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Abstract. Virtualized data centers facilitate higher resource utilization and 
energy efficiency through consolidation. However, mixing services-oriented 
workloads with throughput (batch) jobs is typically avoided due to complex in-
teractions and widely different quality of service (QoS) requirements.  We in-
troduce a complete VM resource management framework, called Themis, 
which manages combined services and batch jobs, maximizing energy-efficient 
throughput of the latter without sacrificing the service guarantees of the former. 
Themis’ resource management policy outperforms the prior proposed policies 
by up to 35% on average in work done per Joule when measured on a data cen-
ter testbed. 

1 Introduction 

Virtualization has rapidly gained prominence in modern data center deployments, 
since it provides better fault isolation, improved system manageability, and reduced 
operational cost through resource consolidation and migration [8].  It is common for a 
data center to host a mix of interactive service-oriented and throughput-oriented batch 
jobs. These two types of jobs are usually partitioned into separate sections of the data 
center [15] because we lack a mechanism for managing their diverse performance 
requirements. Services typically have strict response time guarantees and the cost of 
violating those agreements is high [15]. Batch jobs often have long-term performance 
targets, where immediate response is not vital. 

A number of systems for VM management have been proposed in the past. Euca-
lyptus [23], OpenNebula [25], OpenStack [31] and Usher [18] are open source sys-
tems, which include support for managing VM creation and allocation across a clus-
ter, and provide API for migration.  However, these solutions generally do not have 
online VM scheduling policies to dynamically consolidate or redistribute VMs, but 
instead focus on the initial resource allocation and assignment of VMs to physical 
machines.  In [29], the authors propose a system which dynamically schedules the 
VMs based on their CPU, memory and network utilization to improve the overall 
performance.  In [6] the authors propose dynamic consolidation and redistribution of 
VMs for managing QoS requirements of different service VMs in the cluster. Entropy 
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[14] uses constraint programming to determine a globally optimal solution for VM 
scheduling in contrast to the first fit decreasing heuristic used by [6, 29], which can 
result in globally sub-optimal placement of VMs. However, these approaches are not 
QoS aware.  They assume that the CPU utilization adds upon VM consolidation, 
which is not true for heterogeneous VM consolidation.   

Management of QoS within operating systems for latency sensitive applications in 
a heterogeneous workload mix running on standalone systems has been studied in 
Stanford SMART scheduler [23] and QLinux [28] projects. They ensure timely access 
to the CPU for the latency sensitive applications while maintaining proportional shar-
ing of CPU for the batch jobs. Similar solutions have been proposed for virtualized 
environments as well [17, 24]. We show that the software level support for QoS 
through timely CPU access is not sufficient to guarantee QoS in presence of interfe-
rence effects in modern multi-core based systems.  

The interference effects due to shared resource usage by co-scheduled workloads 
on modern multi-core based platforms has been studied before at both the OS and 
hypervisor levels.  The work in [5, 9] explores the problem exclusively for batch jobs.   
The research in [9, 20] takes the same problem of shared resource usage to the cluster 
level using virtualization, again just for batch workloads.  In [21, 26], the authors use 
CPU capping to ensure QoS requirements are met. However, their focus is either on 
batch workloads [21] or services [26], but not a mix of the two. 

State of the art techniques that focus on consolidating homogeneous workloads do 
not scale well for resource management with heterogeneous workloads. To solve this 
problem we designed Themis, a system for VM resource management in virtualized 
clusters. Themis includes a monitoring infrastructure which allows it to actively 
measure both performance and QoS metrics of different types of workloads within the 
data center. It is built as extension to Xen [3], and as such could be integrated into any 
open source system which can leverage Xen.  We evaluate Themis on a testbed built 
of state-of-the-art servers with workloads representative of both services and batch 
jobs. Our evaluation shows that Themis can improve energy efficiency by up to 35% 
over the best proposed policies for resource management in consolidated environ-
ments while meeting both service and batch job performance targets. 

