
 123

LN
BI

P
52

4

XP 2024 Workshops
Bozen-Bolzano, Italy, June 4–7, 2024
Revised Selected Papers

Agile Processes
in Software Engineering
and Extreme Programming –
Workshops

Lodovica Marchesi · Alfredo Goldman ·
Maria Ilaria Lunesu · Adam Przybyłek ·
Ademar Aguiar · Lorraine Morgan ·
Xiaofeng Wang · Andrea Pinna (Eds.)

Lecture Notes
in Business Information Processing 524

Series Editors
Wil van der Aalst , RWTH Aachen University, Aachen, Germany
Sudha Ram , University of Arizona, Tucson, AZ, USA
Michael Rosemann , Queensland University of Technology, Brisbane, QLD,
Australia
Clemens Szyperski, Microsoft Research, Redmond, WA, USA
Giancarlo Guizzardi , University of Twente, Enschede, The Netherlands

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0001-6053-1311
https://orcid.org/0000-0003-3303-2896
https://orcid.org/0000-0002-3452-553X

LNBIP reports state-of-the-art results in areas related to business information systems
and industrial application software development – timely, at a high level, and in both
printed and electronic form.

The type of material published includes

• Proceedings (published in time for the respective event)
• Postproceedings (consisting of thoroughly revised and/or extended final papers)
• Other edited monographs (such as, for example, project reports or invited volumes)
• Tutorials (coherently integrated collections of lectures given at advanced courses,

seminars, schools, etc.)
• Award-winning or exceptional theses

LNBIP is abstracted/indexed in DBLP, EI and Scopus. LNBIP volumes are also
submitted for the inclusion in ISI Proceedings.

Lodovica Marchesi · Alfredo Goldman ·
Maria Ilaria Lunesu · Adam Przybyłek ·
Ademar Aguiar · Lorraine Morgan ·
Xiaofeng Wang · Andrea Pinna
Editors

Agile Processes
in Software Engineering
and Extreme Programming –
Workshops
XP 2024 Workshops
Bozen-Bolzano, Italy, June 4–7, 2024
Revised Selected Papers

Editors
Lodovica Marchesi
University of Cagliari
Cagliari, Italy

Maria Ilaria Lunesu
University of Cagliari
Cagliari, Italy

Ademar Aguiar
University of Porto
Porto, Portugal

Xiaofeng Wang
Free University of Bozen-Bolzano
Bozen-Bolzano, Italy

Alfredo Goldman
Universidade de São Paulo
São Paulo, Brazil

Adam Przybyłek
Gdańsk University of Technology
Gdansk, Poland

Lorraine Morgan
University of Galway
Galway, Ireland

Andrea Pinna
University of Cagliari
Cagliari, Italy

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-031-72780-1 ISBN 978-3-031-72781-8 (eBook)
https://doi.org/10.1007/978-3-031-72781-8

© The Editor(s) (if applicable) and The Author(s) 2025. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-0627-5043
https://orcid.org/0000-0002-2552-4228
https://orcid.org/0000-0002-4046-4729
https://orcid.org/0000-0001-8424-419X
https://orcid.org/0000-0001-5746-4154
https://orcid.org/0000-0002-8231-709X
https://orcid.org/0000-0002-0708-7642
https://orcid.org/0000-0002-7530-0521
https://doi.org/10.1007/978-3-031-72781-8
http://creativecommons.org/licenses/by/4.0/

Preface

It is with great pleasure that we introduce this volume of papers from the research
workshops, the posters track, the education track, and the PhD Symposium track of XP
2024, the 24th International Conference on Agile Software Development, held on June
4–7, 2024 at the Free University of Bolzano, Italy.

TheXP conference is the premierAgile software development conference combining
both research and practice. This year we celebrated 25 years of XP with the theme
“Reflect, Adapt, Envision,” prompting the Agile community to pause, reflect on the
progress made, and envision future directions for both research and practice in the field.
It is a unique forumwhere Agile researchers, practitioners, thought leaders, coaches, and
trainers get together to present and discuss their most recent innovations and research
results.

Research papers from the XP 2024 conference were published in the first conference
proceedings, LNBIP volume 512. This companion volume, published after the confer-
ence, contains selected revised papers from the workshop, poster, and PhD symposium
tracks that took place during the conference event. XP 2024 hosted the following tracks:

• International Workshop on Advances in Software Intensive Startups
• Workshop on AI for Agile Software Engineering (AI4ASE)
• 2nd International Workshop on Global and Hybrid Work in Software Engineering

(GoHyb)
• 11th International Workshop on Large-Scale Agile Development
• Workshop on the AI Scrum Master: Incorporating AI Into Your Agile Practices and

Processes
• Agile Training and Education Track
• PhD Symposium Track
• Posters Track

The number of submitted research papers to these trackswas 58, out ofwhich 29were
accepted for publication in these post-proceedings. The review cycles used single-blind
reviews in EasyChair.

In addition to the workshop papers, these post-conference proceedings include a
summary of the 25th Anniversary Track workshop and panel discussion.

We would like to extend our sincere thanks to all the people who contributed to XP
2024: the authors, reviewers, chairs, and volunteers. Finally, we would like to express

vi Preface

our gratitude to the XP Conference Steering Committee and the Agile Alliance for their
ongoing support.

July 2024 Lodovica Marchesi
Alfredo Goldman

Maria Ilaria Lunesu
Adam Przybyłek
Ademar Aguiar

Lorraine Morgan
Xiaofeng Wang
Andrea Pinna

Organization

Conference Co-chairs

Xiaofeng Wang Free University of Bozen-Bolzano, Italy
Michele Marchesi University of Cagliari, Italy

Workshops Program Co-chairs

Lodovica Marchesi University of Cagliari, Italy
Alfredo Goldman Universidade de São Paulo, Brazil

PhD Symposium Track Co-chairs

Lorraine Morgan University of Galway, Ireland
Ademar Aguiar University of Porto, Portugal

Posters Track Co-chairs

Maria Ilaria Lunesu University of Cagliari, Italy
Adam Przybyłek Gdańsk University of Technology, Poland

Agile Training and Education Track Co-chairs

Martin Kropp University of Applied Sciences and Arts
Northwestern Switzerland, Switzerland

Maarit Laanti WikiAgile, Finland

Publication Co-chairs

Andrea Pinna University of Cagliari, Italy
Peggy Gregory University of Glasgow, Scotland

viii Organization

Workshops Organizers

Advances in Software Intensive Startups (AiSIS)

Henry Edison Blekinge Institute of Technology, Sweden
Nirnaya Tripathi University of Oulu, Finland

AI for Agile Software Engineering (AI4ASE)

Astri Barbala SINTEF, Norway
Viktoria Stray University of Oslo, Norway
Geir Kjetil Hanssen SINTEF, Norway
Klaas-Jan Stol Lero, University College Cork, Ireland

The Second International Workshop on Global and Hybrid Work in Software
Engineering (GoHyb)

Maria Paasivaara LUT University, Finland & Aalto University,
Finland

Dron Khanna Free University of Bozen-Bolzano, Italy

11th International Workshop on Large-Scale Agile Development

Julian Bass University of Salford, UK
Gloria Iyawa University of Salford, UK

The AI Scrum Master: Incorporating AI Into Your Agile Practices and Processes

Zorina Alliata Georgetown University, USA
Lyuba Berzin Private Sector Group, USA

Program Committee

Abdallah Salemeh University of Salford, UK
Aleksander Jarzębowicz Gdańsk University of Technology, Poland
Alena Buchalcevova Prague University of Economics and Business,

Czechia
Alexander Poth Volkswagen AG, Germany
Alfredo Goldman University of São Paolo, Brazil
Anh Nguyen Duc University College of Southeast Norway, Norway

Organization ix

Arlinta Barus Del Institute of Technology, Indonesia
Arne Noyer Ostfalia University of Applied Sciences, Germany
Aurora Vizcaíno University of Castilla-La Mancha, Spain
Bartosz Marcinkowski University of Gdańsk, Poland
Beatriz Cabrero-Daniel University of Gothenburg, Sweden
Carla Silva Rocha Aguiar University of Brasília, Brazil
Casper Lassenius Aalto University, Finland
Christof Ebert Vector Consulting, Germany
Darja Smite Blekinge Institute of Technology, Sweden
David Redmiles University of California, Irvine, USA
Dron Khanna Free University of Bozen-Bolzano, Italy
Elizabeth Bjarnason Lund University, Sweden
Eric Knauss Gothenburg University, Sweden
Fernando de Sá Instituto Tecnológico de Aeronáutica, Brazil
Filippo Lanubile University of Bari, Italy
George Moschoglou Georgetown University, USA
Gloria Iyawa University of Salford, UK
Hannes Salin Swedish Transport Administration, Sweden
Helena Holmströom Olsson Malmö University, Sweden
Hina Saeeda Karlstad University, Sweden
Iflaah Salman LUT University, Finland
Igor Steinmacher North Arizona University, USA
Jakub Miler Gdańsk University of Technology, Poland
Jan Pries-Heje Roskilde University, Denmark
John Noll University of Hertfordshire, UK
Jorge Melegati Free University of Bozen-Bolzano
Joseph Puthenpurackal Chakko Wells Fargo, India
Jutta Eckstein IT Communication, Germany
Karen Eilers Institute for Transformation, Germany
Krzysztof Marek Warsaw University of Technology, Poland
Leigh Griffin Red Hat, Ireland
Maarit Laanti WikiAgile, Finland
Maduka Uwadi University of Central Lancashire, UK
Maha Youssef Open Institute of Technology, Germany
Mahum Adil Free University of Bozen-Bolzano, Italy
Mani V. S. Siemens Healthcare Pvt. Ltd., India
Manuel Mazzara Innopolis University, Russia
Maryse Meinen Practical agile, Netherlands
Michael Neumann Hochschule Hannover, Germany
Michał Przybyłek Warsaw University, Poland
Mohammad Alshayeb King Fahd University of Petroleum & Minerals,

Saudi Arabia

x Organization

Morten Elvang Accenture, Denmark
Muhammad Ovais Ahmad Karlstad University, Sweden
Muhammad Usman Blekinge Institute of Technology
Necmettin Özkan Gebze Technical University, Turkey
Nils Brede Moe SINTEF, Norway
Ömer Uludağ TUM, Germany
Özden Özcan Top Middle East Technical University, Turkey
Paolo Tell IT University of Copenhagen, Denmark
Pedro Filipe Soares University Institute of Lisbon, Portugal
Pertti Seppänen University of Oulu, Finland
Piotr Trojanowski Resonate, Poland
Ramesh Lal Auckland University of Technology, New Zealand
Ricardo Britto Ericsson/BTH, Sweden
Richard Berntsson Svensson University of Gothenburg, Sweden
Scarlet Rahy University of Salford, UK
Sergio Rico Mid Sweden University, Sweden
Tomas Gustavsson Karlstads Universitet, Sweden
Tomas Herda Austrian Post, Austria
Tony Clear Auckland University of Technology, New Zealand
Torben Worm University of Southern Denmark, Denmark
Viktoria Stray University of Oslo, Norway
Włodzimierz Dąbrowski Warsaw University of Technology, Poland
Woubshet Behutiye University of Oulu, Finland
Yen Ying Ng Nicolaus Copernicus University, Poland

Other Reviewers

Aakash Ahmad Lancaster University Leipzig, Germany
Anastasia Griva University of Galway, Ireland
Clare Dillon University of Galway, Ireland
Eriks Klotins Blekinge Institute of Technology, Sweden
Jingyue Li Norwegian University of Science and Technology,

Norway
Kai-Kristian Kemell University of Helsinki, Finland
Kari Systa Tampere University of Technology, Finland
Kieran Conboy University of Galway, Ireland
Malik Abdul Sami Tampere University, Finland
Moritz Mock Free University of Bozen-Bolzano, Italy
Muhammad Waseem University of Jyväskyla, Finland
Ömer Uludag TU München, Germany
Pekka Abrahamsson Tampere University, Finland

Organization xi

Rasmus Ulfsnes SINTEF, Norway
Shadab Mashuk University of Salford, UK
Tor Sporsem SINTEF Digital, Norway
Torgeir Dingsøyr Norwegian University of Science and Technology,

Norway
Viggo Tellefsen Wivestad SINTEF, Norway
Zeeshan Rasheed Tampere University, Finland
Zheying Zhang Tampere University, Finland
Zorina Alliata Georgetown University, USA

Steering Committee

Hubert Baumeister Technical University of Denmark, Denmark
François Coallier École de Technologie Supérieure, Canada
Jutta Eckstein IT Communication, Germany
Hendrik Esser Ericsson, Germany
Teresa Foster Agile Alliance, USA
Juan Garbajosa Universidad Politécnica de Madrid, Spain
Peggy Gregory (chair) University of Glasgow, UK
Wouter Lagerweij Lagerweij Consultancy, Netherlands
Maria Paasivaara LUT University & Aalto University, Finland
Viktoria Stray University of Oslo, Norway
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

Sponsoring Organization

Agile Alliance, USA Teresa Foster

Contents

International Workshop on Advances in Software Intensive Startups

Exploring the Potential of Generative AI: Use Cases in Software Startups 3
Mario Simaremare, Triando, and Sergio Rico

AI for Agile Software Engineering

Autonomous Agents in Software Development: A Vision Paper 15
Zeeshan Rasheed, Muhammad Waseem, Malik Abdul Sami,
Kai-Kristian Kemell, Aakash Ahmad, Anh Nguyen Duc, Kari Systä,
and Pekka Abrahamsson

Generative AI for Test Driven Development: Preliminary Results 24
Moritz Mock, Jorge Melegati, and Barbara Russo

Responsible AI in Agile Software Engineering - An Industry Perspective 33
Rasmus Ulfsnes, Nils Brede Moe, Jostein Emmerhoff, Marcin Floryan,
Anastasia Griva, Jan Henrik Gundelsby, Astri Moksnes Barbala,
and Kieran Conboy

A Journey Through SPACE: Unpacking the Perceived Productivity
of GitHub Copilot . 42

Viggo Tellefsen Wivestad and Rasmus Ulfsnes

The 2nd International Workshop on Global and Hybrid Work in
Software Engineering (GoHyb)

Analyzing the Impact of Constant Feedback on Hybrid Agile Team
Performance: Preliminary Results . 53

Wardah Naeem Awan and Iflaah Salman

Dual Effects of Hybrid Working on Performance: More Work Hours
or More Work Time . 63

Darja Smite, Anastasiia Tkalich, Nils Brede Moe,
Panagiota Chatzipetrou, Eriks Klotins, and Per Kristian Helland

Hybrid Meetings in Agile Software Development . 71
Viktoria Stray, Nils Brede Moe, and Susanne Semsøy

xiv Contents

The 11th International Workshop on Large-Scale Agile Development
Information on Submission

Agile Approaches in Critical Infrastructures . 83
Geir Kjetil Hanssen and Martin Gilje Jaatun

Social Capital in Software Product Management: A Case Study From
a Large-Scale Agile Context . 90

Astri Barbala, Nils Brede Moe, and Marthe Berntzen

The AI Scrum Master: Incorporating AI Into Your Agile Practices
and Processes

ChatGPT for Tailoring Software Documentation for Managers
and Developers . 103

Saimir Bala, Kristina Sahling, Jennifer Haase, and Jan Mendling

TheAI ScrumMaster: Using Large LanguageModels (LLMs) to Automate
Agile Project Management Tasks . 110

Zorina Alliata, Tanvi Singhal, and Andreea-Madalina Bozagiu

Copilot’s Island of Joy: Balancing Individual Satisfaction with Team
Interaction in Agile Development . 123

Viggo Tellefsen Wivestad, Astri Barbala, and Viktoria Stray

Can ChatGPT Suggest Patterns? An Exploratory Study About Answers
Given by AI-Assisted Tools to Design Problems . 130

João José Maranhão Junior, Filipe F. Correia,
and Eduardo Martins Guerra

Education Track

Towards Improving Behavior-Driven Development and Acceptance
Testing-Driven Development Teaching in a University Project Course 141

Marina Filipovic and Fabian Gilson

Agile Software Engineering Capstone Courses: Exploring the Impact
of Gender . 150

Gyda Elisa Sæter, Camilla Kielland Lund, and Viktoria Stray

PhD Symposium Track

Towards Continuous Certification of Software Systems for Aerospace 161
J. Eduardo Ferreira Ribeiro

Contents xv

Shared Leadership for Better Understanding Agile Teams 169
Jakub Perlak

Design Framework for Software Startups Applying Remote Work 175
Triando

Bridging Silos: Amplifying InnerSource Adoption Using an Activity
Theory Perspective . 181

Clare Dillon

Posters Track

Where Do Developers Admit their Security-Related Concerns? 189
Moritz Mock, Thomas Forrer, and Barbara Russo

Digital Twin Adapted Agile Software Development Life Cycle 196
Mariam Jaber, Abdallah Karakra, Ahmad Alsadeh, and Adel Taweel

Drawing Based Game for Teaching Scrum . 203
Krzysztof Marek and Kamila Martyniuk-Sienkiewicz

Selected Concepts of Leadership in Self-organizing Teams 209
Jakub Perlak

Towards a Double-Edged Sword: Modelling the Impact in Agile Software
Development . 216

Michael Neumann and Philipp Diebold

An Agile Mindset in a VUCA-World . 223
Carolina Appel Bangshøj, Tanja Elina Havstorm, and Åsa Algulin

The Right Amount of Technical Debt in an Agile Context 229
Marcus Ciolkowski, Philipp Diebold, Andrea Janes,
and Valentina Lenarduzzi

Stories Vs. User Stories: A Terminological Clarification . 236
Xavier Franch, Hans-Jörg Steffe, Stan Bühne, Lidia López,
and Stefan Sturm

LD@Taiga: An Embedded Learning Dashboard for Agile Project
Management in Student Teams . 242

Carles Farré, Lidia López, Marc Oriol, and Xavier Franch

xvi Contents

XP 25th Anniversary Workshop and Panel Report

XP 25th Anniversary Workshop and Panel Report: Innovating Software
Solutions – Past, Present, and Future . 251

Steven D. Fraser and Dennis Mancl

Author Index . 259

International Workshop on Advances
in Software Intensive Startups

Exploring the Potential of Generative AI:
Use Cases in Software Startups

Mario Simaremare1,2(B) , Triando3 , and Sergio Rico4

1 Department of Software Engineering, Blekinge Institute of Technology, Karlskrona,
Sweden

2 Faculty of Informatics and Electrical Engineering, Institut Teknologi Del,
Sitoluama, Indonesia

mario.simaremare@bth.se
3 Faculty of Engineering, Free University of Bozen-Bolzano, Bolzano, Italy

4 Mid Sweden University, Östersund, Sweden

Abstract. Background and Related Work : Software startups face
unique challenges in product development, including limited resources,
the need for rapid innovation, and the constant pressure to adapt to
market changes. Generative Artificial Intelligence (GenAI) has recently
gained significant attention, offering capabilities to assist creative pro-
cesses, generate content, and enhance decision-making through data
analysis. However, how GenAI can be integrated into agile product devel-
opment processes in software startups remains an open question. Objec-
tive: This study aims to identify potential use cases for GenAI in software
startups and explore how GenAI can support innovation, overcome devel-
opment challenges, and integrate with agile practices to improve product
quality and development speed. Method : We identified a list of GenAI
use cases from existing systematic literature reviews and mapped them
to engineering process areas in software startups. Following that, we
conducted workshops with experts to validate our results. Results: The
results provide a descriptive overview of GenAI’s potential applications
in software startup environments. Given the current state of the art, we
identified areas that could benefit faster from integrating GenAI. Con-
clusions: The study delineates the prospective impact of GenAI on agile
product development in software startups, showcasing areas of immedi-
ate applicability.

Keywords: software startups · product development · potential
applications · generative ai

1 Introduction

Given their flexibility and agility, software startups have enormous potential to
disrupt markets and innovate rapidly [5]. However, they face unique challenges
in product development, including limited resources, the need for rapid innova-
tion, and the constant pressure to adapt to market changes [7]. Agile method-
ologies are widely adopted in software startups to address these challenges, as
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 3–11, 2025.
https://doi.org/10.1007/978-3-031-72781-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_1&domain=pdf
http://orcid.org/0000-0002-7873-6363
http://orcid.org/0000-0001-8849-1286
http://orcid.org/0000-0002-9348-2912
https://doi.org/10.1007/978-3-031-72781-8_1

4 M. Simaremare et al.

they enable iterative development, continuous feedback, and quick adaptation
to evolving requirements [9].

The ongoing revolution in generative artificial intelligence (GenAI) technolo-
gies may offer promising features for software startups to enhance their product
development processes, accelerate innovation, and improve product quality [6].
As discussed by Tripathi et al. [9], choosing technologies to speed up product
development is crucial for software startups.

GenAI refers to technologies that can create content of various forms based
on a large-sized trained dataset [1]. These technologies have shown significant
potential across various industries, including software development and product
innovation [6]. Although the potential of GenAI in software startups is promising,
existing research has yet to explore how GenAI can be integrated into engineer-
ing processes at startups. Consequently, We developed the following research
question to guide us in conducting this study.

What are the potential use cases of GenAI to support software startups in
their software engineering practices and challenges?

This study is our first effort to explore and use GenAI in software startups.
Specifically, we aimed to identify potential use cases for GenAI capabilities in
the product development in software startups. To achieve this goal, we first iden-
tified the type of GenAI technologies and their capabilities from the academic
literature. Then, we mapped these capabilities with the engineering model for
software startups. As a result, we identified use cases for potential uses of GenAI
for software startups.

This paper’s contributions include a list of potential use cases of GenAI
mapped to the engineering process and avenues to continue research with GenAI
in software startups. The remainder of this paper is organized as follows. The
next section provides an overview of software startups, GenAI technologies, and
their potential applications in software startups. Section 3 presents the research
methodology used in this study. Section 4 presents the results of our research and
the potential use cases for software startups. Section 5 discusses the implications
of our findings. Finally, Sect. 6 concludes the paper and summarizes our key
findings and avenues for future research.

2 Related Work

2.1 Software Startups

Software startups are newly established companies that develop innovative soft-
ware products or services under challenging circumstances [10]. The primary goal
of startup companies is to craft a scalable and sustainable business [8]. Studies
report that software startups often partially adopt unorthodox software devel-
opment practices during product development due to the influence of diverse
factors, including entrepreneurial vision, market needs, and capital constraints
[7,9]. This emphasizes the essential role of adaptable methodologies like Lean
Startup and Agile, often present in software startups [7].

Exploring the Potential of Generative AI 5

Klotin et al. [4] identify common goals, practices, and challenges across life-
cycle and engineering process areas in the software startup context. The life-cycle
consists of four stages: inception, stabilization, growth, and maturity. The incep-
tion stage focuses on forming a capable team and developing a minimum viable
product (MVP). Stabilization involves refining the product based on customer
feedback and preparing for scaling. Growth emphasizes achieving market share,
while maturity focuses on optimizing operations and maintaining market posi-
tion. The engineering areas include team, requirement engineering, value focus,
quality goals and testing, architecture and design, and project management. The
study outlines several key challenges and practices in software startups. Chal-
lenges include forming and managing a skilled team, particularly in the early
stages, dealing with dynamic requirements, avoiding feature creep, and main-
taining quality assurance while managing technical debt. To address these, star-
tups adopt practices such as using external experts for specialized tasks, relying
on iterative and agile development methodologies to adapt to rapid changes, and
establishing continuous feedback loops with customers to validate requirements.

2.2 GenAI and Its Potential

GenAI represents a subfield of artificial intelligence focused on synthetic content
generation [1]. It employs advanced generative models, large language models
(LLMs), trained on vast text, graphics, audio, or video datasets [1]. These mod-
els analyze patterns and relationships within the datasets to synthesize novel
responses to user prompts [6]. GenAI technologies hold significant promise across
various industries, potentially fostering new ideas, automating tasks, enhancing
creative exploration, streamlining processes in software engineering, and beyond
[2]. These vast potentials of GenAI attract new ventures1 and projects2.

A comprehensive study groups more than 350 GenAI applications into 15 use
categories, encompassing text, images, video, 3D, code and software, speech, AI
understanding, business, gaming, music, biotech, brain, and others, showcasing
the technology’s versatility [3]. Zhang et al. categorize GenAI by the type of
content it generates, such as text, images, video, 3D, and speech, while also
exploring the technology’s industrial applications [11].

3 Methodology

Our methodology leverages existing systematic literature reviews to explore the
application of GenAI in software startups:

1. GenAI Use Cases: We referred to (two) existing systematic literature reviews:
one by Zhang et al. [11], which covers various GenAI content generation tasks,
and another by Zheng et al. [12], focusing on the application of LLMs in soft-
ware engineering tasks. These reviews provide a representative snapshot of

1 https://www.ycombinator.com/companies/industry/ai.
2 https://github.com/filipecalegario/awesome-generative-ai.

https://www.ycombinator.com/companies/industry/ai
https://github.com/filipecalegario/awesome-generative-ai

6 M. Simaremare et al.

advancements and applications in GenAI. We selected these two systematic
literature reviews because they cover a broad range of GenAI use cases, offer-
ing a clear view of current trends and research focus areas. Given the field’s
rapid pace, we aim to capture its direction and key topics of interest.

2. Practices and Challenges in Software Startups: We referred to the progres-
sion model of software engineering in startups by Klotins et al. [4] to select
specific goals, challenges, and practices across startup stages mapped into six
engineering process areas.

3. Cross-Referencing and Synthesis: Independently, each author cross-referenced
GenAI use cases (step 1) with the startup progression elements (step 2). We
then converged to synthesize a collective analysis, addressing contradictions
through discussion.

4. Expert Workshop for Validation: We presented our results to two senior
researchers twice to validate our synthesis, followed by additional meetings to
discuss and refine the analysis. The senior researchers are experts in software
engineering in the software startup context.

4 Results

Below we present our results as the Use cases (�), derived by mapping the
elements of the progression model (�) [4] for software startups to the use cases
identified in the literature reviews [11,12]. These results directly answer our
research question by showing how the identified use cases align with the six
elements of the deployed progression model [4], highlighting the practical appli-
cations of GrnAI in addressing software engineering challenges in startups.
� Team area refers to forming and managing effective teams [4]. Goals
include establishing a team with sufficient skills and expertise, recognizing the
team as a catalyst for product development, and emphasizing characteristics
like cohesion, coordination, leadership, and continuous learning for project suc-
cess. Challenges involve team formation, management, expertise, leadership,
coordination, and engineering skills shortages. Practices in this area include
establishing a feedback loop with customers, documenting feature ideas, and
determining the “good-enough” level of quality, all aimed at advancing through
the startup life-cycle stages and addressing the difficulties in practicing software
engineering.

� Use cases: In the team area, GenAI can support cross-team communication,
such as automatic time zone tracking with multi-lingual translation, generating
and managing communication artifacts (e.g., emails), visualizing data and ideas,
creating presentations, transcribing, and summarizing discussions. Additionally,
trained chatbots can support various engineering activities such as generating
source code, developing relevant test cases, and fixing bugs. Moreover, GenAI can
also help recruit new team members and communicate with external stakeholders
in a personalized way.

