [rad] 
ωr rotor speed [rad/sec] 
J inertia moment [Kg.m2] 
np pole pairs 
σ leakage coefficient 

3 Fuzzy Logic Direct Torque Control  

The structure of the switching table can be translated in the form of vague rules. 
Therefore, we can replace the switching table and hysteresis comparators by a fuzzy 
system whose inputs are the errors on the flux and torque denoted Eλs and ETe and the 
argument φ of the flux. The output being the command signals of the voltage inverter 
n. The fuzziness character of this system allows flexibility in the choice of fuzzy sets 
of inputs and the capacity to introduce knowledge of the human expert.  
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The ith rule Ri can be expressed as: 

 Ri: if ETe is Ai, Eλs is Bi, and φ is Ei, then n is Ni (7) 

where Ai, Bi and Ci denote the fuzzy subsets and Ni is a fuzzy singleton set. 
The synthesized voltage vector n denoted by its three components is the output of 

the controller. 
The inference method used in this paper is Mamdani’s [18] procedure based on 

min-max decision [19]. The firing strength ηi, for ith rule is given by: 

 ( )min ( ), ( ), ( )
i e i s ii A T B CE Eλη μ μ μ ϕ=  (8) 

By fuzzy reasoning, Mamdani’s minimum procedure gives: 

 ( )' ( ) min , ( )
i iN i Nn nμ η μ=  (9) 

where μA, μB, μC, and μN are membership functions of sets A, B, C and N of the va-
riables ETe, Eλs, φ and n, respectively. 

Thus, the membership function μN of the output n is given by: 

 ( )72 '
1( ) max ( )

iN i Nn nμ μ==  (10) 

We chose to share the universe of discourse of the stator flux error into two fuzzy 
sets, that of electromagnetic torque error in five and finally for the flux argument into 
seven fuzzy sets. However the number of membership functions (fuzzy set) for each 
variable can be increased and therefore the accuracy is improved. All the membership 
functions of fuzzy controller are given in Fig. 1. 
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Fig. 1. Membership functions for fuzzy logic controller 
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Table 1. Fuzzy rules 

 
Eλs 

 
ETe 

φ 
φ1 φ2 φ3 φ4 φ5 φ6 

 
PL 

P V6 V2 V3 V1 V5 V4 
Z V4 V6 V2 V3 V1 V5 
N V5 V4 V6 V2 V3 V1 

 
PS 

P V6 V2 V3 V1 V5 V4 
Z V7 V0 V7 V0 V0 V0 
N V5 V4 V6 V2 V3 V1 

 
NS 

P V2 V3 V1 V5 V4 V6 
Z V0 V7 V0 V7 V0 V7 
N V1 V5 V4 V6 V2 V3 

 
NL 

P V2 V3 V1 V5 V4 V6 
Z V3 V1 V5 V4 V6 V2 
N V1 V5 V4 V6 V2 V3 

4 Neuro-Fuzzy Direct Torque Control 

In this section, the Neuro-Fuzzy (NF) model is built using the multilayer fuzzy neural 
network shown in Fig.1. The controller has a total of five layers as proposed by Lin 
and Lee [17], with two inputs (stator flux error Eψs, electromagnetic torque error ETe) 
and a single output (voltage space vector) is considered here for convenience. Conse-
quently, there are two nodes in layer 1 and one node in layer 5. Nodes in layer 1 are 
input nodes that directly transmit input signals to the next layer. The layer 5 is the 
output layer. The nodes in layers 2 and 4 are “term nodes” and they act as member-
ship functions to express the input/output fuzzy linguistic variables. A bell-shaped 
function is adopted to represent a membership function, in which the mean value p 
and the variance χ are adjusted through the learning process. The two fuzzy sets of the 
first and the second input variables consist of k1 and k2 linguistic terms, respectively. 
The linguistic terms are numbered in descending order in the term nodes; hence, kl+k2 
nodes and n3 nodes are included in layers 2 and 4, respectively, to indicate the in-
put/output Linguistic variables. 

Layer 1: Each node in this layer performs a MF: 
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where xi is the input of node i, Ai is linguistic label associated with this node and  
(ai, bi, ci) is the parameter set of the bell-shaped MF. yi

1 specifies the degree to which 
the given input belongs to the linguistic label Ai, with maximum equal 1 and mini-
mum equal to 0. As the values of these parameters change, the bell-shaped function 
varies accordingly, thus exhibiting various forms of membership functions. In  
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fact, any continuous and piecewise differentiable functions, such as trapezoidal or 
triangular membership functions, are also qualified candidates for node functions in 
this layer. 