2 Themis Design 

In this section we provide details of the design and implementation of our system, 
Themis, for managing diverse workloads in the data center. We classify the work-
loads into two categories [15]: (1) Services. The primary goal for these workloads is 
to serve the user request within a given time bound to maintain a QoS level.  In this 
paper we use RUBiS [1] as representative of services.  Rubis is a multi-tier online 
service that implements the core functions of an auction site including selling, brows-
ing, and bidding. It contains a front-end Apache PHP web server and a back-end 
MySQL database.  RUBiS provides workloads of different mixes for the client ses-
sions that are emulated on a separate machine. We use the ‘browsing mix’, which 
emulates a web-intensive user browsing experience. (2) Batch jobs. These workloads 
refer to resource intensive jobs that are representative of the analytics, number 
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crunching, and scientific computing class of workloads. The primary goal of these 
jobs is to maximize the overall instruction throughput, with no specific response time 
requirements. Since the goal of this paper is to study the effects of CPU and memory 
interference on the consolidation of different types of data center workloads, we use 
representative workloads from SPEC2000 and PARSEC benchmark suites, as our 
batch workloads.  These workloads can be used to approximate memory and CPU 
intensive phases of typical data center batch jobs such as MapReduce [30]. 

Themis’ objectives are to: (1) satisfy the QoS requirement of the service jobs; (2) 
maximize the batch job throughput; (3) minimize the power consumption. We define 
a new metric to capture these goals. It measures the batch job throughput/Watt, mul-
tiplied by a factor q that reflects how closely services QoS requirements are met.  If 
QoS requirements are not met, then q is set to zero. Maximizing qMIPS/Watt implies 
that it is acceptable to sacrifice a bit of performance of service jobs as long as we still 
meet the strict service level agreements, increase batch throughput, and increase the 
overall energy-efficiency of the system. 

qMIPS/Watt = q * (batchjobMIPS)/SystemWatts   (1)

2.1 Motivation for Themis 

Many of the modern hypervisor schedulers are based on proportional sharing of CPU 
resources.  Xen uses a credit scheduler, where each VM’s proportional share is speci-
fied through ‘weight’.  Based on weight, the physical CPU resources (or credits) are 
distributed to the virtual CPUs (vCPUs) in proportion of their weight, with vCPU 
priority recalculated based on the credits the VM has. There are three priority levels: 
(1) ‘Over’: the lowest priority that a VM is set to when it exhausts its credits; (2) ‘Un-
der’: medium priority; and (3) ‘Boost’: the highest priority used for low-latency tasks 
such as those that just received an I/O interrupt.  

Such a model works well if VM workloads use the CPU resources in a homogene-
ous fashion.  However, CPU residency times of services workloads are very low [10], 
but at the same time it is important for them to get the CPU as soon as they are ready 
to run, as otherwise QoS requirements may not be met. The mechanisms provided by 
the proportional schedulers fail to achieve that, since proportional sharing only prom-
ises a higher proportion of CPU without any timing guarantees.  

This lack of QoS support in proportional schedulers has been identified as a prob-
lem in conventional OS schedulers and is addressed to some extent in [22] and [28], 
as well as in hypervisor schedulers like Xen [17].  As a part of Themis, we also im-
plement real time scheduling for services similar to QLinux [28], while retaining de-
fault proportional scheduling for batch VMs. A new priority state is introduced in the 
scheduler, referred to as the ‘QoS’ state, which is between the Boost and Under states. 
The QoS state can be configured through Xen API for any VM which has a QoS  
requirement. However, as we show below, providing such real time priority is not 
sufficient by itself to guarantee QoS for the services in consolidated virtualized envi-
ronments. 
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In Figure 1 we show results of an experiment where we run RUBiS web server in 
a higher priority QoS VM state on one CPU sockett, and a batch VM running swim, a 
compute intensive weather prediction benchmark from SPEC’00, on another socket of 
an Intel Xeon quad core machine.  Figure shows on x-axis time in seconds, and on 
dual y-axis CPU utilization of the servers and QoS ratio of RUBiS.  The target QoS 
ratio should be less then 1.  We also ran RUBiS by itself and found has QoS ratio 
close to 0.3. The interference effects due to the batch VM slow down the web server, 
even though they do not share a physical core. This consequently increases the CPU 
utilization of the web server VM, creates a bottleneck thus worsening the QoS ratio of 
the application to unacceptable levels that are 3x higher than the specified limit. 