Exploring the Potential of Generative AI 7

� Requirement engineering area focuses on eliciting, analyzing, validating,
documenting, and scoping software requirements [4]. This area is crucial for iden-
tifying and validating relevant product ideas, which are essential startup activ-
ities. The primary goal of this area is to identify market opportunities, devise
feasible solutions, and prioritize customer feedback to drive product development
and innovation. Challenges include transitioning from inventing requirements
to using customer input as the product matures, managing feature creep, and
maintaining domain knowledge through documentation. Practices involve col-
lecting input from potential customers early on to identify relevant requirements,
analyzing the usefulness of features to customers to prevent feature creep, and
documenting requirement ideas to facilitate knowledge sharing and avoid mis-
understandings within the team.

� Use cases: GenAI can play a role in the requirements engineering area,
e.g., acting as a user with specific characteristics (data-driven persona) to gener-
ate requirements, refine ideas from various use cases, and identify key features.
Furthermore, it can help the team capture, document, analyze, and synthesize
immersive feedback given in any language from customers around the globe.
A trained GenAI can guide the team to develop meaningful MVPs based on
comprehensive feedback, relevant test cases, and documentation.

� Value focus area consists of several goals that are related to maintaining a
focus on value [4]. These include enhancing the external and customer-perceived
value through better functionality and user experience, realizing the internal
market potential to capture and expand market share, generating significant
financial value through effective revenue management, and establishing internal
differentiation value to set the product apart from competitors. There is no
specific challenge in this area.

� Use cases: GenAI can offer tools to enhance user experience and streamline
development. By simulating user interactions, GenAI can perform preliminary
quality checks, identifying potential issues and areas for improvement before a
product reaches its final stages. This capability not only improves the user expe-
rience but also accelerates value delivery. Additionally, GenAI-driven chatbots
can be instrumental in guiding decision-making processes related to technology
selection. These chatbots analyze vast amounts of data and user inputs to tailor
recommendations on the most suitable technologies and frameworks.

� Quality goals and testing area consists of goals, challenges, and prac-
tices related to quality and testing [4]. The goals include ensuring the func-
tionality of the product to meet specific needs, maintaining maintainability for
easy updates and repairs, achieving a quick time-to-market to stay competitive,
enhancing portability to function across different platforms, and determining a
“good-enough” quality level that balances performance with cost-effectiveness.
The challenge involves manual regression testing, which requires significant
effort. Practices involve eliciting and validating quality requirements to align
product specifications with user needs, conducting informal, manual, exploratory

8 M. Simaremare et al.

testing to uncover unforeseen issues, and establishing a robust QA process with
clearly defined roles for testers.

� Use cases: GenAI can offer valuable insights into optimal interaction path-
ways and support usability studies, which is essential for refining user interfaces.
It also plays a role in generating test cases and test scenarios, enhancing test
automation processes. Additionally, it can provide recommendations for defining
the criteria necessary to achieve MVP quality, ensuring that the product meets
essential requirements while remaining lean. Moreover, GenAI assists in collect-
ing and analyzing performance metrics, suggesting improvements for software
products, and offering code corrections to increase coding quality. Furthermore,
chatbots powered by GenAI can be useful in guiding manual testing efforts, and
their capabilities extend to automating these tests to reduce the manual work
in test execution.

� Architecture and design refers to the technical decisions and design
choices that shape the product’s structure and functionality [4]. Startups pri-
oritize stable technologies over cutting-edge alternatives to minimize risks
and accelerate product development. They often adopt open-source and well-
established frameworks to avoid reinventing the wheel. Challenges are related
to managing technical debt, especially as startups scale, with earlier architecture
decisions leading to complications. For UI design, startups utilize mockups and
design frameworks, continuously improving based on customer interaction data,
aiming for usability and usefulness. Practices focus on using best practices and
avoiding complex, untested solutions, with some mature startups innovating in-
house to support product evolution.

� Use cases: In addressing architecture and design challenges, task-oriented
GenAI can help the startup select suitable frameworks and generate architecture
diagrams to enhance the development process and stakeholder comprehension.
Descriptive image generation enables the creation of user interface mockups
directly from textual descriptions, streamlining the design phase. For techni-
cal debt mitigation, GenAI for code completion and automated test generation
accelerates development and enhances quality and maintainability.

� Project Management within software startups involves strategically plan-
ning and controlling resources to navigate from inception to maturity [4]. It is
crucial for optimizing resource usage and achieving set milestones. Challenges
include the lack of clear, measurable goals in the early stages and evolving needs
for more sophisticated metrics for progress assessment. Resource constraints
and the necessity for flexible adjustment to market demands further compli-
cate project management. Practices evolve from an informal approach, often
based on intuition, to more structured methods using planning and resource
management tools as startups mature.

� Use cases: In project management, GenAI technologies may play a role in
enhancing strategic planning and resource control. Task-oriented chatbots sup-
port collecting and analyzing metrics, facilitating quick planning adjustments,

Exploring the Potential of Generative AI 9

and aiding in project management activities such as meetings and budgeting.
Moreover, using GenAI can schedule resources, prioritize tasks, and predict
future needs based on data analysis. These potential uses contribute to startups’
transition from intuition-based methods to structured, data-informed strategies,
streamlining the process from inception to maturity and addressing challenges
and the need for flexible market adjustment.

5 Discussion

Our results show that GenAI can support software startups in various use cases
during product development across life-cycle and engineering areas [4]. Most
of GenAI’s use cases are carried out through interactive conversational chat-
bots, which allow interaction using various forms of data [6]. Popular use cases
include multi-lingual translation, code and test generation, access to expert and
knowledge systems, and image generation. These capabilities enable more effi-
cient development, better alignment with customer needs, and continuous pro-
cess improvement.

However, not all GenAI use cases are equally relevant to software startups.
For example, no suitable use cases for features like generating 3D talking charac-
ters, complex 3D models, and music generation. Moreover, there is no clear con-
nection between GenAI features and the following product development goals:
balancing customer value with time-to-market considerations, internal market
potential value, financial value, and revenue generation. We believe these com-
plex goals demand human judgment and domain expertise beyond the current
capabilities of GenAI.

We identified various GenAI use cases broadly supporting general work-
related tasks. These include capabilities such as summarizing information, gen-
erating content, and facilitating communication. We identified tailored use cases
related to software tasks that directly contribute to product development, such
as generating test cases and providing architectural recommendations. These
applications demonstrate how GenAI can enhance efficiency and decision-making
within software development processes. However, the overall impact and value
of GenAI tools for software startups remain to be thoroughly evaluated. Future
studies are necessary to determine how these technologies can best be integrated
into the startup ecosystem and to what extent they can replace or augment exist-
ing processes.

6 Conclusion

Software startups have unique characteristics, goals, challenges, and engineering
practices. On the other hand, the recent advancement of GenAI brings oppor-
tunities to help the software industry and beyond. This study aimed to identify
potential use cases for GenAI technologies in software startups and explore how
these technologies can support innovation and overcome development challenges
to improve the product development process [9].

10 M. Simaremare et al.

Our mapping shows use cases where GenAI can help software startup during
product development spread in six engineering areas. However, several product
development goals are not directly addressed using GenAI.

Future research directions will focus on validating our findings through empir-
ical studies. We also aim to develop practical guidelines for startups on effectively
integrating GenAI into their product development processes. This will involve
simulating scenarios, experimenting with ideas, validating assumptions, etc.

Acknowledgements. This work has been supported by ELLIIT, the Swedish Strate-
gic Research Area in IT and Mobile Communications.

References

1. Banh, L., Strobel, G.: Generative artificial intelligence. Electron. Markets 33(1)
(2023)

2. Cao, Y., et al.: A comprehensive survey of AI-generated content (AIGC): a history
of generative AI from GAN to chatGPT. arXiv preprint arXiv:2303.04226 (2023)

3. Gozalo-Brizuela, R., Garrido-Merchán, E.C.: A survey of generative AI applica-
tions. arXiv preprint arXiv:2306.02781 (2023)

4. Klotins, E., et al.: A progression model of software engineering goals, challenges,
and practices in start-ups. IEEE Trans. Software Eng. 47(3), 498–521 (2019)

5. Nguyen-Duc, A., Kemell, K.K., Abrahamsson, P.: The entrepreneurial logic of
startup software development: a study of 40 software startups. Empir. Softw. Eng.
26, 1–55 (2021)

6. Ozkaya, I.: The next frontier in software development: Ai-augmented software
development processes. IEEE Softw. 40(4), 4–9 (2023)

7. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: a systematic mapping study. Inf.
Softw. Technol. 56(10), 1200–1218 (2014)

8. Ries, E.: Lean Startup: How Today’s Entrepreneurs Use Continous Innovation to
Create Radically Successful Businesses. Crown Business, New York (2011)

9. Tripathi, N., Oivo, M., Liukkunen, K., Markkula, J.: Startup ecosystem effect on
minimum viable product development in software startups. Inf. Softw. Technol.
114, 77–91 (2019)

10. Unterkalmsteiner, M., et al.: Software startups-A research agenda. E-Informatica
Softw. Eng. J. 10(1), 89–123 (2016)

11. Zhang, C., et al.: A complete survey on generative AI (AIGC): Is chatGPT from
GPT-4 to GPT-5 all you need? arXiv preprint arXiv:2303.11717 (2023)

12. Zheng, Z., et al.: Towards an understanding of large language models in software
engineering tasks. arXiv preprint arXiv:2308.11396 (2023)

http://arxiv.org/abs/2303.04226
http://arxiv.org/abs/2306.02781
http://arxiv.org/abs/2303.11717
http://arxiv.org/abs/2308.11396

Exploring the Potential of Generative AI 11

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

AI for Agile Software Engineering

Autonomous Agents in Software
Development: A Vision Paper

Zeeshan Rasheed1, Muhammad Waseem2(B), Malik Abdul Sami3,
Kai-Kristian Kemell4, Aakash Ahmad5, Anh Nguyen Duc1,2,3,4,5,

Kari Systä1,2,3,4,5, and Pekka Abrahamsson1,2,3,4,5

1 Tampere University, Tampere, Finland
{zeeshan.rasheed,kari.systa,pekka.abrahamsson}@tuni.fi,

Anh.Nguyen.duc@usn.no
2 University of Jyväskylä, Jyväskylä, Finland

muhammad.m.waseem@jyu.fi
3 University of Helsinki, Helsinki, Finland

4 Lancaster University Leipzig, Leipzig, Germany
kai-kristian.kemell@helsinki.fi

5 University of South Eastern Norway, Notodden, Norway

Abstract. Large Language Models (LLM) are reshaping the field of
Software Engineering (SE). They enable innovative methods for execut-
ing many SE tasks, including automation of entire process of Software
Development Life Cycle (SDLC). However, only a limited number of
existing works have thoroughly explored the potential of LLM based AI
agents to automate the entire lifecycle in SE. In this paper, we demon-
strate the success of our initial efforts in automating the entire lifecy-
cle autonomously based on given software specification as input, which
has shown remarkable efficiency and significantly reduced development
time. Our preliminary results suggest that the careful implementation
of AI agents can enhance the development lifecycle. We aim to stream-
line the SDLC by integrating all phases into an AI-driven chat interface,
enhancing efficiency and transparency. Furthermore, we seek to enhance
collaboration, creating an environment where stakeholders from various
backgrounds can contribute, review, and refine ideas and requirements
in real-time. This forward-looking direction guarantees to redefine the
paradigms of SE and also make software creation more inclusive, collab-
orative, and efficient.

Keywords: OpenAI · AutoGPT · Artificial Intelligence · Natural
Language Processing · Generative AI · Software Engineering · Large
Language Model

M. Waseem, K.-K. Kemell, A. Ahmad, A. N. Duc, K. Systä and P. Abrahamsson—
Contributing authors.

c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 15–23, 2025.
https://doi.org/10.1007/978-3-031-72781-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-72781-8_2

16 Z. Rasheed et al.

1 Introduction

AI has reshaped our interaction with machines and impacted many industries.
Its most promising use is in Natural Language Processing (NLP), which helps
computers understand and interact with human language [1]. Recent advance-
ments in NLP have led to the development of Large Language Models (LLMs)
such as the GPT series [2,3]. The interaction between LLMs and the domain
of Software Engineering (SE) has led to significant advancements and intrigu-
ing possibilities [4]. LLMs have shown their potential to streamline multiple
facets of the Software Development Life Cycle (SDLC) [5]. These advanced lan-
guage models have emerged as a formidable force, utilizing the power of AI to
autonomously generate code, offer insights, and assist developers across vari-
ous stages of the SDLC. However, challenges such as ensuring code correctness,
maintenance, and bridging the gap between NLP and programming semantics
remain critical considerations in this symbiotic relationship.

In this paper, we demonstrate the success of our initial work in automating
the entire SDLC by utilizing AI agents based on LLMs. We utilized 12 AI agents
collaboratively functioning to autonomously execute all stages of the SDLC,
including project planning, requirements engineering, system design, develop-
ment, testing, deployment, among others. To assess the capabilities of our pro-
posed model, we implemented software specification of varying sizes as inputs.
Initial results suggest that our model reduces the development time, allowing
for project completion within five minutes, and also enhances accuracy by deliv-
ering precise outcomes. We aim to redefine the frameworks of SE, making soft-
ware creation a more inclusive, collaborative, and efficient process. With this
goal in mind, we plan to extend this work to revolutionize software development
through AI-driven chat interfaces, transforming the entire creation lifecycle by
integrating all phases of software development into an AI-driven chat interface.
Our proposed model will also facilitate a collaborative environment where mul-
tiple stakeholders can contribute, review, and refine ideas and requirements in
real-time. The AI chat-based environment will include a feedback loop where
the system learns from each interaction, refining its support and providing code
recommendations over time. Our contribution can be summarized as follow:

• Demonstrate successful automation of the whole process of SDLC with LLM-
based AI agents, enhancing efficiency and reducing time.

• Our future goal is to proposed an AI-driven chat interface integrating all
development phases to promote real-time stakeholder collaboration and con-
tinuous AI learning for improved code recommendations.

• We also aimed to redefine the frameworks of SE to make the process of soft-
ware creation more inclusive, collaborative, and efficient.

2 Background

2.1 Generative AI

Generative AI refers to a category of AI models and algorithms that are designed
to generate new content that is often similar to content created by humans [6].

Autonomous Agents in Software Development 17

This type of AI has experienced notable progress in recent times [7]. Nowadays,
generative AI has been utilized in various fields, such as NLP, computer vision,
and image and video generation [8]. In NLP, generative AI techniques are com-
monly used for various tasks, including text generation, machine translation, dia-
log systems, and code generation. LLM is a specific type of generative AI model
that excels at generating human-like text due to its architecture, pre-training,
and fine-tuning processes [2]. The foundation of the LLM can be traced back
to the introduction of the transformer architecture proposed by Vaswani et al..
[9]. This architectural innovation transformed the field of NLP by introducing
the self-attention mechanism, enabling the model to capture contextual connec-
tions among words, irrespective of their position within a sequence. In 2018,
OpenAI introduced the GPT-1 model to demonstrate the potential of LLMs for
text generation tasks [2]. Several researchers and OpenAI have made significant
contributions to improving the performance of GPT models by using a variety
of techniques and approaches [2,3].

2.2 Large Language Models in SE

LLMs have shown promise in various SE applications [10,11]. LLMs generation
capabilities offer valuable assistance and enhancements to SE processes [12–15].
By utilizing the remarkable natural language generation capabilities of GPT
models, various SE tasks can now be automated and streamlined, including
code generation, error detection, documentation creation, and beyond. Through
GPT-powered code completion and generation, developers can swiftly produce
high-quality code and even entire programs, significantly expediting the SDLC
[16–19]. Several studies (e.g., [20–23]) has explored LLMs in SE. However, much
of this research has been limited to case studies, with a focus on user perceptions
in coding and writing. To fill this gap, our goal is to leverage multiple LLM based
AI agents for autonomy generate the whole process of SDLC based on developer-
provided software specification.

3 Research Methodology

In this study, we present an innovative approach to automating the entire SDLC
by integrating multiple AI agents inspired by LLMs. This section outlines the
methodology employed to design and implement our model. We have formulated
the research question (RQ):

RQ. How do multi-AI agents collaborate with each other to automate the
entire lifecycle of software development?

The main objective of RQ is to determine how multiple AI agents work
together to automate the entire lifecycle of software development. RQ primarily
aims to determine the dynamics of how these agents interact, coordinate, and
function collectively to automate tasks from requirement engineering to deploy-
ment.

18 Z. Rasheed et al.

3.1 AI Agent Approach for Automating the SDLC (RQ)

As shown in Fig. 1, we utilized 12 LLM-based AI agents that collaborate to
achieve the final result. Each agent in the system is a specialized instance of an
LLM, trained to handle different aspects of SDLC. Each agent specializing in
a distinct aspect of the software development process, collectively contribute to
improving efficiency and enhancing the SDLC. Below, we discuss in detail that
how AI agents collaborate to autonomously carry out the SDLC.

Fig. 1. A schematic representation of an automated software development process using
autonomous agents

Agent-01 is crucial for project planning, starting with gathering software
specifications and defining the project’s scope, goals, and execution plan. Its
main role includes outlining steps to achieve these objectives. Agent-2 comple-
ments this by evaluating the quality and feasibility of Agent-01’s plans against
the organization’s goals, ensuring the project’s plan is comprehensive, feasible,
and aligned with overarching objectives, serving as a critical phase in the project
lifecycle. Agent 3 moves to requirement engineering as the next phase, showing
skill in identifying and understanding high-level requirements. This phase guar-
antees that all future stages of development are solidly based on a detailed under-
standing of the project’s goals and constraints. Through this process, Agent 3
establishes a clear plan, which acts as the foundation for all upcoming project
development efforts, closely matching the project’s specified goals and the lim-
its within which it must work. Collaborating with Agent-3, Agent-4’s primary
role is to assess the quality and precision of the project requirements. Early

Autonomous Agents in Software Development 19

results show significant improvements in the quality and consistency of require-
ments documentation, highlighting Agent-4’s essential contribution to defining
clear requirements. This leads to smoother development phases and enhances
the project’s overall success and efficiency. Agent-5 is pivotal in converting high-
level requirements into detailed system designs, accelerating the design phase
and ensuring compliance with project specifications, laying a foundation for
development with clear technical directions. Agent-6 enhances this by analyz-
ing design quality and identifying system architecture flaws early, boosting effi-
ciency by saving time and resources. Agent-07 streamlines software testing and
defect detection through automation, facilitating continuous testing, speeding up
development, and improving quality with less manual effort. Working in tandem,
Agent-8 assesses the effectiveness of these automated tests, leading to better bug
detection and resolution, underlining the importance of comprehensive testing in
achieving high-quality software and efficient resource utilization. Agent-9 plays
a important role in translating high-level design specifications into executable
code. Early analysis of performance metrics suggests a significant reduction in
development time. This efficiency accelerates the software development process
and also ensures that the final product meets the expected performance and
reliability criteria, showcasing the agent’s pivotal role in streamlining software
creation. Agent-10 is tasked with code quality analysis, focusing on ensuring
that the generated code follows established coding standards and best practices.
Initial findings highlight its success in promoting the development of clean, main-
tainable code. This reinforces the agent’s role in enhancing software maintain-
ability and reliability through rigorous quality assessments. Agent-11 is instru-
mental in managing the deployment phase of software projects, focusing on the
systematic coordination and execution of steps essential for launching the soft-
ware in a production environment or to its end-users. This phase is crucial for
the seamless transition of software from development to actual use, ensuring that
all components are correctly configured, integrated, and ready for operation in
their intended settings. Agent-12’s responsibility is to carefully review, assess,
and refine the deployment plan formulated by Agent-11, aiming to guarantee a
seamless and robust deployment process. This involves ensuring that the plan
follows high standards of quality, anticipating potential challenges, and incor-
porating measures for a smooth transition to the production environment or
end-user delivery.

4 Preliminary Empirical Results

In this section, we present preliminary results from our developed novel LLM
based model. To evaluate capability of our model, we prompted 10 projects and
as the outcome of the autonomous development process, the agents produced a
requirements engineering specification, a software design plan, commented soft-
ware code, a test and deployment plans. To offer a clear understanding of the
model’s outcome, we have provided Table 1 to show the results generated by our
proposed model. However, below we only explain the outcomes of three projects
due to page limitations.

20 Z. Rasheed et al.

Initially, the agents were prompted to “develop a snake game with GUI”. As
output the agents perform the whole SDLC process. The amount of documen-
tation including review rounds is 6216 words. This is about 13 pages of single-
spaced text. Requirements specification agent produced 7 Functional Require-
ments (FR), 7 Non-Functional Requirements (NFR) and 4 constraints. 11 were
fully met, 2 partially, 4 not verified and 4 were not met. There was no restart-
option, the code was not commented according to the standard PEP 257 and
object-oriented programming principles were not implemented. The code did not
include test-cases. The actual generated software code was 115 Lines of Code
(LOC) and the whole project took less than 4 min to complete. Game required
human debugging to make it run.

The second experiment was “Build a chat based application”. The amount
of documentation including review rounds is 7685 words. Requirements specifi-
cation agent produced 9 FR and 9 NFR and 0 constraints. 14 were fully met
and 4 were not met. The actual generated software code was 175 lines and the
whole project took less than 7 min to complete.

Preliminary results highlight our multi-agent framework’s potential to auto-
mate and optimize the software development process. Key focuses include scaling
autonomous capabilities, defining limits, and extending this work to integrate
all phases into an AI-driven chat interface for improved efficiency and trans-
parency. Additionally, we aim to enhance collaboration by enabling stakeholders
from diverse backgrounds to contribute and refine ideas in real time.

5 Future Work

Our future work aims to innovate the software development through AI-driven
chat interfaces. This initiative aims to transform the SDLC, making it more
inclusive, efficient, and collaborative through the innovative application. Our
future goal is to utilize advanced AI functionalities to support deeper multi-user
collaboration, enabling the AI to understand and adapt to the context of discus-
sions. The result of this effort will be continuous integration of these AI capa-
bilities with project management tools, transforming discussions into actionable
items without manual intervention. For instance, when a team discusses a new
feature, the AI would automatically prioritize this in the project’s backlog, gen-
erate relevant user stories, and even suggest test cases based on the discussion’s
content. Moreover, to ensure that the AI remains effective over time and adapts
to the evolving landscape of software development, we plan to incorporate a con-
tinuous learning mechanism. This system will refine the AI’s recommendations
and decision-making processes based on feedback and enable it to learn from the
collective intelligence of its user base.

Accessibility will also be a key focus, with efforts aimed at making the col-
laborative workspace inclusive for global teams through real-time transcription
and translation capabilities. This will break down language barriers and faster
a more diverse and inclusive environment for software development. Finally, the
implementation phase and iterative refinement of the AI system based on user

Autonomous Agents in Software Development 21

Table 1. Result produced by LLM based AI agent model

S.No Input Words FR NFR Const. LOC Mins Output

01 Develop a snake
game with GUI

6216 7 7 4 115 4 Snake game with
restart button

02 Build a chat
based
application

7685 9 9 0 175 7 Messaging chat
based app

03 Create a
tic-tac-toe game

5366 9 6 3 94 4 Tic tac toe game
with GUI

04 Build a real-time
weather app

6189 8 6 2 119 5 Real-time weater
forecasting app

05 Create a fitness
tracker app

4890 6 5 2 107 4 Real-time
tracker app

06 Develop a virtual
reality tour app

7112 7 9 5 189 9 Developed
virtual app

07 Create a blog
platform with
user
authentication

6788 7 9 3 149 6 Blog platform

08 Develop a
personal finance
tracker app

5312 6 3 2 134 5 Finanace app

09 Develop a short
e-commerce
website

5982 8 9 4 151 8 Small
E-commerce
Website

10 Create a recipe
finder app

4112 5 4 2 133 4 Recipe search
app

feedback and performance metrics will be critical. This approach will ensure
that the system meets the initial goals and evolves in response to real-world use
and feedback, Therefore Continuously enhancing the efficiency and innovation
within software development processes.

6 Conclusions

This paper proposes to explore how LLM based AI agents can autonomously
perform various SE tasks. Through initial experiments, we have shown some
interesting results which may have significant consequences. We demonstrate
that our method significantly reduces development time and advances code gen-
eration methodologies, reinforcing the potential of AI-driven practices in the SE
domain. With this goal in mind, we aim to extend our work to study how far
we can scale these methods and where do really need human developers to be
involved in. Experimenting using our proposed framework, we can gain many

22 Z. Rasheed et al.

insights on how AI technology can fundamentally change how software is devel-
oped. The various SE roles and activities are designed based on human nature,
capabilities and limitations in knowledge, skills and communication. AI agents
may not have these limits. Then a follow up question to ask is, do we still need
the same activities and life cycles as we did in the past 50 to 60 years of software
engineering?

Acknowledgment. We express our sincere gratitude to Business Finland for their
generous support and funding of our project. Their commitment to fostering innovation
and supporting research initiatives has been instrumental in the success of our work.