Layer 2 - Every node in this layer represents the firing strength of the rule. Hence, 
the nodes perform the fuzzy AND operation: 

 ( )2 min ( ), ( ), ( )
s s e e si i A BT T C sy w E Eλ λ ϕμ μ μ ϕ= =  (12) 

Layer 3 - The nodes of this layer calculate the normalized firing strength of each 
rule: 
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Layer 4 - Output of each node in this layer is the weighted consequent part of the 
rule table: 

 ( )4

s ei i i i i i T i s iy w f w p E q E m nλ ϕ= = + + +  (14) 

where iw  is the output of layer 3, and {pi, qi, mi, ni} is the parameter set. Which 

determine the ith component of vector desired voltage. By multiplying weight yi by 
voltage continuous V side of the inverter according to Eq. (15): 

 *
iV y V=  (15) 

Layer 5 - The single node in this layer computes the overall output as the summa-
tion of all incoming signals: 
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Which determine the vector reference voltage vs
* (see Fig. 4), from Eq. (17): 
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The angle ξ is obtained from the actual angle of stator flux φs and angle increment 
dφi given by this Eq. (18): 

 i s idξ ϕ ϕ= +  (18) 

yi (i = 1..9) are the output signals order i of the third layer respectively. 
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Fig. 2. Topology of the neuro-fuzzy model used 

Table 2. Parameters setting for ANFIS model 

ANFIS Setting Details 
Input variables Electromagnetic torque error, and  stator flux error 
Output response Space voltage vector 
Type of input MFs Generalized Bell MF 
Number of MFs 2,3, 4 and 5 
Type of output MFs Linear and constant 
Type inference Linear Sugeno 
Optimization Method Hybrid of the least-squares and the back propagation 

gradient descent method. 
Number of data 520 
Epochs 1000 
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5 Simulation Results 

To compare and verify the proposed techniques in this paper, a digital simulation 
based on Matlab/Simulink program with a Fuzzy Logic Toolbox and ANFIS Toolbox 
is used to simulate the NF-DTC and FL-DTC, as shown in Fig. 3.  The block dia-
gram of a C-DTC/FL-DTC/NF-DTC controlled induction motor drive fed by a 2-level 
inverter is shown in Fig. 3.  The induction motor used for the simulation studies has 
the following parameters:  

Rated power = 7.5kW, Rated voltage = 220V, Rated frequency = 60Hz, Rr = 
0.17Ω, Rs = 0.15Ω, Lr = 0.035H, Ls = 0.035H, Lm = 0.0338H, J = 0.14kg.m2. 

Figs. 4(a), 4(b) and 4(c) show the torque response of the C-DTC, FL-DTC and NF-
DTC respectively with a torque reference of [20-10-15]Nm. While Figs. 4(a’), 4(b’) 
and 4(c’) show the flux response of the C-DTC, FL-DTC and NF-DTC respectively 
with a stator flux reference of 1Wb.  
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Fig. 3. General configuration of C-DTC/FL-DTC/NF-DTC scheme 

Table 3 represents the comparative results in both stator flux and torque ripples 
percentage for C-DTC, FL-DTC and NF-DTC. The steady state response for the tor-
que in NF-DTC is faster and provided more accuracy compared to other control strat-
egies presented in this paper. 

Table 3. Comparative study of C-DTC, FL-DTC and  NF-DTC 

Control strategies Torque ripple 
(%) 

Flux ripple 
(%) 

Rise time 
(sec) 

Setting time 
(sec) 

C-DTC 10.6 2.3 0.009 0.01 
FL-DTC 3.9 2.1 0.007 0.0085 
NF-DTC 2.7 1.4 0.005 0.0071 
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Fig. 4. (a), (b) and (c) torque response of C-DTC, FL-DTC and NF-DTC respectively, (a’), (b’) 
and (c’) Stator flux trajectory response of C-DTC, FL-DTC and NF-DTC respectively 

6 Conclusions 

Two various intelligent torque control schemes worth knowing fuzzy logic direct 
torque control, and neuro-fuzzy direct torque control have been evaluated for induc-
tion motor control and which have been compared with the conventional direct torque 
control technique. A better precision in the torque and flux responses was achieved 
with the NF-DTC method with greatly reduces the execution time of the controller; 
hence the steady-state control error is almost eliminated. The application of neural 
network techniques simplifies hardware implementation of direct torque control and  
it is envisaged that NF-DTC induction motor drives will gain wider acceptance in 
future. 
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