 

Fig. 1. RUBiS-web with a batch VM running ‘swim’  

This example shows that just guaranteeing real time priority is not sufficient to en-
sure QoS for service VMs in consolidated environments. The interference effects due 
to shared resource usage can dramatically impact the QoS level even when CPU re-
sources are not shared, and must be explicitly accounted for. These interference ef-
fects are a function of how the workloads interact with each other which are difficult 
to model. Consequently, our approach, as described in the next section, is to infer the 
interference effects through resource utilization and QoS ratio feedback from the ser-
vice VMs, and to adaptively provision the resource allocation to alleviate these issues. 

 

Fig. 2. Themis Design 
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2.2 Themis Components 

The overall objective of Themis is to manage diverse workloads in the data center 
with the goal of maximizing qMIPS/Watt. It implements a monitoring framework for 
dynamic VM profiling and policies for dynamic resource management of VMs.  
Themis has three entities as shown in Figure 2: (1) Themis Nodes: These are the 
physical machines in the data center that run the actual workloads, which can be a 
batchVM, serviceVM or both. (2) Services Clients: These are the machine(s) that are 
running applications requesting service from a serviceVM (which can be a single or 
multi-tier service) running on the Themis clients. (3) Themis Server: This is the clus-
ter manager, and is responsible for implementing policies for node level resource 
management and VM scheduling. We now present these entities in greater detail. 

1) Themis Nodes (tNodes) are physical machines that run workloads.  They are 
equipped with Themis specific profilers to capture live metrics that estimate per-VM 
resource utilization. There are two such profilers: 

xProfiler: It captures throughput (MIPS) and memory access information (MPC) 
for VMs running on tNodes with CPU performance counters, and communicates that 
to dProfiler. This data is not used by Themis, but is required for comparison with state 
of the art scheduling policies [11, 25], and to estimate qMIPS/Watt for all policies. 

dProfiler: It compiles per-VM performance and resource utilization information, 
and communicates it to Themis server. The dProfiler runs inside the Dom-0.  

2)Services Clients (sClients) are the applications serviced by the serviceVMs run-
ning on tNodes. The sClients use appProfiler to dynamically communicate QoS ratio 
to the Themis server. We assume that it is feasible to implement such appProfilers for 
all the services whose QoS needs to be monitored. The QoS ratio is dynamically 
communicated by the appProfiler to the Themis server.  

3)Themis Server (tServer) does resource management across the cluster with the 
objective of maximizing the qMIPS/Watt. It registers all tNodes and sClients through 
dProfiler and appProfilers, periodically collects the metric updates and QoS ratios 
from them, and sends this to the management policies running on the system.  The 
policies convey their management decisions to the dProfiler, which physically imple-
ments them on the intended tNode as illustrated in Figure 2. The tServer uses a cluster 
scheduler similar to the existing state of the art implementations [14, 29], that conso-
lidates batch and serviceVMs based on the CPU utilization metrics of the individual 
VMs running across the cluster provided by the dProfiler. However, when we co-
locate batchVM and serviceVM on a tNode, the interference effects can impact the 
QoS ratio of the services.  While batchVMs need CPU resources to maximize their 
throughput, the serviceVMs only need the CPU resources for long enough to service 
the client requests within the required time frame. This observation motivates the 
design of a resource management policy, referred to as the ‘Node Controller’ to dy-
namically control the CPU resource allocation to the serviceVMs. 

4) Node Controller (tController) exists for every serviceVM which operates inde-
pendently based on the metric and QoS inputs.  At every time interval tController 
predicts what is the needed number of CPUs (which we refer to as nref) for the next 
interval based on the CPU utilization and QoS ratio.  Its objective is to converge to 
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the number of virtual CPUs sufficient to meet QoS ratio for the serviceVMs, while 
giving as much CPU headroom to batchVMs as possible.  Algorithm 1, used to esti-
mate nref for the upcoming interval,  takes as input the current QoS ratio (QoScur), 
CPU utilization (utilcur) and the vCPU allocation (ncur) for the serviceVM the tCon-
troller is managing. It further uses two important threshold paramenters: (1) QoSth: 
This threshold is used by the algorithm to determine whether the QoS of the service 
being monitored is being safely met. If the QoScur is less than QoSth, then current re-
source allocation is more than sufficient to meet QoS metrics. (2) utilth: CPU utiliza-
tion threshold that is used to determine if the service needs additional CPU resources. 
The experiments with servce workload and batch jobs showed that service CPU utili-
zation scales linearly with the number of CPUs regardless of the type of batch jobs. 