References

1. Chowdhary, K., Chowdhary, K.: Natural language processing. Fundam. Artif.
Intell. 603–649 (2020)

2. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving lan-
guage understanding by generative pre-training (2018)

3. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI
blog 1(8), 9 (2019)

4. Rasheed, Z., Waseem, M., Systä, K., Abrahamsson, P.: Large language model eval-
uation via multi AI agents: preliminary results. In: ICLR 2024 Workshop on Large
Language Model (LLM) Agents (2024)

5. Khan, J.Y., Uddin, G.: Automatic code documentation generation using GPT-3.
In: Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, pp. 1–6 (2022)

6. Baidoo-Anu, D., Owusu Ansah, L.: Education in the era of generative artificial
intelligence (AI): understanding the potential benefits of chatGPT in promoting
teaching and learning. Available at SSRN 4337484 (2023)

7. Cao, Y., et al.: A comprehensive survey of AI-generated content (AIGC): a history
of generative AI from GAN to chatGPT. arXiv preprint arXiv:2303.04226 (2023)

8. Hacker, P., Engel, A., Mauer, M.: Regulating chatGPT and other large generative
AI models. In: Proceedings of the 2023 ACM Conference on Fairness, Accountabil-
ity, and Transparency, pp. 1112–1123 (2023)

9. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

10. Feng, Y., Vanam, S., Cherukupally, M., Zheng, W., Qiu, M., Chen, H.: Investigat-
ing code generation performance of chat-GPT with crowdsourcing social data. In:
Proceedings of the 47th IEEE Computer Software and Applications Conference,
pp. 1–10 (2023)

11. Waseem, M., Das, T., Ahmad, A., Fehmideh, M., Liang, P., Mikkonen, T.: Using
chatGPT throughout the software development life cycle by novice developers.
arXiv preprint arXiv:2310.13648 (2023)

12. Thiergart, J., Huber, S., Übellacker, T.: Understanding emails and drafting
responses–an approach using GPT-3. arXiv preprint arXiv:2102.03062 (2021)

13. Sami, A.M., et al.: System for systematic literature review using multiple AI agents:
concept and an empirical evaluation. arXiv preprint arXiv:2403.08399 (2024)

14. Rasheed, Z., et al.: Can large language models serve as data analysts? A multi-agent
assisted approach for qualitative data analysis. arXiv preprint arXiv:2402.01386
(2024)

http://arxiv.org/abs/2303.04226
http://arxiv.org/abs/2310.13648
http://arxiv.org/abs/2102.03062
http://arxiv.org/abs/2403.08399
http://arxiv.org/abs/2402.01386

Autonomous Agents in Software Development 23

15. Waseem, M., et al.: Artificial intelligence procurement assistant: enhancing bid
evaluation. In: International Conference on Software Business, pp. 108–114.
Springer, Cham (2023)

16. Dong, Y., Jiang, X., Jin, Z., Li, G.: Self-collaboration code generation via chatGPT.
arXiv preprint arXiv:2304.07590 (2023)

17. Rasheed, Z., et al.: Autonomous agents in software development: a vision paper.
arXiv preprint arXiv:2311.18440 (2023)

18. Waseem, M., Ahmad, A., Liang, P., Fehmideh, M., Abrahamsson, P., Mikkonen,
T.: Conducting systematic literature reviews with chatGPT (2023)

19. Rasheed, Z., Waseem, M., Saari, M., Systä, K., Abrahamsson, P.: CodePori: large
scale model for autonomous software development by using multi-agents. arXiv
preprint arXiv:2402.01411 (2024)

20. Ahmad, A., Waseem, M., Liang, P., Fahmideh, M., Aktar, M.S., Mikkonen, T.:
Towards human-bot collaborative software architecting with chatGPT. In: Pro-
ceedings of the 27th International Conference on Evaluation and Assessment in
Software Engineering, pp. 279–285 (2023)

21. Barke, S., James, M.B., Polikarpova, N.: Grounded copilot: How programmers
interact with code-generating models. In: Proceedings of the ACM on Programming
Languages, vol. 7, no. OOPSLA1, pp. 85–111 (2023)

22. Vaithilingam, P., Zhang, T., Glassman, E.L.: Expectation vs. experience: evaluat-
ing the usability of code generation tools powered by large language models. In:
CHI Conference on Human Factors in Computing Systems Extended Abstracts,
pp. 1–7 (2022)

23. Ma, W., et al.: The scope of chatGPT in software engineering: a thorough investi-
gation. arXiv preprint arXiv:2305.12138 (2023)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2304.07590
http://arxiv.org/abs/2311.18440
http://arxiv.org/abs/2402.01411
http://arxiv.org/abs/2305.12138
http://creativecommons.org/licenses/by/4.0/

Generative AI for Test Driven
Development: Preliminary Results

Moritz Mock(B) , Jorge Melegati , and Barbara Russo

Free University of Bozen-Bolzano, 39100 Bolzano, Italy
{momock,jorge.melegati,brusso}@unibz.it

Abstract. Test Driven Development (TDD) is one of the major prac-
tices of Extreme Programming for which incremental testing and refac-
toring trigger the code development. TDD has limited adoption in the
industry, as it requires more code to be developed and experienced devel-
opers. Generative AI (GenAI) may reduce the extra effort imposed by
TDD. In this work, we introduce an approach to automatize TDD by
embracing GenAI either in a collaborative interaction pattern in which
developers create tests and supervise the AI generation during each itera-
tion or a fully-automated pattern in which developers only supervise the
AI generation at the end of the iterations. We run an exploratory exper-
iment with ChatGPT in which the interaction patterns are compared
with the non-AI TDD regarding test and code quality and development
speed. Overall, we found that, for our experiment and settings, GenAI
can be efficiently used in TDD, but it requires supervision of the qual-
ity of the produced code. In some cases, it can even mislead non-expert
developers and propose solutions just for the sake of the query.

Keywords: AI4SE · Test Driven Development · Generative AI

1 Introduction

Test-driven development (TDD) is one of the major practices in Extreme Pro-
gramming (XP) [1]. Nevertheless, its effectiveness is still controversial [7,9]. The
major strength of TDD lies in its ability to deliver high-quality code through the
granularity and uniformity of development [6]. To be effective, TDD developers
must have a strong command of the practice and experience in development [3].
To facilitate its adoption, automation can be an option, and generative artificial
intelligence (GenAI) tools, such as GitHub’s Copilot1 and OpenAI’s ChatGPT2,
can be helpful [5]. In particular, recent literature has shown promising results in
software testing. For instance, Piya and Sullivan [13] proposed an approach in
which a test suite is fed to ChatGPT, and prompts are generated accordingly
upon test failures. Liang et al. [11] have further shown that the use of GenAI

1 https://copilot.microsoft.com.
2 https://chat.openai.com.

© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 24–32, 2025.
https://doi.org/10.1007/978-3-031-72781-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_3&domain=pdf
http://orcid.org/0009-0009-3156-6211
http://orcid.org/0000-0003-1303-4173
http://orcid.org/0000-0003-3737-9264
https://copilot.microsoft.com
https://chat.openai.com
https://doi.org/10.1007/978-3-031-72781-8_3

Generative AI for Test Driven Development: Preliminary Results 25

can speed up testing. However, the quality of the generated tests and code and
the role of the developers are still under discussion [11].

In this work, we explore the use of GenAI in automating TDD and reflect on
the role of the developer. We then perform an exploratory experiment with five
developers to assess the effectiveness of our method and compare it with non-AI
TDD.

2 Methodology

Our goal is to automatize the TDD process with GenAI, exploring which minimal
knowledge is needed in each iteration and which kind of role AIs and developers
may have. To this aim, we developed a threefold methodology: first, we defined
a workflow to automate the TDD process with GenAI, then we identified inter-
action patterns between developers and GenAIs supporting different types of
automation activities of the workflow. Finally, we implemented a tool automa-
tizing the workflow according to the interaction patterns and then performed an
experiment to compare them. To design the workflow, we first identified the type
of information that is handled in an iteration of a TDD process. The information
includes the context, the feature to be developed, the test and production code,
and the execution log that was eventually output in the previous iteration. To
obtain coherent answers, we queried ChatGPT a few times with different types
of prompts. The major challenge here is to obtain an incremental output. We
do not want ChatGPT to generate the code for the feature in one shot as we
are not implementing Test First [1]. Thus, we first automated the query process
by implementing a Python script that leverages OpenAI’s API to use ChatGPT
as GenAI. We employed the model gpt-3.5-turbo-16k, which can have as context
up to 16k tokens. We have also explored different ways of querying the Chat-
GPT: (i) not mentioning the testing task at all and retrieving each message as a
stand-alone, (ii) including the output of the previous query as input for the next
query, or (iii) querying with all data in (i) and (ii). Based on our observation,
scenario (ii), in which we send the result of the last output, is the best one. In
scenario (i), ChatGPT struggled to grasp the task, and in scenario (iii), it got
confused. In the first attempts to query ChatGPT, we also observed that it had
the tendency to produce the complete solution instead of performing incremen-
tal steps. To prevent from doing so, we added the sentence “stub and drivers to
develop the first barely minimal test and production code”. From the second iter-
ation onwards, the additional phrase “Keep the existing tests” at the beginning
needed to be added so that the existing tests were not lost. In the end, we were
able to formulate the following prompts:

– First iteration: Use the Assertion First pattern in TDD and stubs and drivers
to develop the first barely minimal test and production code for the feature
〈feature description〉 with input 〈names〉 and 〈values〉 and expected output
〈values〉

– Intermediate iteration: Keep the existing tests and run the next iteration of
TDD to develop the barely minimal test and production code

26 M. Mock et al.

– Final iteration: Refactor the code.

A second step in our methodology consists of defining the role of the develop-
ers in the TDD process automated with GenAIs. To this aim, we defined three
collaboration patterns: collaborative, fully-automated, and non-automated. In
the collaborative pattern, we introduce an interaction between the human devel-
oper and the AI, in which the developer is in charge of writing the test code
and modifying any test or production code generated by the AI before passing it
again to the AI. Then, the AI generates the production code. The fully-automated
pattern automates both steps. The developer only verifies the quality of the pro-
duced code at refactoring. The non-automated pattern does not involve any AI.
Finally, we evaluated and compared the patterns with five practitioners who had
experience with Python and TDD: three used the collaborative pattern, and two
used the non-automated one. All have received the same initial exercise:

The goal of this experiment is to develop in Python the following feature:
Develop a class TextFormatter that takes arbitrary words and horizontally center
them into a line. The class TextFormatter shall have three functions. The first is
called setLineWidth and sets the length of the line. The second function receives
a single word and returns the word in the center of the line. The third function
receives two words and centers the two words in the line. To develop it you will
use Test Driven Development and, in particular, assertion first.

All participants were allowed to consult any source they liked. We recorded
the screen while the participants performed their exercise. At the end of the
task, they filled out a brief questionnaire. We compared the results in terms of
the number of test functions, number of assertions, test LOC, code LOC, and
time to complete the task. We also inspected their test, code, and logs (in case of
automation) and qualitatively evaluated the quality of what has been produced.
We further collected feedback from the participants. The code produced in the
experiment can be found at https://github.com/moritzmock/AI4TDD.

3 Results

RQ1. Can generative AI be used to automate TDD? To answer this
question, we designed two workflows, one implementing the collaborative pat-
tern and the other fully-automated. We further implemented Python scripts that
actuate them. Figure 1 illustrates the workflow for the fully-automated pattern:
the activities with the AI symbol are performed by the AI model, and the exe-
cution of each activity in the workflow is automated by our scripts. The note
boxes show the input needed for the next action: the prompts as described in
Sect. 2 and the type of data to pass to the next activity. From the response of
the AI, the production code is automatically integrated, and the test suite is
launched. If the AI is not able to write code that fulfils the test case(s), the
prompt is resent up to five times. In the collaborative pattern, the workflow is
the same but different in its execution. Firstly, activities 1○ and 2○ are executed
by the developer. Secondly, the developer can modify the input passed to the AI

https://github.com/moritzmock/AI4TDD

Generative AI for Test Driven Development: Preliminary Results 27

in activity 3○. The red text in the note boxes indicates the part of the output
of the previous activity that the developer can modify. The rest is the same as
in the fully-automated pattern.

Fig. 1. Fully-automated pattern

In our experiment, we executed the two interaction patterns with five devel-
opers, whereas the authors launched the fully-automated pattern. In all cases,
the experiment’s task was successfully completed. The final test and produc-
tion code, the process log, the screen recording, and a short feedback from the
participants were collected.

RQ2. What kind of interaction model between generative AI and
human developers is more promising? For our exploratory experiment, we
selected five developers located in two different countries with some knowledge
of the programming language and experience with TDD, as shown in Table 1.

Table 1. Demographics of the developers

TDD Experience Python Experience Role Interaction Scenario

P1 >3 years <1 year Software developer collaborative

P2 1–3 years >3 years Data scientist collaborative

P3 1–3 years >3 years Software developer non-automated

P4 <1 year <1 years Software engineering student collaborative

P5 1–3 years <1 years Software developer non-automated

Three followed the collaborative pattern, and two followed the non-
automated one. We compared the results of the experiment in terms of the
metrics defined in Sect. 2. Table 2 reports the results for the five participants
P1–P5 and the fully-automated pattern, F1. For F1, the authors launched the
task a few times. The first times were used to learn the type of prompts needed to

28 M. Mock et al.

automate TDD iteratively, and the last one was executed to compare the results
of the fully-automated with the ones of the other patterns. Table 2 reports the
value for the last run. It is worth noticing that the AI acts as a tester and devel-
oper, so we are able to log the activities of both. In some iterations, the developer
implemented the code with no interaction with a tester, as may happen in real
cases.

Table 2. Evaluation of the results for the participants P1, P2, and P3 and the fully-
automated one F1. # of LOC does not contain blank lines.

test functions # assertions test LOC code LOC Time to complete # iterations

P1 7 7 34 25 30min 32

P2 3 9 19 19 30min 49

P3 11 17 69 31 35min NA

P4 4 4 16 12 40min 44

P5 3 3 16 14 40min NA

F1 1 3 14 17 12min 8

Test Coverage and Code Inspection. All participants managed to complete
the tasks within the time limit of 40 min. They created different sets of tests and
considered different edge cases. P1 did not develop tests for all the valid inputs
but implemented the edge cases where words are larger than the line width or
empty and a new functionality that cuts the word if its length is larger than the
line. P2 did not create a class but three individual functions instead. In this case,
our script was not able to parse the messages received from ChatGPT and extract
the generated code. Thus, P2 had to struggle a bit until he was able to understand
the automation. The final code was clean, with only assertions per test function,
but it contained one redundant assertion per function and no edge cases. P3
implemented the largest number of test cases, including all valid and invalid cases
and specific exceptions: InvalidLineWidthException, CenteringNotPossibleError,
and SpreadNotPossibleError. The final code is not completely clean, though, as
it includes repeated assertions for one method and more than one test method
for the same function to test. P4 implemented all test cases for all functions,
but no edge cases and the final code is not correct (see Log inspection, next
paragraph). P5 worked with no assistance from the AI and implemented only
one test case per function, with valid input and no edge cases. F1 produced one
test function with three assertions, each testing a valid input. One valid case
was missing and no edge case or invalid value was tested. F1 was the fastest to
complete the task.

Log and Screen Inspection. For all developers who collaborated with the AI,
we logged the interactions and watched the screens’ recordings. The last column
of Table 2 reports the number of interactions. At each interaction, we logged
the test and production code, the execution trace, and the changes made by
the developer to fix the AI output and make the test pass. All the changes have

Generative AI for Test Driven Development: Preliminary Results 29

finally produced a correct code except in the case of P4. ChatGPT recommended
these changes at the final interaction:

Changes made to the code:

1. In the `test_TwoWordSpreadEven ` test , the `TextFormatter `
variable was mistakenly assigned instead of `textFormatter `.

2. In the `test_TwoWordSpreadOdd ` test , the `TextFormatter `
variable was mistakenly assigned instead of `textFormatter `.

3. In the `test_WordCenterOdd ` test , the expected result was

corrected by removing the extra spaces.

However, the proposed changes do not fix the bug but simply avoid the execution
of the code revealing the bug. For F1, no test failed, suggesting that the AI was
more concerned with not failing the test than with developing a high-quality
solution.

Analysing Feedback. We finally asked the participants about their experience
with AI. The answers are reported in Table 3. The positive feeling described by
P1 is related to the compatibility of the tool with the way P1 works. This feel-
ing of comfort is known to be a key determinant for acceptance and adoption
of new technologies and methodologies in software engineering [14]. This aspect
will also be important for the adoption of AI-based tools and, as such, should be
considered in the development of this new generation of tools. P2, who created a
set of functions rather than a class, got frustrated when the GenAI tool did not
work as expected. Apparently, the same frustration has also been observed in
students in a study on using GenAI tools for teaching software engineering [4].

Table 3. Feedback

Perceived
difficulty

Feedback

P1 Easy To be honest, the “presence” of the AI
made me a little unsure in the beginning,
because I was concerned about its behavior
and if I should adapt to fit its need. Once I
realized the AI would adapt to my needs (in
particular my dev-flow), I think the
experience went way more smoothly

P2 Easy The tool did not work as expected. It
seemed kinda buggy, as it did not add any
code to the existing file. I was expecting
more from an AI tool as normally ChatGPT
is able to complete such trivial tasks

P3 Easy It was fun, the requirements are very broad,
so maybe the assumptions can vary a bit
from person to person

P4 Fine NA

P5 Hard NA

30 M. Mock et al.

In this case, though, it was not the GenAI that did not process the query as
expected but rather our script, which was not designed to extract functions from
the messages of ChatGPT. Of course, the developer could not distinguish the
difference. Clearly, P2 did not read the task’s description, which required devel-
oping a class, but this gave us the hint to refactor our tool so that it is now also
capable of extracting functions from ChatGPT messages. Also P3 had a positive
experience in performing the task autonomously and even suggested the authors
some refinement of the experiment. Being expert in both TDD and Python the
task was not hard, and the resulting code was the most creative. No feedback
was obtained from P4 and P5. Overall, we found that ChatGPT can meet the
expectations of the developers in assisting in their job, but without replacing
developers in terms of creativity and quality of the code. To obtain satisfactory
collaboration with developers, AI should be well integrated into the automation
of development activities. The solutions generated may be incomplete or buggy,
and non-expert developers may not notice this and trust the AI straight away.

4 Related Work

In this section, we present research works on GenAI for software testing and
TDD, in particular. Bird et al. [2] analyzed forum discussions from early
GitHub’s Copilot users, collected their impressions on the tool usage, and
observed that support in writing unit tests was one of the major benefits. Pro-
ducing test cases quickly was the major result of a large survey on the usability
of AI programming assistants of Liang et al. [11]. They reported that finding
edge cases in testing was among the major reasons for using AI. On the other
hand, verifying AI answers (e.g., to meet software requirements) was the major
reason for not using them. Guilherme and Vincenzi [8] used OpenAI API to
generate unit tests and concluded that the tool has a good performance in terms
of mutation score and code coverage. GPTDroid [12] uses ChatGPT for GUI
testing of mobile apps as a Q&A task and was able to achieve higher cover-
age and greater efficiency in finding bugs. Lahiri et al. [10] propose ITDCG,
a workflow with Open AI’s Codex for interactive test-driven code generation.
Tests and code are generated simultaneously, not incrementally and iteratively,
as in TDD. No particular mention is made of how to query the AI or the role of
the developer. Tian and Chen [15] introduce Test-case-driven Chain of Thought
(TCoT), an approach for improving code generation by using the description
of the tests in natural language. The results are promising; however, they did
not focus on TDD or any iterative testing process. Piya and Sullivan [13] intro-
duced the LLM4TDD framework to incorporate GenAI into TDD. A developer
develops within a coding environment that interacts with a GenAI. The devel-
oper manually copies, if needed, code and tests and whether the latter ones fail.
An evaluation of the framework reached a success rate of 88.5%. The authors
also identified best practices to ensure that ChatGPT solves the correct prob-
lem and to reduce the effort. Our work follows these recommendations but also
provides 1) different ways of interactions between humans and AI, 2) a structure

Generative AI for Test Driven Development: Preliminary Results 31

for the input with predefined prompts to avoid generating unwanted code, 3)
a control layer for the collaborative pattern in which the quality of the code is
iteratively verified by the developer. The experiment with real developers helped
to understand the issue of such collaboration at a fine granularity level.

5 Conclusions

In this work, we defined interaction patterns between developers and GenAIs for
the automation of TDD. We conducted an exploratory experiment with prac-
titioners to evaluate the feasibility of our automation and the quality of the
produced solutions. Overall, we found that for our experiment and settings,
GenAI can be efficiently used in TDD, but it requires supervision on the quality
of the code produced. In some cases, it can mislead non-expert developers and
propose solutions that change tests rather than the production code, which may
remain buggy, to make tests pass. In future work, we will extend our method-
ology to incorporate other interaction patterns (e.g., the developer can choose
freely how to query the GenAI), different automation and GenAI, and involve a
larger number of practitioners both in the experiment and in the feedback.

Acknowledgments. We thank the practitioners who participated in the study for
their valuable contribution. Moritz Mock is partially funded by the National Recovery
and Resilience Plan (Piano Nazionale di Ripresa e Resilienza, PNRR - DM 117/2023).

References

1. Beck, K.: Test Driven Development: By Example. Addison-Wesley (2022)
2. Bird, C., et al.: Taking flight with copilot. Queue 20(6), 35–57 (2022)
3. Causevic, A., et al.: Factors limiting industrial adoption of test driven develop-

ment: a systematic review. In: Fourth IEEE International Conference on Software
Testing, Verification and Validation, pp. 337–346 (2011)

4. Choudhuri, R., et al.: How far are we? The triumphs and trials of generative ai in
learning software engineering. In: ICSE (2024)

5. Ernst, N.A., Bavota, G.: Ai-driven development is here: should you worry? IEEE
Softw. 39(02), 106–110 (2022)

6. Fucci, D., et al.: A dissection of the test-driven development process: does it really
matter to test-first or to test-last? IEEE Trans. Softw. Eng. 43(7), 597–614 (2017)

7. Ghafari, M., et al.: Why research on test-driven development is inconclusive? In:
ESEM, pp. 1–10. ACM, New York (2020)

8. Guilherme, V., Vincenzi, A.: An initial investigation of ChatGPT unit test gener-
ation capability, pp. 15–24. SAST, New York (2023)

9. Karac, I., Turhan, B.: What do we (really) know about test-driven development?
IEEE Softw. 35(4), 81–85 (2018)

10. Lahiri, S.K., et al.: Interactive code generation via test-driven user-intent formal-
ization (2023)

11. Liang, J.T., Yang, C., Myers, B.A.: A large-scale survey on the usability of AI
programming assistants: successes and challenges. In: ICSE, pp. 605–617 (2024)

32 M. Mock et al.

12. Liu, Z., et al.: Make LLM a testing expert: bringing human-like interaction to
mobile GUI testing via functionality-aware decisions. In: ICSE (2024)

13. Piya, S., Sullivan, A.: LLM4TDD: best practices for test driven development using
large language models (2023). https://doi.org/10.48550/arXiv.2312.04687

14. Riemenschneider, C.K., Hardgrave, B.C., Davis, F.D.: Explaining software devel-
oper acceptance of methodologies: a comparison of five theoretical models. IEEE
Trans. Softw. Eng. 28(12), 1135–1145 (2002)

15. Tian, Z., Chen, J.: Test-case-driven programming understanding in large language
models for better code generation (2023). https://doi.org/10.48550/arXiv.2309.
16120

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.48550/arXiv.2312.04687
https://doi.org/10.48550/arXiv.2309.16120
https://doi.org/10.48550/arXiv.2309.16120
http://creativecommons.org/licenses/by/4.0/

Responsible AI in Agile Software
Engineering - An Industry Perspective

Rasmus Ulfsnes1,7(B) , Nils Brede Moe1 , Jostein Emmerhoff2,
Marcin Floryan3, Anastasia Griva4 , Jan Henrik Gundelsby5 ,

Astri Moksnes Barbala1 , and Kieran Conboy1,6

1 SINTEF, 7034 Trondheim, Norway
Rasmus.Ulfsnes@sintef.no

2 Schibsted Nordic Marketplace, Oslo, Norway
3 Spotify, Stockholm, Sweden

4 Bespot, Athens, Greece
5 Knowit Solutions AS, Oslo, Norway

6 University of Galway, Galway, Ireland
7 NTNU, Trondheim, Norway

Abstract. There is a rapid emergence of tools, methods, and guidance
for the use of AI across all parts of the software development process,
from requirements gathering to code generation to testing and user feed-
back. However, AI raises many concerns regarding responsible use, and
there is a need to understand and develop principles for what responsible
software development entails in practice in an agile context, as well as
carefully evaluate the incorporation of AI tools and methods in software
engineering. We draw on experience from Bespot, Knowit, Schibsted, and
Spotify to identify challenges faced by companies pioneering the use of
AI in their software development efforts and start charting a roadmap
for responsible AI in software engineering.

Keywords: GenAI · Responsible AI · Agile Software Engineering ·
Challenges · Responsible AI · Software Engineering · Industry
Perspective

1 Introduction

The landscape of business is rapidly evolving with the integration of artificial
intelligence, particularly in the realm of software development. The rise of Gen-
erative AI (GenAI) has been remarkable, offering transformative capabilities
that enhance various segments of the development lifecycle–from requirements
management [4] to code generation [7] and security testing [6]. The primary
focus of these advancements has been to drive efficiency, automate routine tasks,
and increase productivity [15]. Nonetheless, there is an increasing imperative to
address the ethical dimensions of AI deployment. To date, however the litera-
ture on what constitutes responsibility within the software engineering field has
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 33–41, 2025.
https://doi.org/10.1007/978-3-031-72781-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_4&domain=pdf
http://orcid.org/0000-0002-4966-8242
http://orcid.org/0000-0003-2669-0778
http://orcid.org/0000-0001-8346-9389
http://orcid.org/0000-0001-5275-6553
http://orcid.org/0000-0002-3087-3350
http://orcid.org/0000-0001-8260-4075
https://doi.org/10.1007/978-3-031-72781-8_4

34 R. Ulfsnes et al.

largely been discussed in a separate body of literature to the literature on AI
tools in software engineering, and very few studies in either camp are built on
empirical data. This paper aims to bring the two communities together, shedding
light on which challenges software organizations face in terms of leveraging AI
responsibly and outlining a way forward in solving these. Given the recent and
rapid emergence of this area, we asked four key experts with extensive industry
experience in large-scale agile organizations to provide written statements about
challenges associated with responsible AI in their organizational context with
regard to software engineering. Our selection was based on software-intensive
companies impacted by and in the process of using AI in their engineering pro-
cesses.

2 Background

In looking into what responsibility means in software engineering by reviewing
the current understanding of ethical principles in the field, Ina Schieferdecker
[12] asserts that software trustworthiness today hinges more on acceptance than
technical quality, emphasizing that software and its features must be compre-
hensible and explainable. Software and its applications can only succeed if they
garner public trust, Schieferdecker notes, which is tied to users’ belief that prod-
ucts have been developed according to responsible principles.

Otherwise, literature on the topic in the software engineering field has largely
focused on literature reviews. One such study, a rapid review study focusing on
what responsible AI means in software engineering, was conducted by Barletta
et al. [1]. They investigated frameworks that provide principles, guidelines, and
tools designed to aid practitioners in the development and implementation of
responsible AI applications. In analyzing each framework in relation to the vari-
ous phases of the Software Development Life Cycle (SDLC), Barletta et al. found
that the majority of these frameworks are focused primarily on the Requirements
Elicitation phase, with minimal coverage of other phases. Barletta et al.’s find-
ings thus indicate the absence of a comprehensive “catch-all” framework that
effectively supports both technical and non-technical stakeholders in the exe-
cution of real-world projects. Similarly, Lu et al. [9] conducted a systematic
literature review on responsible AI for software engineering to summarize the
current state and identify critical research challenges. They present a research
road map on software engineering to operationalize responsible AI. Some of the
findings are proposed as tools, such as ethical risk assessments, or as product
features embedded within AI systems to mitigate ethical risks and enhance trust
in markets where it is currently lacking, for instance, an ethical black box.

In regard to the literature on responsible AI technologies, a multitude of
factors are prominent, covering both human, social, and organizational factors.
For instance, Mikalef et al. [11] point to 8 dimensions for responsible AI. However,
there are different approaches to achieving responsible AI, and one venue is the
concept of explainable AI [10], wherein efforts are being made to outline how
and at what level different stakeholders need and understand the outputs of AI.

Responsible AI in Agile Software Engineering 35

Another venue is that of domain expertise [14] where the argument for bridging
the experts of AI, with the experts of whatever domain the technology would
assist. Collaborating with the AI-systems developers, however, is not that easy
when you are purchasing off-the-shelf AI technology, e.g., Copilot or ChatGPT
for software engineers, to assist in their programming tasks (see [13]).

3 Approach

As AI in software engineering is a novel phenomenon, and there are studies and
research on the topic, we argue that utilizing a Delphi-type approach is appropri-
ate [8]. The Delphi method can be used both quantitatively and qualitatively. We
sourced four experts from different software organizations to elicit their take on
responsible AI and how it affects their organization. To guide our inquiry, we uti-
lize the eight dimensions proposed by Mikalef et al. [11]: Fairness, Transparency,
Accountability, Robustness and safety, Data governance, Laws and regulations,
Human oversight and Societal and environmental well-being. After eliciting the
information, we analyzed the challenges the different organizations experienced
in terms of grappling with responsible AI.

All four industry examples adhere to the key principles of Agile, which include
incrementally developing the software in iterative cycles, implementing regular
ceremonies to review and refine both the product and development methods, col-
laboratively responding to changes, and consistently engaging with users. Addi-
tionally, the software teams within these organizations are organized in a manner
typical of agile teams.

4 Industry Perspectives on Responsible AI in Software
Engineering

4.1 Bespot - Recruiting Skilled Expertise

In recent years, a significant challenge we’ve encountered is related to the hiring
process for software developers and AI experts. Traditionally, companies have
relied on assessing candidates’ experience by reviewing their profiles on web-
based platforms like GitHub and StackOverflow. This approach allowed us to
initially assess their coding abilities, problem-solving skills, and overall expertise.
However, with the rise of GenAI we have begun to question the efficacy of using
developers’ profiles on such platforms as part of our talent screening process.

One issue we identified is the potential for inaccuracies in candidates’ profiles,
which may not truly reflect their coding skills or contributions to the community.
Some discrepancies are apparent upon closer scrutiny of platform data, such as
sudden improvements in ratings, reputation, or badges. Still, efforts from the
companies’ side are required to detect such profiles. Also, it is difficult to figure
out whether something is GenAI written in other cases. This situation seems to
result in inequalities in evaluating and hiring talents.

36 R. Ulfsnes et al.

While web-based platforms like GitHub and StackOverflow remain valuable
resources for assessing candidates, of course software development companies do
not only use these. There might also be internal coding tests/challenges, etc., as
part of the hiring process. Still, even in such cases, GenAI was detected to be
used profoundly or not, affecting hiring once again. This increasing prevalence of
GenAI has prompted internal debates among companies regarding its responsible
use in hiring practices.

On the one hand, some state that using GenAI to generate code is acceptable,
and achieving an optimal equilibrium between automated processes and human
intuition is essential in coding. This is reinforced by trends in certificates such
as prompt engineering for GenAI. However, detractors caution against relying
on AI as a collaborator, citing concerns about perpetuating inequalities and
potential risks to the company’s integrity. The latter can happen since we are
not certain about where the data are stored, who has access, etc.

For example, our company, Bespot, develops location fraud detection and
validation software solutions. The company has developed an AI solution uti-
lizing tracking technologies (e.g., WiFi, GPS, cellular) to detect user locations
with near-centimeter precision accurately. However, protecting our competitive
advantages is crucial since these algorithms are proprietary and treated as black
boxes. Consequently, hiring individuals who may inadvertently expose sensitive
algorithms to GenAI collaboration poses a significant risk, particularly for com-
panies operating in sectors requiring stringent data protection measures.

In conclusion, navigating the intersection of GenAI and hiring practices
presents challenges for companies seeking to maintain a balance between human-
GenAI collaboration and responsibility. While leveraging AI technologies offers
potential benefits, careful consideration of ethical implications, data security
concerns, and competitive interests is important in ensuring responsible decision-
making within the hiring process.

4.2 Knowit - Security, Sustainability, and GenAI’s Mental Models

While the potential of Generative AI is undeniable, its integration into practi-
cal, real-world applications comes with significant challenges. Knowit is a large
consultancy firm focused on digital transformation. It combines IT, design, and
management with an emphasis on security, cloud, and AI services. At Knowit,
we are committed to sustainable practices and human rights. Despite over a year
of democratized access to GenAI, our clients are still primarily in the exploration
phase, hesitant to fully embrace its potential. We believe this hesitation stems
from several fundamental issues, including concerns about security, transforma-
tive use of technology, and environmental and economic sustainability.

The main challenge is related to security, uncertainty of regulations, privacy
concerns, and a large unknown attack surface through a plethora of chatbots. All
this makes it difficult and too risky for our customers to put the technology to
production use. Additionally, ‘hallucinations’-incorrect or nonsensical informa-
tion generated by these systems-pose another significant challenge. Our mental
models of computer technology usually let us think about data as a fact or

Responsible AI in Agile Software Engineering 37

something that is deterministic, predictable, and reliable. However, GenAI oper-
ates differently; it is based on statistics and probabilities. This unpredictabil-
ity requires us to rethink the way we understand and use this technology in
our systems and daily work. For instance, while tools like GitHub Copilot offer
coding assistance, concerns about energy consumption, code quality, and socio-
technical impacts on team collaboration continue to raise doubts about their
long-term productivity benefits. Another major sustainability challenge is the
substantial energy consumption associated with GenAI. For example, a single
Chat GPT query consumes fifteen times more energy than a standard Google
search, highlighting the environmental impact of this technology. Additionally,
the lack of clear revenue generation from GenAI investments raises concerns
about its long-term economic sustainability. For instance, the venture capital
firm Sequoia estimated that the AI industry spent $50 billion on Nvidia chips
to train advanced AI models last year but generated only $3 billion in revenue.
Knowit recognizes GenAI’s transformative potential but also acknowledges the
significant challenges associated with its adoption in real-world applications and
the sustainability challenges it brings. Addressing these issues is essential for
leveraging GenAI effectively and responsibly, ensuring both environmental and
economic viability.

4.3 Spotify on Algorithmic Responsibility

Every new technology should be approached with a healthy dose of skepti-
cism. This becomes harder when you see everyone around you jumping on the
bandwagon. Fortunately, at Spotify, we have over a decade of experience using
machine learning and artificial intelligence to enhance our products, especially in
the recommendation space. As a result, Spotify has been exposed to some of the
challenges inherent in using this technology, specifically in terms of algorithmic
bias. For example, we want to avoid recommendations that skew towards the
artist’s gender or towards more popular songs from certain artists. As part of
acting responsibly in this space, we have invested to avoid unintended algorith-
mic harm. Our research into algorithmic responsibility is helping us to avoid the
challenges. As AI tools become more popular and start powering more features
such as AI DJ or the AI Playlist Generation, we work to ensure that we build
a fair product, respects inclusion and diversity, and does not lead to discrimi-
natory outcomes. Another aspect relevant for Spotify, in the area of responsible
use of AI, is to consider the environmental impact, especially in the view of our
climate action and responsibility towards the climate crisis. This applies both
to Spotify using AI as part of our product portfolio and our use of tools such as
Large Language Models that help with the day to day tasks of our employees.

4.4 Schibsted Nordic Marketplaces on Governance and Learning

Schibsted Nordic Marketplaces (NMP) offers digital marketplaces for real estate,
job listings, mobility services, and classified ads. It is the leading company in
the Nordics, with significant market shares in Norway, Finland, Sweden, and

https://research.atspotify.com/algorithmic-responsibility
https://www.lifeatspotify.com/diversity-equity-impact/climate-action

38 R. Ulfsnes et al.

Denmark. We see AI as fundamental in two aspects. 1) The use of AI services will
be incorporated in new products based on our large data sets, and 2) AI tools will
also be integrated into the company’s development practices through the likes of
Copilot and other GenAI tools. Just as Apple revolutionized digital marketplaces
with the iPhone, AI technologies can bring about similar significant changes to
our products and the way we deliver the products. The new technology will
change how we operate and affect the daily lives of employees. NMP needs to
develop insights and knowledge about how to use commercial GenAI models and
deploy AI solutions responsibly.

In practice, “Responsible AI” involves establishing guidelines, processes, and
mechanisms to ensure that AI technology is available, easy to use, and imple-
mented in line with the organization’s values and goals while adhering to regula-
tions and ethical perspectives for fairness and sustainability. This can be seen as
a lesson learned from the move to cloud services, which do not work without a
defined governance structure. As with cloud services, this means taking respon-
sibility seriously in the procurement process and will influence the vendors we
choose for such products. This will pose a challenge for our software development
teams with a high degree of autonomy regarding technology choice and how they
work.

AI tools can influence collaboration and knowledge sharing within the orga-
nization. For example, internal communication and coordination within teams
may change, so governance structures are needed to support collaboration and
knowledge sharing. A key aspect will be investing in raising employees’ com-
petencies to leverage AI effectively. It’s not enough for individuals to learn, as
learning together is necessary to develop new practices for the use of technology
in a responsible way. And without knowledge of the technology and how to use
it responsibly, you won’t be able to do your work well.

5 Discussion and Future Research

Based on the industry experts’ statements, we have identified several challenges
related to responsible AI in agile software engineering. The most prominent are:

Finding a Balance Between Human and AI. As of now, the impact of
GenAI, e.g. ChatGPT, is not understood in terms of its long-term effects on
software engineering practices and the social processes involved in these prac-
tices. This raises concerns for our industry partners, already from before the
engineers are hired, raising questions about the eligibility of the candidates and
how to manage this from a recruiting standpoint. This might affect the fairness
of the hiring processes [11] as new hires are no longer selected on equal terms.
However, there is also a need to utilize AI’s positive effects, e.g., productivity
[7], and finding this balance while remaining responsible is challenging.

Unclear Effects on Communication and Collaboration. While balancing
human and AI automation is challenging, some effects go outside the individual
use of AI tools. One notable concern is how this will affect teams and organi-
zations and how they deal with learning [13]. This is particularly concerning as

Responsible AI in Agile Software Engineering 39

large-scale agile organizations are dependent on the communication, collabora-
tion, and knowledge sharing that occurs in and between teams. One approach
here is to use governance that limits and sets boundaries on tools and practices
for using AI, but this has a cost in terms of reduced autonomy in large-scale
agile contexts [2].

Managing Data Governance and Hallucinations. Data governance and
privacy issues do not just create challenges regarding AI, but the interest and
accessibility of the tools are making it particularly challenging to leverage the
technology. Individual developers must manage the data governance themselves
[13], which can be challenging for the developers [4]. Additionally, the uncertainty
of regulatory bodies makes it difficult for organizations to make good decisions.
Moreover, the data that comes out might be the effects of hallucinations, which
require developers to learn how to deal with bad code suggestions [7] and advice
[13]. Nevertheless, there are also positive effects of using AI, in achieving greater
security posture of the software developed [6].

Managing Responsible AI in Software Products. Managing and dealing
with the practical issues of using various AI tools are quite challenging. Com-
panies also want to embed these technologies into their products, providing new
interactive interfaces or recommendations. This means making development pro-
cesses that especially consider the potential of algorithmic harm to ensure fair-
ness, transparency, and accountability [11]. While the companies aim to avoid
these issues, there is a lack of frameworks and processes for managing this in the
software development life cycle [1].

6 Conclusions and Future Work

Organizations are being met with ever-increasing pressure to allow individuals
to use GenAI for their activities while also wanting to exploit and explore the
potential of both GenAI and AI in their products and services.

According to our findings, organizations need to deal with challenges on
different organizational levels: 1) Organization, 2) Team, and 3) Individual, as
these challenges are interrelated between the different parts of an organization
and need to be managed simultaneously.

What remains, however, is a clear approach to dealing with human-AI collab-
oration for agile organizations. There are five different ways to look at human-AI
collaboration in the organization according to KolbjÃÿrnson [5]: 1) Individuals
working without AI, 2) Collective, multiple people working together, 3) Auto-
mated, when work is done without human interference, 4) Augmented individ-
uals, doing work together with AI, and 5) Augmented teams, when multiple
people collaborate with AI.

What recent studies have shown, both experimental [3] and real-life settings
[13], is that the exploration and subsequent use of GenAI is largely done by
individuals and organizations seem to have a goal of automating work, and thus
becoming more efficient.

40 R. Ulfsnes et al.

As more and more organizations race towards more automated work, and thus
becoming more efficient, there is a risk that we lose out on the decades of research
on agile in organizations, putting a focus on collaboration and coordination.
We, therefore argue that organizations and researchers should look into how
collectives, such as agile teams, and organizations together can collaborate with
Artificial Intelligence, be it generative or otherwise.

References

1. Barletta, V.S., Caivano, D., Gigante, D., Ragone, A.: A rapid review of responsi-
ble AI frameworks: how to guide the development of ethical AI. In: Proceedings
of the 27th International Conference on Evaluation and Assessment in Software
Engineering, pp. 358–367 (2023)

2. Bass, J.M., Haxby, A.: Tailoring product ownership in large-scale
agile projects: managing scale, distance, and governance. IEEE Softw.
36(2), 58–63 (2019). https://doi.org/10.1109/MS.2018.2885524, https://
ieeexplore.ieee.org/abstract/document/8648277?casa_token=QQesxZ-
4c_4AAAAA:F80w6k0IDwalLeXRO2QnHGnIMb4oZQV7JDkwH-
pyenQR3DdZwtwmnxgF8XnHHZtEzfRVE-9c9ng

3. Bubeck, S., et al.: Sparks of artificial general intelligence: early experiments with
GPT-4. arXiv:2303.12712 [cs] (2023)

4. Ebert, C., Louridas, P.: Generative AI for software practitioners. IEEE
Softw. 40(4), 30–38 (2023). https://doi.org/10.1109/MS.2023.3265877, https://
ieeexplore.ieee.org/abstract/document/10176168

5. Kolbjørnsrud, V.: Designing the intelligent organization: six principles for
human-AI collaboration. Calif. Manage. Rev. 66(2), 44–64 (2024). https://
doi.org/10.1177/00081256231211020, http://journals.sagepub.com/doi/10.1177/
00081256231211020

6. Li, J., Meland, P.H., Notland, J.S., Storhaug, A., Tysse, J.H.: Evaluating the
impact of ChatGPT on exercises of a software security course. In: 2023 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 1–6. IEEE (2023). https://ieeexplore.ieee.org/abstract/document/
10304857/

7. Liang, J.T., Yang, C., Myers, B.A.: A large-scale survey on the usability of AI pro-
gramming assistants: successes and challenges. In: Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ICSE 2024, pp. 1–13.
Association for Computing Machinery, New York (2024). https://doi.org/10.1145/
3597503.3608128, https://dl.acm.org/doi/10.1145/3597503.3608128

8. Lilja, K.K., Laakso, K., Palomäki, J.: Using the Delphi method. In: 2011 Pro-
ceedings of PICMET 2011: Technology Management in the Energy Smart World
(PICMET), pp. 1–10 (2011). https://ieeexplore.ieee.org/abstract/document/
6017716. iSSN 2159-5100

9. Lu, Q., Zhu, L., Xu, X., Whittle, J., Xing, Z.: Towards a roadmap on software
engineering for responsible AI. In: Proceedings of the 1st International Conference
on AI Engineering: Software Engineering for AI, pp. 101–112 (2022)

10. McDermid, J.A., Jia, Y., Porter, Z., Habli, I.: Artificial intelligence explainability:
the technical and ethical dimensions. Philos. Trans. Roy. Soc. A: Math. Phys. Eng.
Sci. 379(2207), 20200363 (2021). https://doi.org/10.1098/rsta.2020.0363, https://
royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0363

https://doi.org/10.1109/MS.2018.2885524
https://ieeexplore.ieee.org/abstract/document/8648277?casa_token=QQesxZ-4c_4AAAAA:F80w6k0IDwalLeXRO2QnHGnIMb4oZQV7JDkwH-pyenQR3DdZwtwmnxgF8XnHHZtEzfRVE-9c9ng
https://ieeexplore.ieee.org/abstract/document/8648277?casa_token=QQesxZ-4c_4AAAAA:F80w6k0IDwalLeXRO2QnHGnIMb4oZQV7JDkwH-pyenQR3DdZwtwmnxgF8XnHHZtEzfRVE-9c9ng
https://ieeexplore.ieee.org/abstract/document/8648277?casa_token=QQesxZ-4c_4AAAAA:F80w6k0IDwalLeXRO2QnHGnIMb4oZQV7JDkwH-pyenQR3DdZwtwmnxgF8XnHHZtEzfRVE-9c9ng
https://ieeexplore.ieee.org/abstract/document/8648277?casa_token=QQesxZ-4c_4AAAAA:F80w6k0IDwalLeXRO2QnHGnIMb4oZQV7JDkwH-pyenQR3DdZwtwmnxgF8XnHHZtEzfRVE-9c9ng
http://arxiv.org/abs/2303.12712
https://doi.org/10.1109/MS.2023.3265877
https://ieeexplore.ieee.org/abstract/document/10176168
https://ieeexplore.ieee.org/abstract/document/10176168
https://doi.org/10.1177/00081256231211020
https://doi.org/10.1177/00081256231211020
http://journals.sagepub.com/doi/10.1177/00081256231211020
http://journals.sagepub.com/doi/10.1177/00081256231211020
https://ieeexplore.ieee.org/abstract/document/10304857/
https://ieeexplore.ieee.org/abstract/document/10304857/
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128
https://dl.acm.org/doi/10.1145/3597503.3608128
https://ieeexplore.ieee.org/abstract/document/6017716
https://ieeexplore.ieee.org/abstract/document/6017716
https://doi.org/10.1098/rsta.2020.0363
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0363
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0363

Responsible AI in Agile Software Engineering 41

11. Mikalef, P., Conboy, K., Lundström, J.E., Popovič, A.: Thinking responsibly about
responsible AI and ‘the dark side’ of AI. Eur. J. Inf. Syst. 31(3), 257–268 (2022)

12. Schieferdecker, I.: Responsible software engineering. Future Softw. Qual. Assur.
137–146 (2020)

13. Ulfsnes, R., Moe, N.B., Stray, V., Skarpen, M.: Transforming software development
with generative AI: empirical insights on collaboration and workflow. In: Nguyen-
Duc, A., Abrahamsson, P., Khomh, F. (eds.) Generative AI for Effective Software
Development, pp. 219–234. Springer, Cham (2024). https://doi.org/10.1007/978-
3-031-55642-5_10

14. Waardenburg, L., Huysman, M.: From coexistence to co-creation: blurring bound-
aries in the age of AI. Inf. Organ. 32(4), 100432 (2022)

15. Ziegler, A., et al.: Productivity assessment of neural code completion.
In: Proceedings of the 6th ACM SIGPLAN International Symposium on
Machine Programming, MAPS 2022, pp. 21–29. Association for Com-
puting Machinery, New York (2022).https://doi.org/10.1145/3520312.3534864,
https://dl.acm.org/doi/10.1145/3520312.3534864

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-031-55642-5_10
https://doi.org/10.1007/978-3-031-55642-5_10
https://doi.org/10.1145/3520312.3534864
https://dl.acm.org/doi/10.1145/3520312.3534864
http://creativecommons.org/licenses/by/4.0/

A Journey Through SPACE
Unpacking the Perceived Productivity of GitHub Copilot

Viggo Tellefsen Wivestad1(B) and Rasmus Ulfsnes1,2

1 SINTEF Digital, 7034 Trondheim, Norway
viggo.wivestad@sintef.no

2 Norwegian University of Science and Technology, 7491 Trondheim, Norway

Abstract. This study examines the influence of perceived changes in
productivity in the context of introducing AI Coding Assistants, specifi-
cally GitHub Copilot, within two large-scale agile organizations. Using a
cross-sectional survey, we measured self-reported changes in productivity
using the SPACE framework. Our comparative analysis suggests several
perceived benefits of AI Code Assistant adoption, though with a more
conservative impact than previously reported. Further, a correlational
analysis employing Kendall’s tau and PLSR with 10-fold cross-validation
suggests that perceived changes to productivity are moderately associ-
ated only with four of the nine features tested, namely job satisfaction,
flow, task completion speed, and ability to focus on satisfying work. How-
ever, the SPACE framework’s ability to fully capture perceived produc-
tivity was further challenged, indicating discrepancies in its dimensions
of “Performance” and “Communication and collaboration”.

Keywords: Developer Productivity · AI Code Assistants · SPACE ·
GitHub Copilot

1 Introduction

In the evolving landscape of software development, Artificial Intelligence (AI)
tools are becoming increasingly prevalent. GitHub Copilot, an AI Coding Assis-
tant, has emerged as a notable example of this trend [9], aiding developers with
coding tasks in real-time [14].

Recent studies have looked at the effects of using generative AI in software
development practices [18]. One notable study was released by GitHub Research,
where participants were asked to self-report various perceived benefits using a 5-
point Likert agreement scale. This large-scale survey indicated a solid increase in
the perceived productivity by users of Copilot [7]. However, an agreement scale
is susceptible to overestimating the agreement ratio [10], which motivated this
study to replicate their findings instead of measuring perceived change rather
than agreement toward statements.

While productivity itself and its driving factors are studied and disputed
concepts in software development [2,5,13,19], the SPACE framework represents
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 42–50, 2025.
https://doi.org/10.1007/978-3-031-72781-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_5&domain=pdf
http://orcid.org/0009-0009-4187-0700
http://orcid.org/0000-0002-4966-8242
https://doi.org/10.1007/978-3-031-72781-8_5

A Journey Through SPACE 43

one attempt to unpack this using five so-called dimensions. This framework is
already being used in research, with one notable example being Ziegler et al.,
who explored whether measuring developers’ interactions with GitHub Copilot
could predict their self-reported productivity according to SPACE [21]. However,
SPACE itself lacks empirical support, and the assumption that it provides a good
proxy for productivity is still an open question.

We therefore set out to answer the following two research questions:

1. Are the perceived benefits of adopting GitHub Copilot altered by transforming
the Likert scales from an agreement scale to a change scale?

2. Which factors of SPACE influence perceived changes in productivity when
adopting an AI Coding Assistant?

To answer these and address the lack of empirical data on potential produc-
tivity gains from adopting AI Coding Assistants, we employed a cross-sectional
survey involving two large-scale agile organizations. The survey extends the sur-
vey framework developed by GitHub Research [7].

2 Background

Developers and agile organizations have long been interested in how different
modes of organizations, teams, and technology can boost developer productivity.
In the new age of AI Coding Assistants, some studies proclaim multiple benefits
for adopting such technology, [7], while others find that the main difference
between users and non-users is mainly related to work satisfaction dependence
on colleagues, not productivity [20].

Multiple attempts have been made to develop frameworks for measuring pro-
ductivity [19], with an ongoing debate related to how to best measure it, using
either objective measurements (e.g. lines of code or time spent writing code [2])
or subjective measurements (e.g. self-ratings or peer evaluations) [13]. To con-
solidate these perspectives, Forsgren et al. proposed the SPACE framework [5],
which attempts to describe productivity holistically using five distinct dimen-
sions of the developer’s work life.

GitHub Research used this framework to guide their study when assessing
potential productivity gains for their own product, GitHub Copilot [7]. SPACE
itself is an acronym for its five dimensions: Satisfaction and well-being refers to
the developer’s satisfaction with work, work-life balance, and general happiness.
Studies on hackathons have e.g. shown that having fun at work can influence pro-
ductivity [12]. Emotional states in general are also shown to affect the perceived
productivity of the developers [6]. Performance relates to outcomes of a system
or process, mainly focusing on quality and impact. Activity typically consists
of more objective measures, like lines-of-code, number of completed actions or
outputs during work, Communication and collaboration covers communication,
coordination, and collaboration within and between teams. Such characteristics
are recognized as particularly important for large-scale inter-team coordination.
[3,17], especially in the post-pandemic world, with hybrid teams becoming being

44 V. T. Wivestad and R. Ulfsnes

normalized [16]. The last dimension, Efficiency and Flow, focuses on the ability
to work focused and uninterrupted. This resonates with previous findings where
unplanned meetings and interruptions were found to be the main detriments to
unproductive work [11].

3 Method and Study Design

Our research design consisted of a cross-sectional survey, with a target popu-
lation consisting of software developers with access to GitHub Copilot. Partici-
pants were selected from two companies, NAV IT and MarComp (pseudonym).
While both are large-scale agile software organizations, NAV IT is a national
organization belonging to the public sector in Norway and employs around 500
developers, while MarComp is an international company with developers in Nor-
way, Poland, and India, with a developer headcount of around 80.

We collected a total of 120 responses (70 from NAV IT, 50 from
MarComp), consisting of 84% males, 13% females, and 4% who did not
wish to reply. 73% of the developers were in-house, and 27% were exter-
nal consultants. The complete survey instrument is available online at:
https://doi.org/10.5281/zenodo.10987170.

The survey instrument extends a subset of GitHub Research’s survey [7,22],
which utilizes the SPACE framework [5] to assess perceived productivity. How-
ever, the original questionnaire utilized a 5-point Likert agreement scale, which
is susceptible to overestimating the agreement ratio [10]. Several questions also
posed analytical challenges, with statements like “I am more productive when
using Copilot” being somewhat ambiguous to interpret (does “strongly disagree”
indicate an explicit reduction in productivity, or no change, i.e. disagreeing with
the statement that productivity has increased?). To combat this, we transformed
the survey items into a 5-point bidirectional Likert evaluation scale which we call
a “change scale”, ranging from “Major increase” to “Major decrease”, with “No
change” being a neutral center point. This transformation required slight modi-
fications to survey item formulations, e.g. “Since getting access to Copilot, have
you noticed a change in the following: Your own productivity?”.

The final questionnaire consisted of 57 questions, with 10 questions utilizing
the transformed change scale. For this study, we are focusing on the questions
intersecting GitHub Research’s survey. The survey items and their mapping to
the SPACE framework can be found in Table 1.

3.1 Comparing Likert Scales Results

In our study, we employed a Top 2-Box (T2B) analysis to compare the out-
comes from GitHub Research’s study [7] with our survey results. This method
concentrates on the proportion of a subset of the Likert scale, e.g. agreement
(“strongly agree” + “agree”) from GitHub Research’s study and increase (“major
increase” + “minor increase”) from our survey. While this approach omits parts
of the response distribution and thus provides an incomplete view of the data, it

https://doi.org/10.5281/zenodo.10987170

A Journey Through SPACE 45

is recognized for its utility in highlighting areas of interest within data sets [15].
Finally, since this was the only data provided by [7], it was our only choice for
comparison.

To examine potential relationships between perceived productivity and the
SPACE-based variables, and compensate for the incomplete view given by the
Top 2-Box analysis, we employed a bivariate histogram to inspect the distribu-
tion between pairs of independent variables and the dependent variable. To test
our hypotheses that there exist relationships between the SPACE-based vari-
ables and perceived productivity, Kendall’s τ coefficient was utilized to examine
both strength and relational direction. This non-parametric method is suitable
for ordinal data, which is inherent in Likert scale responses. To correct for mul-
tiple hypothesis testing, our threshold for statistical significance was reduced
using Bonferroni correction.

Finally, to explain the independent variables’ impact on perceived produc-
tivity, we treated the data as interval scales and employed Partial Least Squares
Regression (PLSR) with 10-fold cross-validation. The model’s robustness and
predictive capabilities were validated using the coefficient of determination (R2)
and Root Mean Squared Error (RMSE) metrics. The aggregated Variable Impor-
tance in Projection (VIP) scores statistics quantifies the contribution of each
independent variable, with scores above 1 generally indicating a significant influ-
ence. Uncertainty is reported using standard deviation.

4 Results

Our study surveyed 120 GitHub Copilot users about their perceived change
in productivity, using a survey instrument where one item directly measured
perceived productivity and nine items assessed changes according to SPACE.

Fig. 1. Top 2-Box plot comparing the proportion of positive agreeement vs. increased
change related to various attitudes among Copilot-users (the word “less” indicates that
the bars focus on disagreement/decrease rather than agreement/increase)

Comparative Analysis (Agreement vs. Change Scale): Figure 1 com-
pares our change scale results with GitHub Research’s agreement scale findings.

46 V. T. Wivestad and R. Ulfsnes

Table 1. Results from testing associations between SPACE-based variables and ‘per-
ceived productivity’. Independent correlations are tested using Kendall’s τ rank correla-
tion with associated P-values for significance with a Bonferroni threshold of α = 0.0056.