Algorithm 1. Performance Model 

 

We model the error in selecting the number of vCPUs for each serviceVM, δn(k),  
at each time step k, as a state which is related to the number of currently assigned 
vCPUs, n(k), and the target number of vCPUs estimated using Algorithm 1, nref(k): 

δn(k + 1) = δn(k) + n(k) – nref(k)        (2)

To maximize the qMIPS/Watt, the error for the next step, δn(k + 1), has to converge 
to zero, as this ensures that we give minimum resources the serviceVM needs to meet 
its QoS, hence maximizing the achievable MIPS for the batchVM. We use closed 
loop feedback to achieve this as shown below: 

ni(k+1) = -Gi δn(k) + nrefi (k)  (3)

where Gi is the state feedback gain for the ith serviceVM and ni(k+1) is the number of 
vCPUs that serviceVM needs to meet its desired QoS ratio. We pick value of Gi that 
is between zero and one as this guarantees convergence of the controller per results 
available from control theory. At each control decision point, the controller calculates 
nrefi (k), estimates current cumulative error, δn(k), and based on control shown in 
Equation (3), it estimates the next step’s vCPU allocation, ni(k+1). In practice we 
found that this takes only a handful of iterations, with  QoSth of 0.6 and Ts of 2s as 
representative parameters. These parameters need to be choosen appropriately for 
other deployments. Techniques such as ARMA estimators and maximum likelihood 
tests can be used to do parameter prediction and selection online. 
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3 Results 

We conduct experiments on a testbed of four dual quad-core Nehalem machines with 
24GB memory. Two are tNodes, which run the service and batch VMs, 3rd is sClient 
which generates workload for services, and the last is tServer, doing scheduling and 
resource management of the VMs. We compare Themis (labeld as Controller) to ex-
isting state of the art systems:   

(1) Baseline: This policy runs service VMs and batch VMs on separate tNodes to 
avoid any interference effects. 

(2) Consolidation: This policy consolidates service VMs and batch VMs on the ba-
sis of CPU utilization [14, 29] but does not perform resource management with the 
Node Controller. 

(3) Ideal-tChar: Systems proposed in [10, 20] identify the memory intensiveness 
of the batch VMs, and distribute VMs across physical machines to avoid MIPS de-
gradation. We ensure that they only consolidate non-memory intensive batch VMs 
with the service VMs. If the batch VM is memory intensive, then the VMs run inde-
pendently on separate tNodes. This helps meet QoS ratio by limiting the degree of 
consolidation. We guarantee offline that consolidation occurs only if QoS ratio is 
satisfied, thus labeling the policy Ideal. 

(4) Ideal-tCap: Systems proposed in [21, 26] manage QoS on consolidated ma-
chine by placing a CPU cap on the lower priority VM to ensure that the higher priori-
ty VM meets its QoS requirements.  A CPU cap limits the amount of time the lower 
priority VM runs, hence reducing the interference effects. We place a CPU cap on the 
batch VM based on the QoS ratio feedback of the application being serviced by the 
service VM to ensure that the QoS requirements are met. This policy is labeled Ideal 
since we determine the minimum cap for batch VMs so that the QoS ratio is satisfied 
offline. 

In all our experiments, initially one tNode runs the service VMs and the other 
tNode runs the batch VM. We then monitor the MIPS of the batch VM, QoS ratio for 
the service VMs and the power consumption of the active tNodes every two seconds 
(Ts) for the whole duration of the run of the sClient. The power consumption is rec-
orded from the power sensors on the machines, which are accessible through an Inte-
grated Power Management Interface (IPMI) [16]. Using these values, we estimate the 
qMIPS/Watt.  The initial configuration of the batch and service VMs is identical for 
all policies. All the VMs run Linux as the guest OS, and are configured with 2 vCPUs 
and 4GB of memory. The service VMs are assigned the ‘QoS priority state’ for all the 
policies to ensure timely access to the CPU.  RUBiS is configured so that service 
VMs comfortably meet QoS ratio when running alone. For the batch VMs, we always 
have as many threads of the benchmark as the number of vCPUs to represent a  
fully utilized VM. The mix of our batch jobs has an equal number of CPU and memo-
ry intensive benchmarks. In Figures 4 and 5 we list results for CPU bound bench-
marks on the left, and memory bound on the right, with average over all on the far 
right. 
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Fig. 3. Energy efficiency comparison 

Figure 4 illustrates the overall results in qMIPS/Watt for all the policies, norma-
lized against the baseline policy, with workloads listed on y-axis running inside the 
batch VM. Higher values of qMIPS/Watt correspond to better system energy efficien-
cy. The more memory intensive the batch job, the more it impacts the execution of 
service jobs. Baseline policy gives the best MIPS for the batch jobs but is inherently 
energy inefficient, since it keeps two machines active, resulting in the highest active 
power consumption. Consolidation policy saves as much as 40% of power through 
VM consolidation. However, it results in poor qMIPS/Watt because the consolidation 
with memory intensive batch VMs results in bottlenecks for the service VMs, and 
consequently violations of their QoS (failure to meet the QoS requirements corres-
ponds to zero qMIPS/WATT).  The Ideal-tChar policy combines the best parts of two 
previous policies.  This policy, based on oracle knowledge, consolidates the VMs 
when their QoS is maintained and keeps them separate when not.  Ideal-tChar gets a 
40% increase in qMIPS/WATT over the baseline for RUBiS. The policy however, 
misses out on the opportunity to save energy through consolidation for more memory 
intensive batch VM workloads.  The Ideal-tCap policy, on the other hand, accom-
plishes consolidation under all circumstances as it places a limit on the CPU utiliza-
tion of the batch VM so that the service VM just meets it QoS requirement. A cap on 
CPU allocation results in smaller time spent by batch VM on the CPU, which reduces 
the interference effects.  However, Ideal-tCap not only fails to improve the useful 
work done per joule but actually results in its slight reduction. This is explained in 
Figure 5, where we observe that the MIPS of the batch VM because of capping drops 
considerably. This results in the Ideal-tCap policy performing even worse than the 
Baseline policy in terms of qMIPS/Watt for some very memory intensive batch VMs.  
Our Controller policy outperforms all the other policies for both service workloads.  It 
is on average 70% better than the Baseline in qMIPS/WATT and 35% better than the 
Ideal policies. The large gains in qMIPS/Watt of the Controller policy over the Ideal 
policies are a consequence of the fact that the controller is better able to exploit the 
heterogeneity in the way resources are used.  
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Figure 5 demonstrates that the raw MIPS achieved by the Controller is on an aver-
age within 7% of the maximum possible, i.e. the Baseline, and in the worst case with-
in 17%. At the same time it is able to reduce the system power consumption by 50% 
relative to the Baseline policy. In contrast, Ideal-tCap policy is on an average 30% 
below and up to 70% worse than the Baseline.   

 

Fig. 4. Batch VM MIPS running with Rubis 

4 Summary 

This paper explores the challenges of managing latency sensitive services and 
throughput oriented batch jobs in data centers. We design a new metric, qMIPS/Watt, 
to capture the amount of work done per joule while maintaining a prespecified level 
of QoS.  Our Themis controller, which leverages the heterogeneity of the workloads 
when managing resources, outperforms ideal versions of state-of-the art policies in 
work done per Joule by 35% on average, and by 70% relative to the baseline in to-
day’s data centers. Going forward we plan to include other resources to manage, such 
as I/O, and we plan to integrate Themis as a part of one of the large scale cloud man-
agement systems, such as OpenStack [31], which will enable us to more easily eva-
luate Themis’ benefits at larger scale. 

Acknowledgments. This work was funded in part by NSF grants No. EEC-0812072, 
No. CNS-0821155, No. OCI-0962997, MuSyc center, Microsoft and Google. 