SPACE Dimensions Survey Items (“Change in...”) τ P-value Accept HA

Satisfaction and well-being Job satisfaction 0.468 <0.001
Focus on satisfying work 0.453 <0.001
Frustration boring tasks −0.221 0.014

Performance Code quality 0.256 0.005

Efficiency and flow Task completion speed 0.598 <0.001
Flow 0.452 <0.001
Searching for information −0.256 0.003
Mental work −0.377 <0.001

Communication and collaboration Dependence on colleagues −0.279 0.002

Although both scales recorded positive impacts, the change scale showed signif-
icantly more conservative outcomes, most notably for the ability to stay in the
“flow”, where less than a third (30%) of our respondents reported an increase,
compared to nearly three-quarters (73%) in GitHub research’s study. Our results
further showed that about two-thirds of the users reported increased productivity
(67%) and completion speed (64%), and decreased mental effort spent on repet-
itive tasks (65%) and time spent searching for information (61%). However, only
about one-third report being more in the flow (30%), feeling more fulfilled with
their job (36%), and feeling less frustrated when coding (36%). About half of the
users experienced an increase in their ability to focus on satisfying work (45%).

Distribution and Correlation Analysis: Figure 2 presents the distribution
of responses for all survey items, visualizing the relationships between perceived
changes in productivity and the SPACE variables. We only accept the alternative
hypothesis (HA: there is a correlation) for cases that show both a significant cor-
relation towards perceived productivity after Bonferroni correction, and show at
least moderate correlation levels (|τ | ≥ 0.4) using Dancey and Reidy’s thresholds
[1,4]). As detailed in Table 1, we were able to accept the alternative hypothesis,
and thereby confirm a moderate correlation towards perceived productivity, in
four instances: (1) task completion speed, (2) ability to stay in the flow,
(3) job satisfaction and (4) the ability to focus on satisfying work.

PLSR Model Performance and Feature Importance: The PLSR model,
evaluated using 10-fold cross-validation, demonstrated modest predictive capa-
bility, with an R2 of 0.214 ± 0.244, indicating that the model explains 21.4% of
the variance on average. An RMSE of 0.616 ± 0.070 suggests moderate predic-
tive errors, with low RMSE scores normally indicating better predictive accu-
racy. However, the high standard deviation suggests substantial variability in
R2, hinting at potential model instability. Nevertheless, the VIP scores in Fig.
3 align with the Kendall τ results, identifying the same four dimensions as the

A Journey Through SPACE 47

most influential predictors of perceived changes in productivity, supporting their
relevance in the SPACE framework.

5 Discussion and Implications

Our findings show that developers who adopt an AI Coding Assistant report
notable increases in productivity, both when asked directly, and indirectly using
SPACE variables. This resonates with the findings of GitHub Research [7],
and other studies on Generative AI where developers report spending less time
searching for information and being blocked by repetitive and boring tasks [18].

Using our proposed change scale, the proportion of users reporting increased
benefits declined significantly across all aspects when compared to GitHub
Research’s findings [7]. This result was expected, as the change scale was designed
to counteract potential false inflation of agreement. Most notable was the big
drop in users who reported increased “flow”, which resonates with other work
that found little difference in perceived “flow” when comparing users to non-
users of GitHub Copilot [20]. It should be noted that these two Likert scales

Fig. 2. Bivariate histograms showing the joint distribution of perceived change in pro-
ductivity and the SPACE-based variables. Kenball’s τ (tau) measures correlation, while
P-value (p) measures statistical significance.

48 V. T. Wivestad and R. Ulfsnes

Fig. 3. VIP scores showing the contributions from each variable on the perceived
change in productivity. The dotted vertical line marks the significance threshold at
1.0, and error bars show the min/max values from the 10-fold cross-validation

measure slightly different concepts and are not directly comparable, providing
only an imprecise comparison. Furthermore, our target population is limited,
and our findings might therefore not generalize to a global population.

When looking closer at which factors influence perceived changes in produc-
tivity, our study reveals both correlations and discrepancies between develop-
ers’ perceived productivity and the SPACE dimensions. Both “Satisfaction and
well-being” and “Efficiency and flow” contained facets that showed moderate,
positive correlation and impact towards perceived productivity. These results
confirm previous findings on how different states of mind and contexts might
affect perceived productivity [2,8,11]. The dimensions “Performance” and “Com-
munication and collaboration” were not found to be important, though it should
be noted that “Performance” was measured with only a single variable.

Overall, our findings suggest that the dimensions of SPACE either do not
fully describe productivity, or that productivity, as defined by SPACE, does not
align with developers’ definition of productivity. This echoes similar discrepan-
cies found by Beller et al., which indicates that perceived productivity does not
always align with the type of productivity managers are interested in [2].

Our study provides the following implications for practice

1. Utilizing AI Coding Assistants is associated with perceived benefits, most
notably increased levels of productivity, efficiency and flow, and satisfaction
and well-being, though more conservative than those proclaimed by GitHub
Research.

2. Some dimensions of SPACE seem more influential in changing perceived pro-
ductivity. Facilitating “Efficiency and flow” and “Satisfaction and well-being”
therefore seems more impactful than “Performance” and “Communication and
collaboration”, if the goal is to increase perceived productivity.

As for research implication, our results indicate that the SPACE framework
might be incomplete, misaligned, or inappropriate in terms of capturing per-
ceived productivity, with two of the SPACE dimensions showing little correla-
tion with how developers define productivity. To extend this study, future work
should aim for greater coverage of each SPACE dimension, with a special focus
on including the “Activity” dimension, when assessing their influence on produc-
tivity.

A Journey Through SPACE 49

References

1. Akoglu, H.: User’s guide to correlation coefficients. Turk. J. Emerg. Med. 18(3),
91 (2018). https://doi.org/10.1016/j.tjem.2018.08.001, https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC6107969/

2. Beller, M., Orgovan, V., Buja, S., Zimmermann, T.: Mind the gap: on the relation-
ship between automatically measured and self-reported productivity. IEEE Soft-
ware 38(5), 24–31 (Sep 2021). https://doi.org/10.1109/MS.2020.3048200, https://
ieeexplore.ieee.org/abstract/document/9311217/references#references

3. Berntzen, M., Hoda, R., Moe, N.B., Stray, V.: A taxonomy of inter-team coordi-
nation mechanisms in large-scale agile. IEEE Trans. Softw. Eng. 49(2), 699–718
(2022). https://ieeexplore.ieee.org/abstract/document/9739868/

4. Dancey, C.P., Reidy, J.: Statistics Without Maths for Psychology: Using SPSS for
Windows, 3rd edn. Pearson Prentice Hall, Harlow, Munich (2006). [repr.] edn

5. Forsgren, N., Storey, M.A., Maddila, C., Zimmermann, T., Houck, B., Butler, J.:
The SPACE of developer productivity. Queue 19(1), 20–48 (2021). https://doi.
org/10.1145/3454122.3454124

6. Girardi, D., Lanubile, F., Novielli, N., Serebrenik, A.: Emotions and perceived pro-
ductivity of software developers at the workplace. IEEE Trans. Softw. Eng. 48(9),
3326–3341 (2022). https://doi.org/10.1109/TSE.2021.3087906, https://ieeexplore.
ieee.org/abstract/document/9449979

7. Kalliamvakou, E.: Research: quantifying GitHub Copilot’s impact on devel-
oper productivity and happiness (2022). https://github.blog/2022-09-07-research-
quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

8. Kim, Y.H., Choe, E.K., Lee, B., Seo, J.: Understanding personal productivity:
how knowledge workers define, evaluate, and reflect on their productivity. In:
Proceedings of the 2019 CHI Conference on Human Factors in Computing Sys-
tems, pp. 1–12. ACM, Glasgow (2019). https://doi.org/10.1145/3290605.3300845,
https://dl.acm.org/doi/10.1145/3290605.3300845

9. Liang, J.T., Yang, C., Myers, B.A.: A large-scale survey on the usability of AI pro-
gramming assistants: successes and challenges. In: Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, pp. 1–13. ICSE 2024.
Association for Computing Machinery, New York (2024). https://doi.org/10.1145/
3597503.3608128, https://dl.acm.org/doi/10.1145/3597503.3608128

10. Lohr, S.L.: Sampling: Design and Analysis. Chapman & Hall/CRC Texts in Sta-
tistical Science, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton London
New York (2022)

11. Meyer, A.N., Barr, E.T., Bird, C., Zimmermann, T.: Today was a good day: the
daily life of software developers. IEEE Trans. Softw. Eng. 47(5), 863–880 (2019)

12. Moe, N.B., Ulfsnes, R., Stray, V., Smite, D.: Improving productivity through cor-
porate hackathons: a multiple case study of two large-scale agile organizations.
In: Proceedings of the 55th Annual Hawaii International Conference on System
Sciences (HICSS) (2021)

13. Murphy-Hill, E., et al.: What predicts software developers’ productivity? IEEE
Trans. Softw. Eng. 47(3), 582–594 (2021). https://doi.org/10.1109/TSE.2019.
2900308, https://ieeexplore.ieee.org/abstract/document/8643844

14. Ross, S.I., Martinez, F., Houde, S., Muller, M., Weisz, J.D.: The programmer’s
assistant: conversational interaction with a large language model for software devel-
opment. In: Proceedings of the 28th International Conference on Intelligent User
Interfaces, pp. 491–514. ACM, Sydney (2023). https://doi.org/10.1145/3581641.
3584037, https://dl.acm.org/doi/10.1145/3581641.3584037

https://doi.org/10.1016/j.tjem.2018.08.001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107969/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107969/
https://doi.org/10.1109/MS.2020.3048200
https://ieeexplore.ieee.org/abstract/document/9311217/references#references
https://ieeexplore.ieee.org/abstract/document/9311217/references#references
https://ieeexplore.ieee.org/abstract/document/9739868/
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1109/TSE.2021.3087906
https://ieeexplore.ieee.org/abstract/document/9449979
https://ieeexplore.ieee.org/abstract/document/9449979
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://doi.org/10.1145/3290605.3300845
https://dl.acm.org/doi/10.1145/3290605.3300845
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128
https://dl.acm.org/doi/10.1145/3597503.3608128
https://doi.org/10.1109/TSE.2019.2900308
https://doi.org/10.1109/TSE.2019.2900308
https://ieeexplore.ieee.org/abstract/document/8643844
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3581641.3584037
https://dl.acm.org/doi/10.1145/3581641.3584037

50 V. T. Wivestad and R. Ulfsnes

15. Shull, F., Singer, J., Sjøberg, D.I.K. (eds.): Guide to advanced empirical software
engineering. Springer, London (2008). https://doi.org/10.1007/978-1-84800-044-5

16. Smite, D., Moe, N.B., Hildrum, J., Huerta, J.G., Mendez, D.: Work-from-home is
here to stay: call for flexibility in post-pandemic work policies. J. Syst. Softw. 195,
111552 (2023). https://doi.org/10.1016/j.jss.2022.111552

17. Ulfsnes, R., Berntzen, M., Moe, N.B., Sporsem, T., Stray, V.: Exploring the orga-
nizational models for data science in agile software development: challenges and
strategies from a multi-case study. In: Proceeding of the 57th Hawaii International
Conference on System Sciences (HICSS 2024) (2024)

18. Ulfsnes, R., Moe, N.B., Stray, V., Skarpen, M.: Transforming software development
with generative AI: empirical insights on collaboration and workflow, pp. 219–234.
Springer, Cham (2024). https://doi.org/10.1007/978-3-031-55642-5_10

19. Wagner, S., Deissenboeck, F.: Defining productivity in software engineering. In:
Sadowski, C., Zimmermann, T. (eds.) Rethinking Productivity in Software Engi-
neering, pp. 29–38. Apress, Berkeley (2019). https://doi.org/10.1007/978-1-4842-
4221-6_4

20. Wivestad, V., Barbala, A., Stray, V.: Copilot’s island of joy: balancing individual
satisfaction with team interaction in agile development. In: Agile Processes in
Software Engineering and Extreme Programming - Workshops. 25th International
Conference on Agile Software Development, XP 2024, Bolzano, Italy, 4–7 June
2024, p. 7. Springer, Cham (2024)

21. Ziegler, A., et al.: Productivity assessment of neural code completion.
In: Proceedings of the 6th ACM SIGPLAN International Symposium on
Machine Programming, MAPS 2022, pp. 21–29. Association for Comput-
ing Machinery, New York (2022). https://doi.org/10.1145/3520312.3534864,
https://dl.acm.org/doi/10.1145/3520312.3534864

22. Ziegler, A., et al.: Measuring GitHub copilot’s impact on productiv-
ity. Commun. ACM 67(3), 54–63 (2024). https://doi.org/10.1145/3633453,
https://dl.acm.org/doi/10.1145/3633453

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1016/j.jss.2022.111552
https://doi.org/10.1007/978-3-031-55642-5_10
https://doi.org/10.1007/978-1-4842-4221-6_4
https://doi.org/10.1007/978-1-4842-4221-6_4
https://doi.org/10.1145/3520312.3534864
https://dl.acm.org/doi/10.1145/3520312.3534864
https://doi.org/10.1145/3633453
https://dl.acm.org/doi/10.1145/3633453
http://creativecommons.org/licenses/by/4.0/

The 2nd International Workshop
on Global and Hybrid Work in Software

Engineering (GoHyb)

Analyzing the Impact of Constant
Feedback on Hybrid Agile Team
Performance: Preliminary Results

Wardah Naeem Awan(B) and Iflaah Salman

School of Engineering Science, Lappeenranta-Lahti University of Technology,
Mukkulankatu 19, 15210 Lahti, Finland

Wardah.awan@lut.fi

Abstract. This study investigates the impact of constant feedback
in enhancing hybrid scrum team performance from a case study con-
ducted with 24 undergraduate students organized in three teams. This
research uses self-perceived performance surveys to identify factors that
affect team performance. The objective is to enhance team performance
by providing timely feedback for reflection and improvement based on
identified challenges. Preliminary findings revealed that constant feed-
back, facilitated by self-perceived performance surveys after each sprint
cycle, enables teams to address identified challenges and enhance perfor-
mance progressively. This highlights the significance of timely feedback
in enhancing team performance and productivity. Future work involves
leveraging AI tools to analyze communication data collected through-
out the study to understand well-being factors and their influence on a
team’s performance and productivity.

Keywords: Agile software development · hybrid work · constant
feedback · team performance

1 Introduction

Software engineering is a socially interactive activity where developers collab-
orate and work together to develop and maintain software products [1]. Com-
munication and collaboration among developers have a substantial impact on
the success of software projects. In Agile software development communication
and teamwork are considered as the key elements for successful software devel-
opment [2]. Teamwork is crucial for effective team performance, as it determines
how tasks and goals are accomplished in a team context and the effectiveness of
teamwork directly influences the overall project performance [3].

Many software companies are striving to enhance the performance and pro-
ductivity of their teams [4]. Enhancing developer’s productivity can lead to faster
development, enhanced code quality, and increased developer satisfaction which
ultimately enhance overall performance. [4,5]. Feedback plays a vital role in

c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 53–62, 2025.
https://doi.org/10.1007/978-3-031-72781-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_6&domain=pdf
http://orcid.org/0000-0002-2720-4316
http://orcid.org/0000-0003-4709-3622
https://doi.org/10.1007/978-3-031-72781-8_6

54 W. N. Awan and I. Salman

performance improvement [6]. It provides individuals with valuable information
about their behavior and performance, enabling them to adjust their behaviors
accordingly [7]. Feedback, whether positive or negative is closely linked with
affective states(emotions, moods, feelings). These emotions such as happiness,
satisfaction, anger, or frustration, are influenced by feedback and, in turn, can
impact motivation and engagement with tasks [8]. Effective feedback mecha-
nisms within teams promote better communication, collaboration, and relation-
ships with team members and promote constant learning that ultimately leads
to improved performance [9].

This study aims to offer preliminary findings regarding the impact of feedback
on the team’s performance. The impact of feedback is investigated in the hybrid
agile-scrum development context by employing a constant feedback mechanism.
We answer the following research question:

RQ: How does the implementation of a constant feedback mechanism impact
the performance of hybrid software development teams?

This study and its findings contribute to an ongoing project that aims to
assess and enhance hybrid working agile development teams’ performance and
well-being. The well-being of employees significantly contributes to their pro-
ductivity leading to the overall enhancement in teams’ performance [10–12].
However, the identification of well-being within the hybrid team collaboration
remains challenging [13]. Additionally, existing assessment tools for individual
well-being often rely on time-consuming surveys and questionnaires, limiting
the capacity to offer immediate feedback. The project achieves these objectives
by employing constant feedback consistent with the agile-scrum project sprints.
The feedback is based on constant: 1) emotional and well-being assessment via
AI-powered tools (of verbal, non-verbal and textual data), 2) self-performance
assessment on individual and team levels, and 3) team performance assessment
by product owners (PO).

To answer the RQ, we conduct a sprint performance survey to collect stu-
dents’ perceived personal and their teams’ performance after each sprint. This
provided insight into the perceived performance of the individual (team member)
and their team for the respective sprint. Based on the survey responses, we pro-
vided feedback to the teams regarding the identified challenges. Thus, enabling
them to address and improve their performance. The continuous assessment and
constant feedback distinguish our approach from traditional feedback methods,
where feedback is typically less frequent and not tied to individual performance
assessments for each sprint cycle [7].

2 Study Design

This section describes the study design with details on the participants and data
collection.

Constant Feedback Impact on Team Performance 55

2.1 Participants

We applied convenience sampling to recruit participants. The participants were
undergraduate students enrolled in the capstone project course of the interna-
tional BSc. degree program offered at the Lahti campus of the Lappeenranta-
Lahti University of Technology, Finland. We pitched our research work to the
students enrolled in the course in the introductory lecture after they were done
with forming teams with each other. This was to motivate their voluntary par-
ticipation in the research study.

A total of 48 students enrolled in the course, organized into six teams, each
comprising 7–9 members. Out of the six teams, only three agreed to participate
in our research; each team consisted of 8 members. Participants signed the con-
sent forms that complied with the university’s rules. The data privacy notice
was also shared with them to ensure the protection of their sensitive data. The
demographic details of the participants are presented in Sect. 2.3.

2.2 The Steup

The 14-week capstone project began with an introductory lecture on Scrum, fol-
lowed by six diverse team formations. Each team has eight members representing
at least three nationalities including Scrum Master. Each team decided on their
own Scrum Master. The students who took on the Scrum Master role attended
a two-day certified Scrum Master training and passed the certification test to
ensure they have the basic knowledge to serve as Scrum Masters. Project pro-
posals from Finnish companies were presented to students, who then matched
with companies via interviews. Each team has a PO from the company and a
professional agile coach for guidance. A scrum LEGO simulation was organized
for all teams to practice scrum under the guidance of their agile coach. Following
the Scrum simulation, teams started their first sprint by holding a sprint plan-
ning meeting with the PO to create and prioritize the product backlog. Figure 1

Fig. 1. Study design and overview

56 W. N. Awan and I. Salman

shows the design and overview of our study. The green highlights represent the
focus of this study.

To accommodate our participants’ preferred working styles (described in the
demographics in Sect. 2.3), we provided teams with 360-degree cameras and con-
ference microphones for hybrid setups. Team members who opt to meet in person
use a provided meeting link to connect with virtual team members and utilize
a 360-degree camera so that all the members and the PO joining the meeting
online can see and interact with the members meeting in person. This setup
enables effective engagement and collaboration for all participants in a hybrid
mode.

Table 1 shows the meeting set-up details of teams in the first four sprints.
The numbers in parentheses denote participants attending in person or online.
T1 usually prefers online meetings, while T2 and T3 prefer a hybrid format,
particularly for review and retrospective meetings, incorporating both in-person
and online attendance.

Table 1. Meeting set-up detail of teams; T = team

Sprint No Sprint Events Meeting mode

In-person Online Hybrid

In-person Online

1 Sprint Planning T3 T1, T2

Sprint Review & Retro T1, T2 T3 (6) T3(2)

2 Sprint Planning T1 T2, T3

Sprint Review & Retro T1, T2, T3

3 Sprint Planning T1, T2, T3

Sprint Review & Retro T1,T2 T3 (4) T3 (4)

4 Sprint Planning T1, T2 T3 (4) T3 (4)

Sprint Review & Retro T1 T2 (6), T3 T2 (2)

2.3 Data Collection

This section presents the details of data collection methods.

Demographics Questionnaire. All the participants were required to fill out a
demographics form as the first step of data collection. The demographic survey
included questions that asked students about their academic year of study, gen-
der, nationality, working experience, knowledge of scrum, and their preferred and
typical mode of working. Table 2 shows the demographic details of participants.

Table 2 suggests that 14 out of 24 participants are experienced; they are
either currently working or have previously worked in the industry. Ten are

Constant Feedback Impact on Team Performance 57

Table 2. Demographic profile of respondents

Variable Category N = 24 % of Respondents

Academic Year 2nd Year 4 17%

3rd Year 20 83%

Gender Male 15 63%

Female 9 37%

Experience Experienced 14 58%

Inexperienced 10 42%

Preferred working mode In-person 7 29%

Virtual 6 25.0%

Hybrid 11 46%

Regiona Asia 16 66%

Central Europe 1 4%

North Europe 3 13%

East Europe 3 13%

United States 1 4%
a We did not scope in analysing this factor in this study. Yet,
we report this because it is a factor that may relate to the facial
expressions of participants belonging to different regions [14]

inexperienced. Regarding their preferred working mode, 11 participants prefer a
hybrid mode (half in-person, half online), 7 prefer in-person collaboration with
their team, and 6 prefer working virtually.

Sprint Performance Survey. In this study, we focus on implementing a con-
stant feedback mechanism to improve team performance through a self-perceived
performance survey. To achieve this, we conduct a sprint performance survey
after each sprint cycle, gathering data from students about their perceived self-
performance and their team’s performance. The survey examines several key
areas of team dynamics and performance, including self-performance assessment,
team collaboration, challenges in teamwork, communication effectiveness, and
communication issues. It also addresses team conflicts, individual contributions
to team goals, overall team performance, adherence to the Scrum framework,
and satisfaction with process improvements and product progress. For the sur-
vey’s reliability, it was piloted to ensure its comprehensibility and assessment of
the intended topics.

The survey uses both qualitative and quantitative measures to assess perfor-
mance. All questions collected quantitative and qualitative data. For quantitative
data, we use a 5-point Likert scale. The qualitative data collection was through
an answer field (text box) provided against each Likert scale option to facilitate
open responses regarding potential challenges or issues respective to the chosen
value. This qualitative response allows us to dig deeper into the possible issues

58 W. N. Awan and I. Salman

faced by the teams, offering valuable context to complement the quantitative
data. Through this combined approach, we gain a comprehensive understand-
ing of the factors influencing sprint performance and identify areas for potential
improvement to enhance team effectiveness and productivity. We provide teams
with feedback based on responses, highlighting challenges identified by their
members.

It is to be noted that the data collection for this research is still in progress
because the capstone course is not complete yet.

3 Data Analysis

The data from the first four sprints is analyzed for this study because teams
are currently in their fifth sprint. Once all participants responded to the survey,
we analyzed both quantitative and qualitative data. For quantitative analysis,
we calculated the mean value of all responses after each sprint to track the
team’s performance improvements across four sprints. In qualitative data analy-
sis of open-ended survey responses(collected from text box incorporated against
each Likert scale option), we employed a top-down coding method to identify
the challenges encountered by teams. We use the factors outlined in the sprint
performance survey as the baseline for coding the qualitative data.

Conducting the same survey after each sprint enables us to examine the tra-
jectory of improvement and observe how the team’s performance evolves. Fol-
lowing the analysis of each sprint, a feedback document was shared with scrum
masters. Additionally, one-on-one meetings were arranged with each scrum mas-
ter to discuss the possible solutions to mitigate the identified challenges. The
scrum masters were responsible for discussing the feedback with their teams
during their next team meetings.

4 Results and Discussion

In this section, we answer our research question: “How does the implementation
of a constant feedback mechanism impact the performance of hybrid software
development teams?”

Figure 2 illustrates the performance improvements achieved by the team
across four sprints based on the results of quantitative data. The y-axis rep-
resents values from a 5-point Likert scale. The x-axis represents the factors
assessed in the survey. We observed a progressive enhancement in team perfor-
mance over four sprints, accompanied by a reduction in challenges related to
communication, collaboration, and team conflict.

From qualitative data analysis of the first sprint survey, we identified that the
language barrier is the most significant challenge reported by all teams due to the
diverse nationalities within the team. This challenge results in communication
and collaboration issues. For example, in response to the question related to
communication issues, P1 from T2 reported that “language barrier -can not
express ourselves as freely, lack of communication - even when asking something

Constant Feedback Impact on Team Performance 59

Fig. 2. Comparison of sprint performance survey results across four sprints

some would just keep quiet” and P7 from T3 reported“despite encouraging active
discussion, most members either don’t participate in the discussion or find that
the topic does not require their input”. About collaboration effectiveness, P8 from
T1 reported “The team is great and does good work, however, I find that most of
the team has a hard time focusing on meetings/are hesitant to actively participate
in the discussion and in case most cases the meeting takes excessive effort to
carry out” and P1 from T2 reported that“Not enough positive feedback between
team members”. Other reported challenges include scheduling the meeting due to
conflicting timings, unclear requirements, task division, fewer meetings, technical
conflicts, and deviation from agreed working styles. All were reported in the
context of the factors that negatively impact team progress and performance.

Following the second sprint, similar challenges persisted. Hence, during feed-
back sessions, we encouraged Scrum masters to organize team-building activities
and implement weekly in-person meetings to enhance team relationships and
minimize misunderstandings. To avoid meeting scheduling issues, scrum masters
were advised to schedule the next sprint events (planning, review, and retrospec-
tive) towards the end of every sprint meeting. They were also advised to consider
the availability of their PO along with the team members. We recommended hav-
ing fixed days with adjustable timings to accommodate team members’ schedules
for daily meetings.

In the third sprint, teams followed the recommended practices and showed
improvements regarding team collaboration, communication effectiveness and
overall collaboration. In the fourth sprint, we observed further enhancements
in overall performance, as shown in Fig. 2. Teams progressively developed skills
and gained experience and constant feedback enabled them to timely reflect on
identified factors, enhancing overall performance. In the fourth sprint survey,
responding to the same question regarding communication issues participant P1

60 W. N. Awan and I. Salman

from T2 reported that “Communication was much better, even if the language
barrier was still there it was well managed” and P8 from T1 reported “Com-
munication during the meetings could be more active, but otherwise, the com-
munication was smooth, and in-person meetings especially were quite good for
communication”. In Fig. 3, the left panel shows communication improvements
among team members across four sprints. In response to collaboration effec-
tiveness, participant P4 from T3 reported that “We started having face-to-face
meetings which made everything easier” and P1 from T2 reported“More feedback
has been given since previous Sprints. The team feels more comfortable talking to
each other”. In Fig. 3, the right panel shows collaboration improvement among
team members across four sprints.

Fig. 3. Communication effectiveness and overall collaboration across four sprints

5 Conclusion and Future Work

In this paper, we discuss the preliminary results on the impact of constant feed-
back mechanisms in enhancing hybrid scrum team performance from a case study
conducted with undergraduate students enrolled in a capstone course. The find-
ings revealed that constant feedback mechanism, facilitated by self-perceived per-
formance surveys after each sprint cycle, significantly contributed to enhancing
team performance. This was achieved by providing teams with timely feedback
and opportunities for reflection and improvement.

The next phase of our study involves analyzing verbal, non-verbal, and tex-
tual communication data collected throughout the course. We’ll utilize AI tools
to determine the factors influencing individual well-being within teams and assess
how these factors impact overall team performance. We also plan to conduct a
multiple case study with professionals to assess the effectiveness of the employed
approaches in the industrial agile hybrid work context. This step would also
leverage the generalizability of our findings.

Constant Feedback Impact on Team Performance 61

References

1. Giuffrida, R., Dittrich, Y.: A conceptual framework to study the role of commu-
nication through social software for coordination in globally-distributed software
teams. Inf. Softw. Technol. 63, 11–30 (2015)

2. Qureshi, R., Basheri, M., Alzahrani, A.A.: Novel framework to improve communi-
cation and coordination among distributed agile teams. Int. J. Inf. Eng. Electron.
Bus. 10(4), 16–24 (2018)

3. Quek, S.W.D., et al.: Improving teamwork in software engineering projects in
higher education. In: Proceedings - Frontiers in Education Conference, FIE, Insti-
tute of Electrical and Electronics Engineers Inc. (2023)

4. Graziotin, D., Wang, X., Abrahamsson, P.: Do feelings matter? On the correlation
of affects and the self-assessed productivity in software engineering. J. Softw.: Evol.
Process 27, 467–487 (2015)

5. Ford, D., et al.: A tale of two cities: software developers working from home during
the COVID-19 pandemic (2020)

6. Lind, G., Mishchenko, M.: Positive feedback. In: Radical Therapy for Software
Development Teams, pp. 135–141. Apress, Berkeley (2024)

7. Huang, V.W., Krueger, K., Cohen, T., Hilton, M.: Improving software engineering
teamwork with structured feedback. In: Proceedings of the 55th ACM Technical
Symposium on Computer Science Education, New York, NY, USA, vol. 1, pp.
1414–1420. ACM (2024)

8. Sharp, H., Baddoo, N., Beecham, S., Hall, T., Robinson, H.: Models of motivation
in software engineering. Inf. Softw. Technol. 51, 219–233 (2009)

9. Kluger, A.N., Denisi, A.: The effects of feedback interventions on performance: a
historical review, a meta-analysis, and a preliminary feedback intervention theory
we argue that a considerable body of evidence suggesting that feedback intervention
(FI) effects on performance are quite vari. Technical report, vol. 2 (1996)

10. Laanti, M.: Agile and wellbeing - stress, empowerment, and performance in Scrum
and Kanban teams. In: Proceedings of the Annual Hawaii International Conference
on System Sciences, pp. 4761–4770 (2013)

11. Ralph, P., et al.: Pandemic programming: how COVID-19 affects software devel-
opers and how their organizations can help. Empir. Softw. Eng. 25, 4927–4961
(2020)

12. Russo, D., Hanel, P.H., Altnickel, S., van Berkel, N.: Predictors of well-being and
productivity among software professionals during the COVID-19 pandemic - a
longitudinal study. Empir. Softw. Eng. 26, 7 (2021)

13. Wright, T.A., Bonett, D.G.: Job satisfaction and psychological well-being as non-
additive predictors of workplace turnove. J. Manage. 33, 141–160 (2007)

14. Gendron, M., Roberson, D., van der Vyver, J.M., Barrett, L.F.: Perceptions of
emotion from facial expressions are not culturally universal: evidence from a remote
culture. Emotion 14(2), 251–262 (2014)

62 W. N. Awan and I. Salman

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Dual Effects of Hybrid Working
on Performance: More Work Hours

or More Work Time

Darja Smite1,2(B), Anastasiia Tkalich1, Nils Brede Moe1,2,
Panagiota Chatzipetrou3, Eriks Klotins2, and Per Kristian Helland4

1 SINTEF, 7034 Trondheim, Norway
darja.smite@bth.se

2 Blekinge Institute of Technology, 371 79 Karlskrona, Sweden
3 Örebro University, Örebro, Sweden

4 Storebrand, Oslo, Norway

Abstract. Work in software development companies has become
increasingly hybrid with employees altering days of working in the office
with days of working remotely from home. Yet, little is know about the
efficiency of such way of working because the current scale of remote
working is unprecedented. In this paper, we present our findings from
a company-wide survey at Storebrand - a large-scale Norwegian fin-
tech company, focusing on perceived performance. Our analysis of 192
responses shows that most employees report being able to perform the
planned tasks. Further, half of respondents perceive to have increased
work hours. Through qualitative analysis of open-ended commentaries
of respondents we learned that remote working has dual effects on the
perceived work hours - some employees report working longer hours and
others report having more work time due to efficient use of the time
throughout the day. Finally, we recommend managers to discuss and
address the concerning habits of employees caused by increased connec-
tivity and inability to stop working, before these lead to burnout and
disturbances in the work/life balance.

Keywords: Hybrid · Flexible · Remote · Performance · Work hours

1 Introduction and Related Work

Many software development companies today have become places of hybrid work-
ing with polices that institutionalize remote-first culture with little onsite pres-
ence, hybrid work culture often with rather flexible onsite presence, and office-
first culture with frequent office presence yet some flexibility for working remotely
[10]. As a result, individuals can choose, at least to some degree, when to work
remotely and when to have office-based work [3,7,10,13].

Hybrid working, that is, alternating between working at the office and work-
ing remotely, is said to bring the best of the two worlds: remote and onsite work-
ing. The documented benefits of remote working include reduced commute time,
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 63–70, 2025.
https://doi.org/10.1007/978-3-031-72781-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-72781-8_7

64 D. Smite et al.

better conditions for focused work, a more comfortable work environment, and
better work-life balance [12,13]. In turn, office working provides the opportunities
to socialise face-to-face, facilitate efficient brainstorming and problem-solving
sessions, provide help and onboard team members, have spontaneous interac-
tions, and strengthen team cohesion and psychological safety, all the aspects
that are reported to be missing in fully remote work rhythm [15]. Yet, the abil-
ity to tap into these benefits is conditioned by the level of co-presence. Individual
office presence, does not guarantee that people meet and interact, if office days
are not synchronized [8]. Even when the majority of team members opt for office-
based work, many teams maintain a hybrid structure to accommodate those who
prefer arrangements that are more remote in nature [13].

The lack of co-presence significantly affects communication, as well as the
effectiveness of the regular coordination mechanisms when used in a computer-
mediated fashion [5,14]. When some people are working from home and others
are working from the office, conducting spontaneous discussions is difficult and
sub-groups emerge within the team [15]. Hybrid teams are found to have an
increased need for coordination which shifted from informal, spontaneous face-
to-face coordination towards more formal, consistent, technology-mediated syn-
chronous (i.e. meetings) and asynchronous (e.g. shared documents; Slack mes-
sages) communication [14]. Further, agile ways of working and rituals that heav-
ily rely on co-presence intend to facilitate collaboration and enable individual
performance. Early studies of hybrid agile teams show that many agile practices
held remotely are compromised [14]. The effects of hybrid work on performance
is thus to be understood.

The key questions for leaders today center around the ways to find a bal-
ance between individual, team, and organizational needs. In particular, many
companies try to understand the value and benefits of office presence vs remote
working, and how much office presence or co-presence in work groups is sufficient
to maintain performance, and keep employees satisfied.

Motivated by the above-mentioned challenges we seek to answer the follow-
ing research question: How is perceived performance affected by hybrid
working? To address our research question, we conducted a case study in a
large-scale Norwegian fintech company.

2 Research Methodology

Empirical Background: In this workshop paper, we report our findings based
on the data collected at Storebrand, a Norwegian financial services company that
offers pension, savings, insurance, and banking products to both the private and
the business markets. Based on a strategic work launched at the start of the
COVID-19 pandemic, Storebrand committed to changing the corporate work
policy to explicitly permit flexible working. Storebrand had used agile methods
for over a decade and can be understood as a mature agile organization.

Hybrid strategy at Storebrand is based on a belief that a one-size-fits-all
solution does not exist and even one lasting solution for the same team can

Dual Effects of Hybrid Working on Performance 65

be utopic. Therefore, the company intentionally fosters team-based discussions
over rules to build lasting habits around sound reasoning and cooperation rather
than strict policies. Despite a very flexible policy, Storebrand management does
believe in the importance of an attractive office and office-based working [9].
However, instead of asking how to attract people to the office, Storebrand defines
three core questions to guide their hybrid strategy:

– How can we organize our work as efficiently as possible to create the products
and services that our customers need?

– How can we create the most engaging and inclusive workplace possible?
– How can we ensure that all employees experience mastery and development?

Data Collection and Analysis: We collected the data through an online
survey. The survey was open during June 12–23, 2023, for all 2,166 employees and
gathered 1072 responses (over 50% response rate). Here, we report the analysis
of a subset of data from the software engineering department at Storebrand.

The software development department employed 399 software engineers and
business people who are involved in developing digital financial products and
work according to agile methods - large-scale Scrum and ScrumBan. Employees
are situated both in Norway and Sweden. Our sample includes 192 responses
(48% response rate). We focus on questions related to individual work rhythm,
perceived task performance, and perceived changes in work hours. The responses
were collected on a 5-point scale, including the response alternatives on a range
between “Not at all” to “Completely”, “Very dissatisfied” to “Very satisfied”,
“To a very small extent” to “To a very large extent”. The subset of survey
questions relevant for this paper is included in the Appendix.

Stratified analysis was performed for varying degrees of office presence.
Responses to open-ended questions were analyzed qualitatively using thematic
coding and generated themes that help explain the quantitative results.

3 Results

In the following, we present the results from surveying employees in the soft-
ware engineering department of Storebrand about their perceived performance.
In Fig. 1, we start with the details about the survey respondents and their demo-
graphic information, followed by their hybrid work rhythm in Fig. 2. We then, in
Fig. 3, present the distribution of responses to the performance question. This is,
to the employees’ ability to complete their tasks, stratified by the hybrid work
rhythm (proportion of the office presence vs remote working). We then seek
explanation for our results through the combined analysis of both quantitative
and qualitative responses to related questions.

Our survey represents experiences from predominantly Norwegian employees
from the software engineering department at Storebrand. 1/3 of the respondents
are female, and 2/3 are male respondents. The sample has a good representation
of employees in different age groups. With respect to commute time, the majority

66 D. Smite et al.

Fig. 1. Overview of the respondents

Fig. 2. Hybrid work rhythms

of respondents need 30–60 min to reach the office and roughly 1/3 lives within
30 min commute distance.

One of the interesting findings in the survey is related to the hybrid work
rhythms (See Fig. 2). Despite Storebrand’s flexible work policy, we found that
70% of respondents are working in the office half of the time or more. Only
10% do not visit the office regularly every week, four of which are working fully
remotely.

In Fig. 3, we illustrate the respondents’ ability to complete planned tasks.
We see that the majority of respondents are able to accomplish their tasks to a
large or very large extent. This means that hybrid working does not hinder per-
formance. Although employees with fully flexible and fully remote work rhythms
report higher performance scores, this result shall be taken with a grain of salt
because there are just a few respondents in these categories. The scores in the
categories with higher number of respondents are quite similar, with slightly bet-
ter scores in the category of employees having one to two days per week working
in the office.

To better understand the variance in perceived performance, we asked the
respondents about the changes in their work hours due to hybrid work, which
directly affect the ability to accomplish the planned work tasks. Further, we
explored the free-text responses related to performance questions and identified
further impact factors inherent in the hybrid ways of working.

The survey results suggest that half of respondents (50%) do not perceive
any change in the work hours and a marginal share of respondents feel that the
number of hours has slightly decreased (1%), as shown in Fig. 4. Yet, the other
half of respondents (49%) report an increase in work hours (29% responded that
work hours Slightly increased and 20% that work hours Increased, see Fig. 4).

Dual Effects of Hybrid Working on Performance 67

Fig. 3. Ability to complete tasks

Fig. 4. Changes in work hours and factors explaining these changes

This can also explain our findings with respect to positive performance scores as
more can be done when working longer hours. Detailed analysis shows that the
lowest number of respondents with increased work hours appear in the category
working 1–2 days in the office. Additional commentaries regarding the work
hours (from 26 respondents) pointed towards the different aspects of working
remotely (See Fig. 4). Among these, we found, for example, positive effects, such
as the lack of commute time that led to having more work time. However, the
most frequent reason contributing to having more or longer work hours was
increased connectivity, which related to higher mobilisation and lower threshold
for contacting the colleagues but also a more blurry boundaries between work and
private life. Descriptions in this category were sometimes alarming, indicating
that people sacrifice their free time and privacy for performing the work. Yet,
a fully onsite work is not an escape from increased work hours either. In the
category reporting 4–5 days weekly office presence, 52% report having increased
work hours.

68 D. Smite et al.

4 Concluding Discussion

In this paper, we presented our findings from studying hybrid work rhythms
and individual performance. We found that a company with flexible work pol-
icy had, what one could judge as an unexpectedly high office presence. We also
found that the alternation of office presence and remote work results in most
employees (87%) reporting being able to perform their tasks to a large or very
large extent. This is in line with many other studies that report positive impacts
of remote working on productivity due to schedule flexibility, freedom from inter-
ruptions, and time saved on commuting [4,7,12,13,16]. Some studies that try to
understand why higher productivity occurs, point out that the increased outputs
can be attributed to employees working longer hours, suggesting that produc-
tivity increases might be illusive [1,2,13,14]. In our case, we found that high
performance can be indeed explained by the changes in the work hours - 52% of
respondents report an increase in work hours. Similarly, de Souza Santos et al.
found in their survey study that half of respondents acknowledged working over-
time, with some (3%) even exceeding five extra hours per week [13]. The reasons
for increased work hours in our study echo the findings by de Souza Santos et
al.. We found increased work hours to be associated with a more efficient use
of time (contributing to having more work time), but also due to the negative
impacts of increased connectivity and not having a strict work/life separation
(contributing to longer work hours). Along with concerns about the tendency to
work longer hours, some researchers warn about the threats to work/life balance
[6,11,13].

At the same time, our results show that an increase in work hours is not
caused by increased remote working, as even respondents with the highest office
presence reported negative changes in work hours. Further, we discovered that
the lowest increase in work hours was reported by those only in the office 1–2
days a week. This may be due to having more control over work schedule, and
fewer interruptions when performing individual tasks. Since there is no clear
link between work arrangement and longer hours, we conclude that these con-
cern job pressure and individual habits related to increased connectivity. One
recommendation to address the emergent habits for those working from home
is to implement a “hard stop” practice-a preset time for logging off or turning
off the computer-which we found effective in our earlier study [11]. For those
working in the office, the availability of focused work places might be a solution.

In our future work, we will continue monitoring the changes in the work
hours and focus on understanding the work/life balance. While this study reports
findings on an individual level, further work shall also focus on understanding
the impact of remote and hybrid working on teams.

Acknowledgments. We would like to thank the studied company for their engage-
ment in our research. The work was partially supported by the Research Council of
Norway through the projects 10xTeams (grant 309344) and Transformit (grant 321477),
and by the Swedish Knowledge Foundation through the KK-Hög project WorkFlex
(grant 2022/0047).

Dual Effects of Hybrid Working on Performance 69

A Appendix: Survey Questions

In the following, we provide the subset of survey questions used in the analysis.

Location: Which country do you primarily work from? (Norway/Sweden/Other
countries)

Gender: Your gender (Female/Male/Other/Prefer not to disclose)

Role: Do you have responsibility for other’s work? (Yes, I have personnel respon-
sibility for 1+ persons/Yes, I have managerial responsibility without personnel
responsibility/No/Not sure)

Age: How old are you? (18–27 years/28–37 years/38–47 years/48–57 years/58–
67 years/Older than 67 years)

Commute: How much time do you spend commuting to the office (one way)?
(Less than 15 min/Between 15 and 30 min/Between 30 min and 1 h/Between 1
and 2 h/More than 2 h/Not relevant)

Work rhythm: How often do you work in the office during a typical week? (I
never or almost never work in the office/Less than one day a week/1–2 days a
week/2–3 days a week/4–5 days a week/I don’t have fixed days I work in the
office)

Performance: To what extent were you able to perform all your tasks in the
past month? (To a very small extent/To a small extent/Somewhat/To a large
extent/To a very large extent)

Changes in work hours: How do you perceive these aspects have changed
due to hybrid work - Number of hours you work? (Have been reduced/Slightly
reduced/Remained the same/Slightly increased/Have increased/Not relevant)

Explanation: If you experienced any changes, what is the reason for it?

References

1. Bloom, N., Liang, J., Roberts, J., Ying, Z.J.: Does working from home work?
Evidence from a Chinese experiment. Q. J. Econ. 130(1), 165–218 (2015)

2. Chesley, N.: Technology use and employee assessments of work effectiveness, work-
load, and pace of life. Inf. Commun. Soc. 13(4), 485–514 (2010)

3. Conboy, K., Moe, N.B., Stray, V., Gundelsby, J.H.: The future of hybrid software
development: challenging current assumptions. IEEE Softw. 40(02), 26–33 (2023)

70 D. Smite et al.

4. Conradie, W.J., De Klerk, J.J.: To flex or not to flex? Flexible work arrangements
amongst software developers in an emerging economy. SA J. Hum. Resour. Manag.
17(1), 1–12 (2019)

5. Espinosa, J.A., Carmel, E.: The impact of time separation on coordination in
global software teams: a conceptual foundation. Softw. Process: Improve. Pract.
8(4), 249–266 (2003)

6. Gorjifard, R., Crawford, J.: Working from home: impact on wellbeing and work-life
balance. N. Z. J. Employ. Relat. 46(2), 64–78 (2021)

7. Malhotra, A.: The postpandemic future of work (2021)
8. Moe, N.B., Ulsaker, S., Hildrum, J.M., Smite, D., Ay, F.C.: Understanding the

difference between office presence and co-presence in team member interactions.
In: Proceeding of the 57th Hawaii International Conference on System Sciences
(HICSS 2024). AIS Electronic Library (2024)

9. Smite, D., Klotins, E., Moe, N.B.: What attracts employees to work onsite in
times of increased remote working? IEEE Softw. 1–5 (2024). https://doi.org/10.
1109/MS.2024.3375964

10. Smite, D., Moe, N.B., Hildrum, J., Gonzalez-Huerta, J., Mendez, D.: Work-from-
home is here to stay: call for flexibility in post-pandemic work policies. J. Syst.
Softw. 195, 111552 (2023)

11. Smite, D., Moe, N.B., Klotins, E., Gonzalez-Huerta, J.: From forced working-from-
home to voluntary working-from-anywhere: two revolutions in telework. J. Syst.
Softw. 195, 111509 (2023)

12. Smite, D., Tkalich, A., Moe, N.B., Papatheocharous, E., Klotins, E., Buvik, M.P.:
Changes in perceived productivity of software engineers during COVID-19 pan-
demic: the voice of evidence. J. Syst. Softw. 186, 111197 (2022)

13. de Souza Santos, R., Grillo, W., Cabral, D., de Castro, C., Albuquerque, N., França,
C.: Post-pandemic hybrid work in software companies: findings from an industrial
case study. arXiv e-prints, pp. arXiv–2401 (2024)

14. de Souza Santos, R.E., Ralph, P.: A grounded theory of coordination in remote-first
and hybrid software teams. In: Proceedings of the 44th International Conference
on Software Engineering, pp. 25–35 (2022)

15. Tkalich, A., Šmite, D., Andersen, N.H., Moe, N.B.: What happens to psychological
safety when going remote? IEEE Softw. (2022)

16. Vargas Llave, O., et al.: The rise in telework: impact on working conditions and
regulations (2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/MS.2024.3375964
https://doi.org/10.1109/MS.2024.3375964
http://creativecommons.org/licenses/by/4.0/

Hybrid Meetings in Agile Software
Development

Viktoria Stray1,2(B) , Nils Brede Moe2 , and Susanne Semsøy1

1 University of Oslo, 0373 Oslo, Norway
stray@ifi.uio.no

2 SINTEF, Trondheim, Norway

Abstract. Hybrid meetings, which combine in-person and virtual par-
ticipants, are becoming increasingly common in modern agile workplaces.
Despite their prevalence, these meetings often lead to asymmetric par-
ticipation. In this study, we explored the nature of participation asym-
metries in hybrid meetings and identified the technical and social factors
contributing to these disparities. We analyzed anonymized access card
data, observed hybrid meetings, and conducted interviews with employ-
ees in a large-scale Norwegian software development organization. Our
findings reveal that the employees preferred to go to the office on Tues-
days and Wednesdays. In hybrid meetings, we found reduced engagement
from virtual participants compared to those co-located at the office, espe-
cially in the absence of a clear speaking order. Social-driven asymmetries
included difficulties in entering conversations, missing remarks and non-
verbal cues, and being left out of pre- and post-meeting discussions. Phys-
ical presence in meetings was found to be crucial for newly onboarded
team members. Future research should investigate what fosters inclusive
meeting practices to improve engagement and collaboration in hybrid
work environments.

Keywords: Collaboration · Coordination · Alignment · Hybrid work ·
Remote participation · Teamwork · Large-scale agile development

1 Introduction

Agile ways of working are changing because hybrid work is becoming the new
norm [8]. Agile teams and team members have the flexibility to choose, at least
to some degree, between remote and office-based work [3]. Smite et al. [17]
surveyed 20 companies and found that preferences for the proportion of time
spent in the office versus at home vary both across and within companies. Moe
et al. [11] explored the co-presence patterns of 17 agile teams in a company
whose employees work partly from home. They found significant variation in
co-presence practices. Some teams exhibited a coordinated approach, ensuring
team members were simultaneously present at the office. However, other teams
demonstrated fragmented co-presence, with only small subgroups of members
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 71–80, 2025.
https://doi.org/10.1007/978-3-031-72781-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_8&domain=pdf
http://orcid.org/0000-0002-6032-2074
http://orcid.org/0000-0003-2669-0778
https://doi.org/10.1007/978-3-031-72781-8_8

72 V. Stray et al.

meeting in person and the remainder rarely interacting with their team mem-
bers face-to-face. Agile teams spend a substantial amount of time in meetings,
which are crucial venues for coordination, communication, and decision-making
[21]. Developers report satisfaction when they invest their time in constructive
meetings; however, long or unconstructive meetings are perceived as a waste of
time and trigger negative emotions [5,20]. Excessive time in meetings can limit
developers’ sense of autonomy and reduce their productivity [6]. Scheduled meet-
ings, while necessary for maintaining alignment across multiple teams, are often
seen as disruptions to the developers’ workflow. Forced participation in meetings,
especially those deemed irrelevant to immediate tasks, contributes to a sense of
dissatisfaction [6,20]. Additionally, unconstructive meetings result in time away
from primary tasks, increasing employee stress and reducing job satisfaction [14].
Hybrid agile meetings are now common, offering both benefits and challenges.
Positively, these meetings provide increased flexibility in scheduling and adding
participants, save travel time, reduce environmental impact, and improve effi-
ciency [12,19]. Negatively, they can cause videoconference fatigue, with partici-
pants feeling physically and mentally drained after attending a meeting virtually
[2]. Additionally, remote participation demands more structure, often resulting
in remote participants remaining in a listening mode [22].

Hybrid meetings are becoming more common but remain challenging to con-
duct and can reduce job satisfaction, underscoring the need for more studies on
how to manage them effectively. Our objective, therefore, is to answer the fol-
lowing research question: RQ: How can organizations manage hybrid meetings?
To address our research question, we conducted a case study in a large-scale
Norwegian Fintech company called BankDev (a pseudonym).

2 Context and Methodology

BankDev develops software for a group of Norwegian banks. The organization
employs roughly 650 people in 24 teams, including both in-house employees and
consultants, and caters to both the consumer and professional market [10]. We
collected and analyzed anonymized access card data, and found the most popular
office days to be Tuesdays and Wednesdays (see Fig. 1). We conducted interviews
and observations in two teams: Team Fixed and Team Flex. Team Fixed had
virtual days on Monday, where all team members should work from home by
default. Tuesday and Wednesday were office days, while the team members could
choose on Thursdays and Fridays where to work from. In contrast to Team Fixed,
Team Flex offered complete flexibility, allowing individuals to choose their work
location on any day without predetermined office or work-from-home days.

In total, 23 meetings were observed in the period October 2021 to March
2022. Three of them can be described as fully virtual, and 20 of them were
hybrid. We observed 16 of the meetings physically co-located and 7 virtually
using Microsoft Teams. We observed ten different types of meetings: sync meet-
ings (5), retrospectives (4), Friday-wins (3), delivery meetings (2), show-and-tell
meetings (2), team meetings/check-ins (2), presentations (2), stand-up in sub-
team (1), post mortem meeting (1), and team lead hybrid-workshop (1).

Hybrid Meetings in Agile Software Development 73

Fig. 1. Office presence of one typical week in BankDev in March 2022.

Table 1. Overview of interviewees

Team Informant ID Role Experience in years Total commute times

Fixed 1 Team lead Over 10 years 1 h 20 min

Fixed 2 Developer Over 10 years 3 h

Fixed 3 Developer Under 2 years 30 min

Fixed 4 Developer 2–5 years 2 h

Fixed 5 Tester 5–10 years 2 h

Flex 6 Team lead Over 10 years 1 h 40 min

Flex 7 Developer Under 2 years 1 h

Flex 8 Developer 5–10 years 1 h 30 min

Flex 9 Developer Under 2 years 30 min

The company uses Slack, a well-known collaborating tool that allows chatting
and video calls. Slack is the main tool for facilitating communication within
the organization, especially within and between teams. On one occasion, Slack
was described as a business-critical system because the platform facilitates a
large amount of internal communication. To gain access, we had to be declared
trustworthy by the department handling privacy and security concerns. This
process took about two weeks.

The interviews were conducted between January 2022 and March 2022, and
aimed to provide further insights into what was found during the observations.
All interviews were recorded and transcribed. Table 1 shows an overview of the
interviewees’ roles, the level of experience each had in their role, and the total
daily commute time to the office. Commute time is included because travel time
to the office impacts the interviewees’ perspectives on hybrid work and its effects
on their daily routines. Semi-structured interviews with open-ended questions
were chosen in order to cover certain predefined topics, but also allow for explo-
ration of topics as they emerged. In total, nine interviews were conducted split
between the two research teams. The interviews lasted between 35 min to 86 min.

74 V. Stray et al.

3 Results

The interviewees said that working hybrid allowed them more flexibility, which
was reported to promote improved work-life balance and well-being. This finding
was more likely to apply if the individuals had families with young children.

However, the fact that many in BankDev decided to work several days from
home meant that many meetings were hybrid. Hybrid meetings consist of two
distinct groups: those attending from a co-located space, typically together in
a meeting room, and those participating remotely via digital conference tools.
Whereas interviewees could effortlessly name several benefits of co-located and
virtual meetings, all interviewees struggled to name benefits of hybrid meetings.

We found that hybrid meetings repeatedly seemed to include some degree
of asymmetric participation. These asymmetries never seemed intentional; they
occurred unconsciously due to the nature of hybrid meetings. We found that
the ones attending virtually consistently contributed and engaged less. Next, we
will report on the tech-driven and social-driven asymmetries we found and the
factors contributing to these asymmetries.