References 

[1] Amza, C., Cecchet, E., Chanda, A., Cox, A.L., Elnikety, S., Gil, R., Marguerite, J., Ra-
jamani, K., Zwaenepoel, W.: Specification & implementation of dynamic web site 
benchmarks. In: IEEE WWC (2002) 

[2] Apache, http://incubator.apache.org/olio/ 
[3] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, 

I., Warfield, A.: Xen and the Art of Virtualization. In: SOSP 2003 (2003) 
[4] Barroso, L., Holzle, U.: The Case for Energy-Proportional Computing. IEEE Comput-

er 40(12) (December 2007) 



566 G. Dhiman et al. 

[5] Blagodurov, S., Zhuravlev, S.: Contention-Aware Scheduling. ACM Trans. on Compu-
ting Systems (2010) 

[6] Bobroff, N., Kochut, A., Beaty, K.: Dynamic Placement of Virtual Machines for Manag-
ing SLA Violations. IEEE Integrated Network Management (2007) 

[7] Chase, J., Anderson, D., Thaka, P., Vahdat, A., Doyle, R.: Managing Energy and Server 
Resources in Hosting Centers. In: SOSP 2001 (2001) 

[8] Clark, C., Fraser, K., Hand, S., Hansen, J., Jul, E., Limpach, C., Pratt, I., Warfield, A.: 
Live Migration of Virtual Machines. In: NSDI (2005) 

[9] Dhiman, G., Kontorinis, V., Tullsen, D., Rosing, T., Saxe, E., Chew, J.: Dynamic Work-
load Characterization for Power Efficient Scheduling on CMP Systems. In: ISLPED 
(2010) 

[10] Dhiman, G., Marchetti, G., Rosing, T.: vGreen: A System for Energy Efficient Compu-
ting in Virtualized Environments. In: ISLPED (2009) 

[11] Dhiman, G., Pusukuri, K., Rosing, T.: Analysis of DVFS for Energy Management. In: 
USENIX-HotPower (2008) 

[12] Fan, X., Weber, W., Barroso, L.: Power Provisioning for a Warehouse-sized Computer. 
In: ISCA (2007) 

[13] Ge, R., Feng, X., Feng, W., Cameron, K.: CPU MISER. In: ICPP (2007) 
[14] Hermenier, F., Lorca, X., Menaud, J., Muller, G., Lawall, J.: Entropy: a Consolidation 

Manager. In: VEE (2009) 
[15] Hoelzle, U., Barroso, L.: The Datacenter as a Computer (2010) 
[16] IPMI, v2.0 Specification, Intel (2004) 
[17] Lee, M., Krishnakumar, A., Krishnan, P., Singh, N., Yajnik, S.: Supporting real-time in 

the Xen hypervisor. In: VEE 2010 (2010) 
[18] Mcnett, M., Gupta, D., Vahdat, A., Voelker, G.: Usher. In: LISA 2007 (2007) 
[19] Meisner, D., Gold, B., Wenisch, T.: PowerNap: Eliminating Server Idle Power. In: 

ASPLOS (2009) 
[20] Merkel, A., Stoess, J., Bellosa, F.: Resource-Conscious Scheduling for Energy Efficien-

cy. In: EuroSys 2010 (2010) 
[21] Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-Clouds: Managing Interference for QoS-

Awareness. In: EuroSys (2010) 
[22] Nieh, J., Lam, M.: A Smart Scheduler for Multimedia Applications. ACM Trans. Com-

put. Syst. 21 (2003) 
[23] Nurmi, D., Wolski, R., Grzegorczyk, C., Soman, S., Youseff, L., Zagorodnov, D.: Euca-

lyptus. In: ISCCG 2009 (2009) 
[24] Ongaro, D., Cox, A., Rixner, S.: Scheduling I/O in Virtual Machine Monitors. In: VEE 

(2008) 
[25] OpenNebula, http://www.opennebula.org/ 
[26] Padala, P., Hou, K., Shin, K., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.: 

Automated Control of Multiple Virtualized Resources. In: EuroSys 2009 (2009) 
[27] Rajamani, K., Lefurgy, C.: On Evaluating Request-Distribution Schemes for Saving 

Energy in Server Clusters. In: ISPASS (2003) 
[28] Sundaram, V., Chandra, A., Goyal, P., Shenoy, P., Sahni, J., Vin, H.: Application Per-

formance in the QLinux Multimedia Operating System. In: MULTIMEDIA 2000 (2000) 
[29] Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and Gray-box Strate-

gies for Virtual Machine Migration. In: NSDI (2007) 
[30] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: 

OSDI (2004) 
[31] OpenStack (2012), http://docs.openstack.org 


	Themis: Energy Efficient Management of Workloads in Virtualized Data Centers