3.1 Tech-Driven Asymmetries

Tech-driven asymmetries consist of situations where there is a technical issue
or suboptimal solution, which causes a significant disadvantage for one group
or person. The most obvious example of this was when those co-located in the
meeting room had problems connecting to the virtual meeting. This created sit-
uations where the meeting could last several minutes before those attending vir-
tually were finally connected. The co-located group would give a short summary
of what had been discussed, which seemed to help the situation. Still, having
to provide summaries caused disruptions to the meeting. The most prolonged
delay we observed was eight minutes. Eight minutes was described as feeling like
a long time for virtual participants sitting alone just waiting. Another challenge
was related to the sound quality. Interviewee 7 said:

Conversations where there are many on the same microphone . . . it doesn’t
work that well. [...] For example, if there are discussions and many people
are talking over each other, then it becomes impossible to separate what is
said and by whom. [...] But when you are in the meeting room, your ears
are kind of able to do it.

Similarly, it was typical for noises like coffee mugs being placed on tables,
rustling with paper, or coughs and sneezes to override the microphone. Par-
ticipants attending virtually could, therefore, miss a lot of the conversations,
varying from a couple of seconds here and there to not being able to properly
hear what was being said for minutes. In addition, several informants explained
that since those in the meeting room did not experience the same issues, it was
difficult for them to be aware of and mitigate the problem. Those attending
virtually sometimes notified those co-located about the challenges. However, the
threshold of doing so was perceived as relatively high.

Hybrid Meetings in Agile Software Development 75

3.2 Social-Driven Asymmetries

Reduced Engagement from Virtual Attendees. When observing hybrid
meetings, it became apparent that the participants attending virtually generally
engaged and contributed considerably less than those being co-located. We found
that it happened consistently regardless of team, sub-team, or who was attending
virtually that specific day. Our most extreme observation was a meeting where six
were co-located, and two were attending virtually. The meeting lasted just over
one hour, and 56 min passed before one of those attending virtually spoke up.
The other was muted during the entire meeting. It was generally not uncommon
for virtual participants to wait until everyone from the meeting room had said
something before eventually engaging themselves. We recorded the time from
the start of the meeting to when the first virtual participant spoke in four other
meetings; on average, it took about eight minutes. Often, periods of silence
almost even seemed like a prerequisite for the virtual participants to engage.

When sitting in the same meeting room, participants would often casually
add small comments when others were speaking. These small comments served as
transitions in the conversation, allowing new participants to take the word easily
or comment on other comments. They also frequently used body language to
engage in the conversation. This resulted in conversations that flowed organically.
Active participation was more frequent, and the word was more often passed
between the co-located participants. This lively interaction in the meeting room,
however, created a higher barrier for virtual participants to join in, as the flow of
conversation and frequent use of body language among co-located participants
made it more challenging for those attending remotely to find opportunities to
speak. A developer, Interviewee 9, illustrated this point:

I think if there is a critical mass in the office, and you are sitting at home,
then it kind of feels like stepping onto a stage when you want to say some-
thing. Because they have such a good flow in the conversation, and suddenly
you interrupt them from [Microsoft] Teams. You get scared that you might
ruin that flow.

Interviewee 7 noted:

[When co-located] adding a quick comment doesn’t interrupt anyone. Vir-
tually it can and that’s a really nasty feeling if you suddenly interrupt
someone’s flow just because you wanted to add a little comment. There’s
less natural flow. You have to wait for one person to finish and the next
and the next. You really have to wait for your turn.

As a result, several informants reported only speaking up when they felt it
was imperative and warranted what they saw as an interruption. The character-
istics of hybrid meetings create a barrier between the co-located and the remote
participants.

76 V. Stray et al.

Virtual Attendees Missing Out on Side Conversations and Remarks.
Co-located participants sometimes turned to the person sitting close to them
and initiated small conversations. Not only were the virtual participants unable
to hear these conversations, but people ended up facing away from the meeting
room camera. This example also contributed to establishing an invisible barrier
between the two groups. At times, the rest of the co-located participants over-
heard these conversations and further commented on them, especially if it was
a question. As a result, the meeting could change topics without virtual partic-
ipants hearing the initial trigger. If no one repeated the question to the virtual
participants, we found that they engaged considerably less while discussing that
particular topic. This asymmetry was especially apparent when funny remarks or
jokes were whispered between co-located participants. The whole meeting room
could start laughing, while the virtual participants often looked quite confused.

Virtual Attendees Missing Out on Talk Before and After the Meet-
ings. Virtual participants were excluded from the talk before and especially
after the meetings, e.g., when walking back to the desks. Although these conver-
sations and feedback statements were not necessarily critical, they often served
as a positive and uplifting end to the meetings. Also, there were occasions where
these after-meeting talks were essentially a continuation of the meeting, with
exclusively the co-located group present. Unofficial sessions like these could last
several minutes. It never seemed like this was intentional, but rather sponta-
neously happened. On a few occasions, co-located participants sat down at their
desks and further discussed the topics of the meeting. Whenever this happened,
the discussions usually lasted between 5–15 min.

We also noticed that recently onboarded team members tended to stay in the
meeting room after the meetings to ask clarifying questions. We informally asked
an individual about this during observation, to which the person answered:

“When joining via Microsoft Teams, I usually have just as many questions,
but I don’t really want to spam my colleagues with messages. But when
we’re in the same room, I can ask these questions while finishing our coffee
after the meeting.”

3.3 Factors Contributing to Asymmetries

The number of participants and the type of meeting were important factors
influencing the degree of asymmetric participation. The types of meetings that
included discussion or did not have a clear agenda or speaking order performed
the worst in a hybrid meeting setting. Examples are different types of workshops
and planning meetings. When observing, we found that a lack of a clear speak-
ing order resulted in the co-located participants speaking up significantly more
frequently than virtual participants. If all participants were free to take the word
when they wished, the balance dramatically shifted towards those attending co-
located.

Hybrid Meetings in Agile Software Development 77

One of the most apparent examples of this pattern was in a Friday Wins
meeting where each team member could highlight what they had achieved that
week. They would also praise others for their wins. The conversation was exclu-
sively dominated by co-located participants for roughly ten minutes. When most
of the co-located participants had said something, the first virtual participant
spoke up. Of the five attending the meeting virtually, only two contributed. In
contrast, everyone sitting in the meeting room said something.

4 Discussion and Conclusion

In this study, we analyzed office access card data for an agile company and
investigated hybrid meetings by observing 23 meetings and conducting 9 inter-
views in two teams. Our analysis of the access card, interviews, and observations
showed that many in the organization decided to work from home for several
days, especially on Mondays and Fridays. A primary reason was not having to
spend time commuting and that having a more flexible schedule contributed to a
better work-life balance. These findings are similar to [4], and also other research
that has found a better work-life balance to be one of the most common benefits
of working from home [1,18].

We identified significant discrepancies in the participation levels of co-located
and virtual attendees in hybrid meetings. Our findings underscore that virtual
participants are disadvantaged by both technological and social barriers, which
diminish their ability to engage equally in the meeting dynamics. Our obser-
vations reveal that hybrid meetings often involve participation asymmetries,
with virtual attendees consistently engaging less and contributing more sporad-
ically than co-located participants. Furthermore, we found that being physically
present in meetings was crucial for newly onboarded developers. Our findings
align with those of [9], who studied the onboarding of globally distributed teams
in a financial institution and found that physical co-location was important,
while virtual participation in meetings proved troublesome.

Effective management of hybrid meetings is crucial for both team effective-
ness and the emotional well-being of employees. Gerardi et al. [5] found that
developers tend to feel more positive and satisfied when meetings are productive
and constructive. On the other hand, as also reported in [20], lengthy and uncon-
structive meetings can evoke negative emotions and are considered a waste of
time. Our findings are similar to [16], which found that the interaction in hybrid
meetings was unequal and even unfair for virtual participants. Remote partici-
pants feel isolated from the meeting, while co-located participants dominate the
interaction [16]. A recent study emphasizes that reducing barriers to participa-
tion is crucial for enhancing the design of hybrid meetings [7].

Saatçi et al. [16] argue that making meetings more inclusive for everyone is
one of the primary challenges of hybrid meetings. Despite advanced technologies,
practical issues still disrupt the inclusion of remote participants [15]. Virtual
participants often find it confusing to remember who is in the meeting room if
they are not visible to the camera [16]. Conversely, co-located participants face

78 V. Stray et al.

difficulties in including remote colleagues they cannot see, risking forgetting them
entirely. The use of video during calls aids participants, particularly new team
members, in understanding team dynamics and forming connections with peers
[13]. To improve inclusivity in hybrid meetings, co-located participants might
consider joining the call using their laptop cameras, which can make the meeting
feel entirely virtual and treat everyone as equal participants. Additionally, having
co-located participants manage turn-taking through meeting software features
like “raise hand” can enhance inclusivity [15]. Sporsem et al. [19] also highlight
that fully virtual meetings tend to achieve higher inclusion, as everyone has the
opportunity to participate.

In light of these challenges, organizations must strive to create more inclu-
sive hybrid environments. This can be achieved by investing in technological
solutions that ensure seamless connectivity and clear audio-visual quality for all
participants. Structuring meetings with clear agendas and predefined speaking
orders can help ensure that all voices are heard equally, regardless of their phys-
ical location. The future of work is hybrid, and we must continue to evolve our
understanding and methodologies to foster inclusivity and fairness in these set-
tings. This study provides a foundation for further research and action toward
optimizing hybrid meeting environments, ensuring that both virtual and co-
located participants can collaborate equitably.

Acknowledgements. We would like to thank the studied company for their engage-
ment in our research. The work was partially supported by the Research Council of
Norway through the project 10xTeams (grant 309344).

References

1. Bao, L., Li, T., Xia, X., Zhu, K., Li, H., Yang, X.: How does working from home
affect developer productivity? - A case study of Baidu during COVID-19 pandemic.
Sci. China Inf. Sci. 65(4), 142102 (2022)

2. Bennett, A.A., Campion, E.D., Keeler, K.R., Keener, S.K.: Videoconference
fatigue? Exploring changes in fatigue after videoconference meetings during
COVID-19. J. Appl. Psychol. 106(3), 330–344 (2021)

3. Conboy, K., Moe, N.B., Stray, V., Gundelsby, J.H.: The future of hybrid software
development: challenging current assumptions. IEEE Softw. 40(02), 26–33 (2023).
https://doi.org/10.1109/MS.2022.3230449

4. Ford, D., et al.: A tale of two cities: software developers working from home during
the COVID-19 pandemic. ACM Trans. Softw. Eng. Methodol. 31(2), 1–37 (2022)

5. Girardi, D., Lanubile, F., Novielli, N., Serebrenik, A.: Emotions and perceived
productivity of software developers at the workplace. IEEE Trans. Softw. Eng.
48(9), 3326–3341 (2022). https://doi.org/10.1109/TSE.2021.3087906

6. Gustavsson, T., Berntzen, M., Stray, V.: Changes to team autonomy in large-scale
software development: a multiple case study of scaled agile framework (SAFe)
implementations. Int. J. Inf. Syst. Proj. Manag. 10(1), 29–46 (2022)

7. Hosseinkashi, Y., Tankelevitch, L., Pool, J., Cutler, R., Madan, C.: Meeting effec-
tiveness and inclusiveness: large-scale measurement, identification of key features,
and prediction in real-world remote meetings. Proc. ACM Hum.-Comput. Interact.
8(CSCW1) (2024)

https://doi.org/10.1109/MS.2022.3230449
https://doi.org/10.1109/TSE.2021.3087906

Hybrid Meetings in Agile Software Development 79

8. Khanna, D., Christensen, E.L., Gosu, S., Wang, X., Paasivaara, M.: Hybrid work
meets agile software development: a systematic mapping study. In: IEEE/ACM
17th International Conference on Cooperative and Human Aspects of Software
Engineering (CHASE 2024) (2024). https://doi.org/10.1145/3641822.3641863

9. Moe, N.B., Stray, V., Goplen, M.R.: Studying onboarding in distributed software
teams: a case study and guidelines. In: Proceedings of the 24th International Con-
ference on Evaluation and Assessment in Software Engineering, pp. 150–159 (2020)

10. Moe, N.B., Stray, V., Šmite, D., Mikalsen, M.: Attractive workplaces: what are
engineers looking for? IEEE Softw. 40(5), 85–93 (2023)

11. Moe, N.B., Ulsaker, S., Hildrum, J.M., Smite, D., Ay, F.C.: Understanding the
difference between office presence and co-presence in team member interactions.
In: Proceedings of the 57th HICSS. AIS Electronic Library (2024)

12. Redlbacher, F., Hattke, F.: How virtual meetings stimulate process innovations in
organisations: mixed-methods evidence from emergency response providers. Inno-
vation 26(1), 1–22 (2024)

13. Rodeghero, P., Zimmermann, T., Houck, B., Ford, D.: Please turn your cameras on:
remote onboarding of software developers during a pandemic. In: 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), pp. 41–50. IEEE, Madrid (2021)

14. Rogelberg, S.G., Shanock, L.R., Scott, C.W.: Wasted time and money in meetings:
increasing return on investment. Small Group Res. 43(2), 236–245 (2012)

15. Saatçi, B., Akyüz, K., Rintel, S., Klokmose, C.N.: (Re) configuring hybrid meetings:
moving from user-centered design to meeting-centered design. Comput. Supported
Coop. Work (CSCW) 29(6), 769–794 (2020)

16. Saatçi, B., Rädle, R., Rintel, S., O’Hara, K., Nylandsted Klokmose, C.: Hybrid
meetings in the modern workplace: stories of success and failure. In: Nakan-
ishi, H., Egi, H., Chounta, I.-A., Takada, H., Ichimura, S., Hoppe, U. (eds.)
CRIWG+CollabTech 2019. LNCS, vol. 11677, pp. 45–61. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-28011-6 4

17. Smite, D., Moe, N.B., Hildrum, J., Gonzalez-Huerta, J., Mendez, D.: Work-from-
home is here to stay: call for flexibility in post-pandemic work policies. J. Syst.
Softw. 195, 111552 (2023)

18. Smite, D., Tkalich, A., Moe, N.B., Papatheocharous, E., Klotins, E., Buvik, M.P.:
Changes in perceived productivity of software engineers during COVID-19 pan-
demic. J. Syst. Softw. 186, 111197 (2022)

19. Sporsem, T., Moe, N.B.: Coordination strategies when working from anywhere:
a case study of two agile teams. In: International Conference on Agile Software
Development, pp. 52–61. Springer (2022)

20. Stray, V., Gundelsby, J.H., Ulfsnes, R., Brede Moe, N.: How agile teams make
objectives and key results (OKRs) work. In: Proceedings of the International Con-
ference on Software and System Processes and International Conference on Global
Software Engineering, pp. 104–109 (2022)

21. Stray, V., Moe, N.B., Bergersen, G., Kirkerud, J.: Behavioral aspects of agile soft-
ware development: a case study on meeting practices in a fintech organization. In:
Proceeding of the 57th HICSS. AIS Electronic Library (2024)

22. Tkalich, A., Šmite, D., Andersen, N.H., Moe, N.B.: What happens to psychological
safety when going remote? IEEE Softw. (2022)

https://doi.org/10.1145/3641822.3641863
https://doi.org/10.1007/978-3-030-28011-6_4

80 V. Stray et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

The 11th International Workshop
on Large-Scale Agile Development

Information on Submission

Agile Approaches in Critical
Infrastructures

Geir Kjetil Hanssen(B) and Martin Gilje Jaatun

SINTEF, Trondheim, Norway
ghanssen@sintef.no

Abstract. This paper explores the emergence of agile-inspired
approaches in the critical infrastructure sector, with a focus on the
current digital transformation of the Norwegian Oil & Gas industry. It
addresses how traditional plan-driven development and strict architec-
tural principles are challenged by the need to exploit the growing volume
of operational data, in search for better, faster, and safer operations. We
emphasize the increasing reliance on data for optimizing operations and
the inherent risks and culture clashes between Information Technology
(IT) and Operational Technology (OT). We furthermore discuss the role
of cybersecurity in this transition, illustrating how increased connectiv-
ity and agile-like approaches can both mitigate and exacerbate security
vulnerabilities.

Keywords: Agile Development · Critical infrastructures · Digital
Transformation · Security · Safety

1 Introduction

All aspects of our society are being digitalized, where increasing amounts of
data are gathered, shared, analyzed, and used to improve almost every con-
ceivable aspect of our lives. Well-known examples are streaming services, where
we consume media in totally different ways than before, where data about how
we consume media is used to tailor content and increase consumption. Another
example is banking services that only can be accessed via self-managed solu-
tions. Following this development, we also see a very clear trend of digitalization
also within critical infrastructures, such as energy production and distribution
systems. This is however an industry that is“invisible” to the everyday consumer.
It’s based on traditional and trusted technologies and a conservative and change-
resistant culture where the pace of change is moderated by strict regulations,
where change must be restricted and controlled to minimize unintentional mis-
takes, which - in worst case scenarios - can lead to catastrophic events, and
ultimately loss of lives [3].

In this paper, we look into the Norwegian Oil and Gas sector which is cur-
rently undergoing a massive digital transformation [3]. In short, operational tech-
nology (OT) systems, e.g., drilling systems on off-shore installations, are being
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 83–89, 2025.
https://doi.org/10.1007/978-3-031-72781-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_9&domain=pdf
http://orcid.org/0000-0003-2718-6637
http://orcid.org/0000-0001-7127-6694
https://doi.org/10.1007/978-3-031-72781-8_9

84 G. K. Hanssen and M. G. Jaatun

instrumented (e.g., via edge devices) and used as data sources to gather vast
amounts of detailed data that are used to optimize drilling. Another example
is data that are harvested from production equipment used to monitor wear
and tear to enable predictive maintenance, where there are great cost savings
in replacing expensive equipment only when needed, instead of at fixed service
intervals. The main driver for such digitalization efforts is the search for faster
and more efficient operations [9]. In the case of oil and gas production, it is about
producing more energy resources, within shorter time, at lower cost, while also
ensuring high operational availability and maintaining very strict safety require-
ments.

In Norway, oil and natural gas is produced at very large off-shore installa-
tions that rise hundreds of meters above the sea bed, and where resources are
extracted through drilling holes reaching kilometres below the sea-bed. These
are complex installations consisting of complex sub-systems, ranging from highly
specialized operational technologies (OT) where the production happens (the so-
called“sharp end”), to traditional IT-systems that are used by administrative per-
sonnel. In between, we find control systems, historians (time-series databases),
functional safety systems (e.g. fire- and gas detection), etc. As a mean to enable
overview and control, systems are logically arranged in layers, from layer 0 where
we find the most critical operational technologies, to level 4 where we find tradi-
tional IT and office support systems. This layering of the system is often referred
to as the Purdue model [13], illustrated in Fig. 1. Level 0 is the production level,
where the consequences of failures are the highest and respectively, the need for
protection is the highest. Level 1 is the control-level (controlling level 0), level 2
controls several sub-areas (e.g. drilling), level 3 controls the operation of a site
(e.g. a well). Levels 0 to 3 is often known as the manufacturing zone. Over the
past years, a level 3.5 has been introduced as a demilitarized zone, separating
Level 4 and 5 which is called the enterprise zone (low-criticality) from Level 3-0
(high criticality). Level 4 and above are referred to as the IT-levels, while levels
0-3 are referred to as the OT-levels.

The rationale for organizing such complex systems in layered zones is that
each layer can have varying levels of criticality, and that control and communi-
cation between layers are easier to manage, and that the flow between two layers
have to pass through those in between.

This way of organising the system is however being challenged as a conse-
quence of the digitalization of this industry. For example, we can now define
a new (IT) level 6 - which is the cloud level that is connected via the Inter-
net above the enterprise zone, and that even can be outside the organization
itself in cases where one of the major cloud providers manage data at external
infrastructures. Adding to this, new system providers enter the market to offer
value-enhancing services (a.k.a. “AI magic”) where large amounts of data (gath-
ered from the operational level) are used to provide services that can increase
efficiency. For example, data about production can be used to deliver operator
support systems, where people, e.g., at the drilling deck, get better insight and
decision support via handheld devices. This, however, means that the flow of

Agile in Critical Infrastructure 85

data and control no longer always passes through the layers (and the protection
that these offer) [3]. Furthermore, providers of such solutions may also want to
gather data directly from lower levels to fully control the quality of data.

In sum, we see clear trends that the traditional control of how data flows
between layers are challenged as a consequence of the digitalization of this indus-
try with increasing amounts of data and - hence - increasing reliance on software-
based systems.

Level 2

Level 1

Level 3

Level 3.5 - DMZ

Level 4/5

"AI Magic"

Level 0

Firewall

Firewall

Firewall

Analysis results

Manual applica�on
of results

IT

OT

Fig. 1. To the cloud – and back again

2 The Challenge

2.1 Culture Shock

There are enduring culture differences between IT and OT. Traditionally, the
speed of change can be perceived as lightning vs. glacial in IT and OT, respec-
tively. Hence, we see that agile approaches are very relevant to the develop-
ment of IT-systems, while development of OT systems are subject to plan-driven
approaches. This is related to the need to enforce very strict control of change
in OT-systems through certification procedures that ensure that changes are
done according to very detailed international standards and regulations, which
again requires high precision in traceability from requirements to implementa-
tion. The petroleum industry is a conservative domain, that now needs to deal
with an increasing speed of change at the IT-levels and an expanding attack
surface, exposing the OT levels.

Traditionally, there has been a hard separation of IT and OT, also because
when bad things happen in the latter, really bad consequences tend to follow.
This schism also manifests itself in the dichotomy between security and safety [8]

86 G. K. Hanssen and M. G. Jaatun

– IT usually only needs to worry about the former, whereas OT is predominately
concerned with the latter. This is thus a very mature sector when it comes to
safety; how can we capitalize on this in the area of security?

With new IT and software vendors are entering the critical infrastructure
domain, culture is a major hurdle. Many of the players in the big data analytics
space come from the IT side, and see no problems with siphoning sensor data
from the lowest level, working their magic on the data in the cloud (Fig. 1),
and using the results to optimize processes in the sharp end. Many of these
new players are also relatively small, and do not have the rigid bureaucratic
processes common in large enterprises, like suppliers of classical process control
systems. It is therefore not surprising that a large number of these smaller, new
IT vendors operate under agile principles that have become the norm for non-
critical applications.

In a recent report by Vedere Labs [12] it is stated that OT vendors lack
a fundamental understanding of security by design, and that existing security
control designs are often broken.

Another consequence of this is that vendors often release low-quality patches.
This situation is exacerbated by the fact that many industrial control systems
still offer no appreciable security once the “hard crunchy shell” of perimeter
security has been breached [1].

2.2 A Need for Agility?

In search of a way to respond to the described development and challenges we
see that the mindset from agile software development practices may be relevant.
Firstly, requirements tend to change more frequently from the dynamic thereat
picture that follows the growing connectivity as well as the increasing amount
of data-savvy services that are being offered from new actors. Such new actors
may not have the safety-mindset that the established providers of traditional
control systems have. Hence, frequent evaluation of the threat situation, and
following, faster feedback-loops and reaction to threats (e.g. patches or other
security measures) can be a good strategy for having a closer control with rapid
change [5]. Secondly, an agile mindset may also offer better (and faster) inno-
vation capabilities. Where access to richer data (and new technologies) can be
used to create, test, and evaluate ideas faster. Thirdly, an agile approach can
also offer a better strategy for following up new actors more closely to ensure
that they adhere to the needed safety standards of this domain. Again, frequent
evaluation and feedback (and corrections) is the key.

3 How to Tackle Challenges/Way Forward?

There is a lot of technology in OT, but unlike in IT, uptime and accessibility are
extremely important and can only be sacrificed in situations where the safety
of people or the environment is at risk. There is a need to handle the span
between control and agility – where the conventional wisdom in OT goes beyond

Agile in Critical Infrastructure 87

“if it’s not broken, don’t fix it” to the point where even in cases where there
are known vulnerabilities in an OT system, the default stance is that change
should be avoided, as it might break a safety certification, and thus lead to a
halt in operation, which can be extremely costly. However, this stance is being
challenged by the new players. The digitalization of OT, with more edge devices
and sensors, and lots of data transferred to, and processed in the cloud, implies
an agile transformation. The data is used for optimization of processes, but that
means that the results need to be fed back into lower parts of the Purdue stack.

So, within this landscape of digitalization of previously isolated and strictly
controlled - and thus, secure - systems, which principles could we turn to, in
search of a more agile, but still secure (and safe) approach?

3.1 Safe&Secure Agile Development

With more data and more software in safety-critical systems, it becomes more
attractive to work in an agile manner to increase responsiveness and efficiency
when changes are needed. The challenge though is of course the need to maintain
security and to not introduce new vulnerabilities. One viable approach could be
to apply existing approaches for agile development of safety-critical systems,
such as R-Scrum [2] or SafeScrum [4], but where cybersecurity considerations
are managed in tandem with safety considerations. SafeScrum for example, is an
agile development approach that is well aligned with the generic IEC 61508 [6]
standard for functional safety. However, we believe that such approaches could
be extended to consider safety and security, jointly. In fact, such an approach
would be highly relevant in cases where cybersecurity directly relates to safety.
Furthermore, it could also be relevant to extend such agile processes to adhere
to both safety and security standards, like IEC 61508 and the IEC 62443 [7]
standard series, which rapidly is becoming the go-to standard for cybersecurity
for operational technology in automation and control systems (amongst others).

3.2 Zero Trust

Zero-trust [11] is currently a popular buzzword in OT, and for the particular
case at hand it may be vital. Optimization decisions made in the cloud need
to provide an audit trail and provenance, ensuring that no party have had the
opportunity to tamper with the information on the way to or from the cloud. On
the simplest level, it implies that any results need to be provided with a digital
signature that can be verified before these results are being used to modify OT
processes. Furthermore, if system engineering becomes more agile, security needs
to follow, and security must be automated whenever possible.

3.3 Cybersecurity Barriers

The petroleum industry has a long tradition in implementing safety barriers, e.g.
safety valves in connection with Emergency Shutdown Systems. Introduction of
agile principles also highlights the need for additional cybersecurity barriers.

88 G. K. Hanssen and M. G. Jaatun

Preliminary studies and ongoing work indicate that cybersecurity barriers
may integrate well with traditional safety barrier management, focusing on
identifying and managing existing cybersecurity measures rather than solely
deploying new ones. This integration is essential for maintaining the security
and integrity of operations against new and evolving digital threats [10].

4 Conclusion

Critical infrastructures, exemplified here by the Oil & Gas-industry, are under-
going an inevitable digital transformation that leads to an increased flow of data
and potential new cybersecurity vulnerabilities. Well-established principles for
protection are being challenged and operational technologies are exposed to an
increasingly more dynamic threat landscape. We argue that some of the key
principles in agile development should be considered in search for better ways
to ensure cybersecurity and system safety, and that there is a need for improved
feedback loops to ensure better responsiveness to emerging threats.

We have identified three challenges: (1) The need for an integrated culture
between IT and OT, (2) Newcyber-security challenges, and (3) The need for
technological responsiveness. Further work will explore how these should be
addressed.

Acknowledgements. This work has been funded by the Research Council of Norway
as part of the Cybersecurity Barrier Management project, grant number 326717.

References

1. Dragos: PIPEDREAM: CHERNOVITE’s emerging malware targeting industrial
control systems. Whitepaper. https://hub.dragos.com/whitepaper/chernovite-
pipedream

2. Fitzgerald, B., Stol, K.J., O’Sullivan, R., O’Brien, D.: Scaling agile methods to
regulated environments: an industry case study. In: 2013 35th International Con-
ference on Software Engineering (ICSE), pp. 863–872. IEEE (2013)

3. Hanssen, G.K., Onshus, T., Jaatun, M.G., Myklebust, T., Ottermo, M.,
Lundteigen, M.A.: Principles of digitalisation and IT-OT integration. Technical
report, SINTEF Digital (2021). https://www.havtil.no/globalassets/fagstoff/
prosjektrapporter/ikt-sikkerhet/sintef---report---principles-of-digitalisation-and-
it-ot-integration.pdf

4. Hanssen, G.K., Myklebust, T., Stålhane, T.: SafeScrum R©- Agile Development of
Safety-Critical Software. Springer International Publishing, Cham (2018)

5. Hanssen, G.K., Thieme, C.A., Bjarkø, A.V., Lundteigen, M.A., Bernsmed,
K.E., Jaatun, M.G.: A continuous OT cybersecurity risk analysis and mitiga-
tion process. In: Proceedings of the The 33rd European Safety and Reliabil-
ity Conference (ESREL 2023). Research Publishing Services (2023). https://doi.
org/10.3850/978-981-18-8071-1_P413-cd, https://ntnuopen.ntnu.no/ntnu-xmlui/
handle/11250/3103209

6. IEC: IEC 61508-1:2010 functional safety of lectrical/electronic/programmable elec-
tronic safety-related systems

https://hub.dragos.com/whitepaper/chernovite-pipedream
https://hub.dragos.com/whitepaper/chernovite-pipedream
https://www.havtil.no/globalassets/fagstoff/prosjektrapporter/ikt-sikkerhet/sintef---report---principles-of-digitalisation-and-it-ot-integration.pdf
https://www.havtil.no/globalassets/fagstoff/prosjektrapporter/ikt-sikkerhet/sintef---report---principles-of-digitalisation-and-it-ot-integration.pdf
https://www.havtil.no/globalassets/fagstoff/prosjektrapporter/ikt-sikkerhet/sintef---report---principles-of-digitalisation-and-it-ot-integration.pdf
https://doi.org/10.3850/978-981-18-8071-1_P413-cd
https://doi.org/10.3850/978-981-18-8071-1_P413-cd
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3103209
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3103209

Agile in Critical Infrastructure 89

7. IEC: IEC/TS 62443-1-1:2009 Security for industrial automation and control sys-
tems - Part 1-1: Terminology, concepts and models (2009)

8. Line, M.B., Nordland, O., Røstad, L., Tøndel, I.A.: Safety vs security? In: PSAM
Conference, New Orleans, USA (2006)

9. Lu, H., Guo, L., Azimi, M., Huang, K.: Oil and gas 4.0 era: a systematic review
and outlook. Comput. Ind. 111, 68–90 (2019)

10. Øien, K., Hauge, S., Jaatun, M.G., Flå, L., Bodsberg, L.: A survey on cybersecurity
barrier management in process control environments. In: 2022 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 113–
120. IEEE (2022).https://doi.org/10.1109/CloudCom55334.2022.00026, https://
ieeexplore.ieee.org/document/10005352/

11. Sanders, G., Morrow, T., Richmond, N., Woody, C.: Integrating zero trust and
DevSecOps. Carnegie Mellon University Software Engineering Institute White
Paper (2021). https://apps.dtic.mil/sti/trecms/pdf/AD1145432.pdf

12. Vedere Labs: OT:ICEFALL - the legacy of “insecure by design” and its implica-
tions for certifications and risk management. Technical report, Vedere Labs (2022).
https://www.forescout.com/resources/ot-icefall-report/

13. Williams, T.J.: The Purdue enterprise reference architecture. Comput. Ind.
24(2), 141–158 (1994). https://doi.org/10.1016/0166-3615(94)900175, https://
www.sciencedirect.com/science/article/pii/0166361594900175

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/CloudCom55334.2022.00026
https://ieeexplore.ieee.org/document/10005352/
https://ieeexplore.ieee.org/document/10005352/
https://apps.dtic.mil/sti/trecms/pdf/AD1145432.pdf
https://www.forescout.com/resources/ot-icefall-report/
https://doi.org/10.1016/0166-3615(94)900175
https://www.sciencedirect.com/science/article/pii/0166361594900175
https://www.sciencedirect.com/science/article/pii/0166361594900175
http://creativecommons.org/licenses/by/4.0/

Social Capital in Software Product
Management: A Case Study From

a Large-Scale Agile Context

Astri Barbala1(B) , Nils Brede Moe1 , and Marthe Berntzen2,3

1 SINTEF, 7034 Trondheim, Norway
astri.barbala@sintef.no

2 University of Oslo, 0373 Oslo, Norway
3 Knowit Solutions AS, Universitetsgata 1, 0164 Oslo, Norway

Abstract. Although large-scale agile software development increasingly
is being organized in product areas, little research has to date looked into
the skills needed for central roles to succeed with software product man-
agement (SPM) in a large-scale setting. Addressing this research gap, this
paper provides insights into the skills and competencies deemed essential
among Product Managers and Product Owners in ScanBank, a Scandi-
navian fintech organization counting over 10,000 employees. Our findings
reveal that establishing and maintaining social networks are found to be
paramount for successfully performing SPM-related tasks in a large-scale
agile organizational context. We utilized a model for social capital con-
sisting of three different dimensions to analyze our data material and
highlight the value of social capabilities in enhancing collaboration and
efficiency within large-scale agile SPM.

Keywords: Product Management · Large-Scale Agile · Social
Capital · Coordination · SPM · Fintech

1 Introduction

In the rapidly evolving landscape of fintech, banks are increasingly adopting
agile methodologies to enhance their responsiveness and competitive edge. This
shift has not only transformed traditional banking practices but has also led to
the organization of agile software development around distinct product areas.
Such structuring is critical as it aligns development efforts with specific cus-
tomer needs and strategic business goals, necessitating a reevaluation of the
roles and competencies of product management within these organizations, first
and foremost Product Owners (POs) and Product Managers (PMs) [9]. While
current literature recognizes the structural and functional aspects of these roles
[15], there is a significant research gap regarding what skills and competencies
are deemed necessary for success in these positions, specially in agile companies
with as many as 10,000 employees.

c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 90–99, 2025.
https://doi.org/10.1007/978-3-031-72781-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_10&domain=pdf
http://orcid.org/0000-0002-3087-3350
http://orcid.org/0000-0003-2669-0778
http://orcid.org/0000-0003-1455-2562
https://doi.org/10.1007/978-3-031-72781-8_10

Social Capital in Software Product Management 91

This study delves into the importance of social networks in large-scale agile
Software Product Management (SPM) by building on interviews from the Scan-
dinavian fintech organization ScanBank (a pseudonym). We build on the concept
of social capital [11,16] to discuss our findings, which is an established theory
utilized within the strand of software engineering research focusing on human
values and social networks. Our study was led by the following research question:

RQ: What is the role of social capital in large-scale agile SPM?
By aligning the principle of social capital with the dynamics of software prod-

uct management in large-scale agile environments, we demonstrate how nurtur-
ing relational networks and social interactions can bolster collaborative efforts
and efficiency in product management within large organizations engaged in agile
practices.

2 Background

2.1 Software Product Management

The complexity and scale of large-scale organizations introduce three fundamen-
tal challenges when it comes to agile product management. First, the product
development reaches the point where it is almost impossible to know every-
thing about a system’s development and evolution. Second, large-scale develop-
ment efforts require the formation or scaling of new product teams [3]. Finally,
in large product organizations there are many dependencies between products
which requires constant planning, prioritization and stakeholder management.
In a recent study, Berntzen et al. [2] found the use of seventeen coordination
mechanisms in a product area with 8 teams. To manage the complexity, Bass [1]
identified nine different functions that POs have in large-scale projects, which
included architectural coordination, assessing risk, and ensuring project compli-
ance with corporate guidelines and policies. As such, the PO role is a complex
role with a broad set of responsibilities, which in large-scale settings may need
to coordinate complex, interdependent tasks and team goals contributing to the
overall goals of the product development. The key question is then; how can
software PMs and POs in large-scale agile organizations efficiently cultivate the
knowledge and skills needed in the product development?

Although studies conducted on SPM in large-scale agile settings still are
scarce, previous research has attempted to map out activities typical of SPM
roles. For instance, Maglyas et al. [8] outlined 12 activities commonly per-
formed by Product Managers, with vision creation, product lifecycle manage-
ment, roadmapping, release planning, and product requirements engineering
highlighted as fundamental tasks. The many and complex tasks result in the
PM role–at least the typical PM tasks–often being paramount for a product’s
success, and previous research found that there are many dangers connected to
attempting to conduct SPM without a dedicated Project Manager [7]. These are
connected to weakened leadership, decreased performance, greater rework, and
delays, which highlights the essential role of dedicated product management in
navigating the challenges of large-scale software development.

92 A. Barbala et al.

2.2 Social Capital

One concept that pinpoints the value-creating properties of social skills and com-
munication competency is that of social capital [4,11]. Social capital is the sum of
the actual and potential resources derived from the network of relationships pos-
sessed by an individual or social unit. The term describes the social connections
a person has, encompassing relationships with other individuals, organizations,
and institutions. These social relations can in turn be capitalized on for achieving
goals, as substantial social capital can result in benefits in the form of assistance
and personal services from their relationships. The sociologist Pierre Bourdieu
[4] is the theorist who many associate with the term, and central to his thinking
is the idea that social capital constitutes an essential element in understanding
the opportunities for cooperation and the dynamics between different actors.

Although Bourdieu primarily viewed social capital as a characteristic of the
individual rather than the collective, organizational researchers have made use of
the concept to discuss interaction processes within organizations. For instance,
a widely cited study by Jane Dutton and Belle Ragins [6] examined how positive
social capital is created and maintained in organizations. They uncovered that
the underlying mechanisms for social capital that benefits both the organiza-
tion and individuals are motivation and opportunity structures, such as favor-
able communication channels and sufficient resources. Furthermore, Dutton and
Ragins highlight the importance of focusing both on the means with which social
capital is created and the goals it is used for, in order for social capital to be
linked to cross-organizational co-creation: “Social capital is positive if the means
by which it is created expand the capacity of both individuals and groups. Social
capital is positive if it helps people to develop, thrive and flourish in organiza-
tions, and thus achieve their goals in better ways”.

In software development research, the social capital concept has also gained
a foothold. Among others, Stol et al. [14] Wohlin et al. [16] and Moe et al.
[10] are among those that have utilized the social capital concept to study the
knowledge resources embedded in the networks of development teams, where
“who you know” directly affects your knowledge.

Wohlin et al. [16] build on Nahapiet and Ghoshal [11], two other central
social capital theorists, to formulate the following definition of social capital in
a software development context: “The actual and potential resources that are
embedded in, accessible through, and derivable from the relational network of
an individual actor or a social group”. We consider this definition advantageous
also for our study of SPM in ScanBank. By applying the social capital theory in
this article, we thus seek to create insight into how social networks are crucial for
successfully performing the roles of PM and PO in a large-scale setting, which
ScanBank is a prime example of.

3 Case, Method and Data Analysis

ScanBank, with its 10,000 employees primarily situated across three cities, boasts
a substantial workforce. Over 130 individuals were actively involved in core SPM

Social Capital in Software Product Management 93

functions, predominantly as POs or PMs, during the time of the data collection.
Their organizational landscape is marked by ongoing structural and technolog-
ical transformations, notably accentuated by a significant technical transition
following a recent merger. Over 70% of the POs and PMs possessed more than
five years of experience within the company, hailing from diverse backgrounds
encompassing technical domains, such as engineering, and business-related sec-
tors. The introduction of the PO role in 2017 marked a pivotal shift in Scan-
Bank’s approach to product management. More details on SPM in the case can
be found in Moe et al. [9].

We adopted a case study methodology [12] to investigate SPM skills and com-
petencies within ScanBank. This approach offers a comprehensive and nuanced
understanding, crucial for our study given the scarcity of research on SPM. To
delve into these aspects, we conducted interviews with individuals engaged in
SPM across five business areas (see Table 1). The aim was to grasp the complex-
ities of product management in large-scale agile setups and gain insights into
the skills and competencies PMs and POs felt were central in their roles.

Our data analysis utilized a thematic analytical approach [5]. We applied
open coding techniques to gain a deep understanding of the content and to
start identifying preliminary codes. This process led to the emergence of vari-
ous themes, such as necessary skills for their role. Subsequently, we collectively
examined these emerging themes by thoroughly discussing each interview, aim-
ing to achieve consensus on the identified categories and themes. In the final
stages, we refined these by sorting our results into overarching themes, and we
used a model [11] for social capital in organizations as an analytical framework,
described in the following section.

Table 1. Data sources

Data source Details #

Interviews Product managers (5 female, 4 male) 19
Product owners (5 male)
Other product development role (2 female, 3 male)

Meetings Managers and people responsible for improving product management 5
Documents Strategic documents, product management survey, annual reports 3

4 Results

We identified 20 skills and competencies among PMs and 9 among the POs. The
most common answers for PMs were (number of answers in parenthesis):

– Good communication skills (11)
– Understanding the costumer (7)

94 A. Barbala et al.

– Understanding product vision (7)
– Technical competence (7)
– People skills (6)
– Navigating ScanBank (6)

For the PO role, these were the most common answers:

– People skills (4)
– Technical abilities (3)
– Cross-functional cooperation (3)

Since the importance of the social aspects of product management roles were
clearly the most dominating among our 19 informants, Nahapiet and Ghoshal’s
three-dimensional social capital model [11] was fitting for analyzing our results.
The structural dimension of social capital has direct impact on the condition
of accessibility to the network, the cognitive dimension influences accessibility
through shared language, roles and narratives, while the relational dimension
includes feelings of trust that are shared by the many actors. Although we sep-
arate these three dimensions analytically, they are highly interrelated [11].

4.1 Structural Dimension: Accessibility to the Network

The fact that that ScanBank is large and has various departments spread across
both geographical and administrative levels seemed to often be the root of our
informants’ answers in regard to what was needed for product management to
function smoothly in the organization. Several pointed to the importance of
knowing the structure of the company (that is, who to reach and how to reach
them) in order to get things done, with one interviewee saying: “There are lots
of experts and good people everywhere. You just have to know where to ask”.

One PM articulated the importance of managing the network of stakeholders:
“I have underestimated the importance of understanding how big our organization
is. You can come from a smaller company [. . .] and know the [product manage-
ment] theories very well. But that does not mean that it works in ScanBank”. He
also commented on the importance of onboarding new people in the network:
“Especially during Covid, when we were working with recruitment, it was proba-
bly difficult to understand how big our organization was, and who to follow up.
[...] In general, you should spend more time on it during onboarding processes”.

Although ScanBank’s complexities meant it could not easily be compared to
many other product management contexts elsewhere, we found that maneuvering
the organizational structure and knowing who to connect with was a skill that
experienced PMs and POs often would handle easier. One senior PM with only
one year of experience in ScanBank quickly listed “gathering information, sharing
information, and talking to people” when asked about the most valued skills for
product management people, adding: “I have worked so many years myself that
I know who to talk to and what to do [despite being new in ScanBank]”.

Social Capital in Software Product Management 95

4.2 Cognitive Dimension: Shared Understandings, Values and Goals

Although knowing the organizational structure and where to go to talk to the
right people in ScanBank was central for achieving results in product manage-
ment roles, knowing how to connect with people in a way that underpinned a
sense of community was also underlined as essential by our interviewees. One PO
who was praised by colleagues for his technical competence still highlighted ’soft
skills’ as crucial for his role, especially with regards to fostering shared values
and understanding within the team. Questioned about key competences needed
in his PO role, he said: “Empathy towards our team members and give space for
them to explain their stuff and understand their thought process is key. Because
I always try to consider their inputs as the highest value, more than the require-
ments that comes directly from the business side”. This quote thus pinpoints that
fostering a culture of understanding and common goals, where team members’
knowledge was valued, was a central underpinning for product management suc-
cess. Although we talked to more PMs and the answers were fairly similar for
both roles, fostering team collaboration was especially mentioned for the PO
role, with one person saying: “[POs] need people skills because they need to get
the developers to talk to each other, and the designers to talk to each other, on
a daily basis. So that is, everyone actually needs people skills”.

Shared goals and values in the team was an important issue for the PMs we
spoke to, yet more in regard to the wider success of the product. A PM under-
scored the importance of continuously backing each other and sharing both goals
and attitudes, saying: “It’s about making sure that you have the right supporters
on the team. That’s important, and it’s an important daily part of it”.

One central challenge we found amongst PMs and POs in ScanBank was
connected to not having a shared language for product management as a disci-
pline. This included using the same words for roles and contexts such as ‘product
area’, but also a common understanding of the responsibilities of each role. Some
pointed to how a lack of a common language could lead to conflicts, with one
PM saying: “One must [...]talk to the right people in the right way. So that you
get them to help you, instead of it going into some sort of trench warfare. Get
everyone to be friends and open up”.

4.3 Relational Dimension: Nature and Quality of Relationships

If one knows who in the organization to go to for which knowledge, per the struc-
tural dimension, as well as having established shared values and understandings,
following the cognitive dimension in the social capital model, building relation-
ships is often easier. In addressing some of the challenges she experienced as a
PM in ScanBank, one person pointed to there being a lack of established relations
between the different product areas in the organization. She said: “We cannot
work without talking a lot together. That is a very important point in relation to
ScanBank”. This was echoed by a PO in a different area: “The most important
thing is the human relationships; that one has a good relationship in the team,

96 A. Barbala et al.

that one is not afraid to speak up, that one can talk together and everyone can
have opinions and that everyone can be heard. I find that extremely important.”

One PM also pointed to that although domain knowledge and technical com-
petence were important for the success of the product, these skills were less
important for the product management roles. He said: “There are some who
make it work (not having technical competence), because they manage to initiate
very good conversations with others. [...] Not all decisions lie with the product,
so to speak”. This outlook was common: Although other skills and competencies
were frequently mentioned as also crucial for succeeding with product manage-
ment in the organization, some pointed at how these were ideally spread around
in the team, while PMs and POs were the ones maneuvering the relations for
how these were best combined. One person said: “You don’t need to be a domain
expert [...] if you can work well with people. That’s the key to the ‘product man-
agement’ aspect [in ScanBank]: It’s people who can work with people. You have so
many other skilled, competent, technical people on the team. Often, mis-hirings
in [ScanBank] has to do with the ‘product management’ aspect. We focus too
little on the human aspect”.

5 Concluding Discussion

The adoption of Software Product Management (SPM) in large-scale agile com-
panies is increasingly prevalent, with industry leaders such as Google, Facebook,
Amazon, and Microsoft employing this practice. However, the implementation of
SPM presents significant challenges. In this paper, we investigated the essential
skills and competencies for product management, first and foremost PMs and
POs, within a large-scale agile organization with 10,000 employees. We identified
29 skills, and we found social skills to be the most crucial, as they contributed
significantly to the efficacy of PMs and POs. Accordingly, we adopted the con-
cept of social capital [11,16] as an analytical framework.

5.1 The Role of Social Capital in Large-Scale Agile SPM

In large-scale organizations, where cross-functional and inter-departmental inter-
actions are common, social capital can significantly enhance collaboration, infor-
mation flow, and ultimately, product success [13,16]. In this article, we have
pointed to how three different social dimensions need to be filled for agile SPM
in the large-scale context. Firstly, the structural dimension, the accessibility to
the network, needed to be in place in order for PMs and POs to be able to
manoeuvre the large-scale organization. We found that this could be connected
to the amount of experience people had in their SPM roles, which corresponds to
the study of Wohlin et al. [16], who noted that “a combination of expertise and
experience” was needed for people working in complex development contexts to
succeed.

This is also in line with Smite et al. [13], who points to how social capital in
large-scale settings is dependent on an adequate communication infrastructure.

Social Capital in Software Product Management 97

In regards to the cognitive dimension, we found that shared understandings of
goals, values and SPM as a discipline were paramount for fostering a thriving
environment for product management in ScanBank. This emphasizes that SPM
education and standardization of roles across the large-scale organization is key
for people to understand each other [7]. However, standardization can also come
at the expense of autonomy and adaptation, which points to a central dilemma
for SPM in large-scale agile contexts.

Lastly, the relational dimension was in ScanBank crucial and regarded how a
central task for PMs and POs was to link various roles and knowledge connected
to the product without necessarily inhabiting this knowledge themselves. This
adds to the findings of Bass [1] which focuses solely on the PO role in large-scale
agile. Although separated analytically, the three social capital dimensions were
intertwined, which can be illustrated by the hurdles experienced by our infor-
mants when organizing onboarding during Covid-19, when the network struc-
tures were harder to navigate for new hires due to a lack of communication and
face-to-face meetings.

5.2 Limitations and Future Research

As we only studied the skills and competencies of POs and PMs, a limitation of
this study is that we did not also look into the skills needed for other roles, such
as Product Leads. Future studies would hence benefit from taking a broader
approach in order to account for this. Furthermore, a longitudinal study could
determine if the importance of social skills, as observed during the transitional
period at ScanBank, remains consistent over time. Our upcoming research aims
to investigate this further.

Future research should also delve into identifying and evaluating specific orga-
nizational strategies that can amplify social capital among SPM roles in a large-
scale agile setting, assessing the consequent impact on organizational agility and
product development success. Furthermore, cross-industrial and cross-cultural
comparative studies would provide a broader understanding of the generalizabil-
ity and specificities of these competencies and their influence on the success of
product management. It would also be interesting to look into the skills needed
for SPM roles in a small-scale agile setting.

Acknowledgments. The authors thank the informants for their willingness to share
their experiences. This research was supported by the Research Council of Norway
through the Transformit project (grant no. 321477).

References

1. Bass, J.M.: How product owner teams scale agile methods to large distributed
enterprises. Empir. Softw. Eng. 20, 1525–1557 (2015)

2. Berntzen, M., Engdal, S.A., Gellein, M., Moe, N.B.: Coordination in agile product
areas: a case study from a large fintech organization. In: International Conference
on Agile Software Development. pp. 36–52. Springer, Cham (2024)

98 A. Barbala et al.

3. Berntzen, M., Hoda, R., Moe, N.B., Stray, V.: A taxonomy of inter-team coordi-
nation mechanisms in large-scale agile. IEEE Trans. Softw. Eng. 49(2), 699–718
(2022)

4. Bourdieu, P.: The forms of capital. In: The Sociology of Economic life, pp. 78–92.
Routledge (1986)

5. Braun, V., Clarke, V.: Thematic Analysis. American Psychological Association
(2012)

6. Dutton, J.E., Ragins, B.R.: Moving forward: positive relationships at work as a
research frontier. In: Exploring Positive Relationships at Work, pp. 387–400. Psy-
chology Press (2017)

7. Ebert, C., Brinkkemper, S.: Software product management-an industry evaluation.
J. Syst. Softw. 95, 10–18 (2014)

8. Maglyas, A., Nikula, U., Smolander, K.: What do we know about software product
management?-a systematic mapping study. In: 2011 Fifth International Workshop
on Software Product Management (IWSPM), pp. 26–35. IEEE (2011)

9. Moe, N.B., Berntzen, M., Barbala, A., Stray, V.: Software product management
in large-scale agile. In: International Conference on Agile Software Development.
Springer (2024)

10. Moe, N.B., Šmite, D., Šāblis, A., Börjesson, A.L., Andréasson, P.: Networking
in a large-scale distributed agile project. In: Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering And Measurement,
pp. 1–8 (2014)

11. Nahapiet, J., Ghoshal, S.: Social capital, intellectual capital, and the organizational
advantage. Acad. Manag. Rev. 23(2), 242–266 (1998)

12. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

13. Šmite, D., Moe, N.B., Šāblis, A., Wohlin, C.: Software teams and their knowledge
networks in large-scale software development. IST 86, 71–86 (2017)

14. Stol, K.J., Schaarschmidt, M., Morgan, L.: Does adopting inner source increase
job satisfaction? a social capital perspective using a mixed-methods approach. J.
Strateg. Inf. Syst. 33(1), 101819 (2024)

15. Tkalich, A., Ulfsnes, R., Moe, N.B.: Toward an agile product management: what
do product managers do in agile companies? In: International Conference on Agile
Software Development, pp. 168–184. Springer (2022)

16. Wohlin, C., Šmite, D., Moe, N.B.: A general theory of software engineering: bal-
ancing human, social and organizational capitals. J. Syst. Softw. 109, 229–242
(2015)

Social Capital in Software Product Management 99

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

The AI Scrum Master: Incorporating AI
Into Your Agile Practices and Processes

ChatGPT for Tailoring Software
Documentation for Managers

and Developers

Saimir Bala1(B) , Kristina Sahling1,2 , Jennifer Haase1,2 ,
and Jan Mendling1,2

1 Department of Computer Science, Humboldt Universität zu Berlin,
Berlin, Germany

{saimir.bala,kristina.sahling,jennifer.haase,jan.mendling}@hu-berlin.de
2 Group of Security and Transparency in Processes, Weizenbaum Institute,

Berlin, Germany

Abstract. In many agile software development projects, documentation
is often missing, outdated, or written with only a technical perspective.
Existing literature recognizes the importance of documentation quality,
especially when it comes to its readability for diverse audiences. While
recent advances in Large Language Models (LLMs) offer the potential to
tackle these issues, the use of LLMs for software documentation remains
unexplored. This paper investigates the use of ChatGPT to improve and
adapt documentation to specific audiences. We apply ChatGPT-4 for
alternative documentation production and measure the resulting text
characteristics and readability. Twenty-five experts from management
and development rate these different versions. Results show the suitabil-
ity of ChatGPT for generating high-quality text for both audiences, with
managers benefiting more from an adapted version.

Keywords: LLM, ChatGPT · Software Development · Documentation

1 Introduction

Good documentation can make a difference in the overall progress of a software
project because it can provide managers and developers with up-to-date infor-
mation about the status of the software product [11]. However, the creation
and maintenance of documentation is time-consuming and error-prone. That is
why, in practice, many software projects tend to neglect or avoid this task, thus
resulting in lower software quality [8]. When present, documentation is written
by developers who have a technical rather than business view on the matter. This
makes it hard for non-technical users to assess the status-quo of the project.

Existing literature [6] has studied various aspects of the quality of documenta-
tion and its relations to the overall software development process. In particular,
there are many works [2] that point to ways to write documentation for bet-
ter readability, taking into account the different target groups that consume it.
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 103–109, 2025.
https://doi.org/10.1007/978-3-031-72781-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_11&domain=pdf
http://orcid.org/0000-0001-7179-1901
http://orcid.org/0009-0009-3443-0053
http://orcid.org/0000-0001-8450-7252
http://orcid.org/0000-0002-7260-524X
https://doi.org/10.1007/978-3-031-72781-8_11

104 S. Bala et al.

Recently, Large Language Models (LLMs) have been adopted in various areas of
software engineering and have shown promising results [1,10], especially when it
comes to text generation tasks [7]. However, we still lack detailed insights into
the benefits of LLMs to support documentation. Therefore we ask the following
research question: how well do LLMs perform in tailoring documentation to the
specific management or development audiences?

This paper explores the use of an LLM, such as ChatGPT, to improve docu-
mentation quality. More specifically, it identifies two main issues in documenta-
tion: i) text quality and ii) text adjustment according to the audience. We applied
ChatGPT-4 to different documentation and show its usefulness in addressing the
above issues using metrics for text characteristics and readability. Furthermore,
we asked managers and developers from practice to evaluate the different docu-
mentation versions. Our results show the suitability of ChatGPT when it comes
to generating quality text for both development and business project manage-
ment, with the latter gaining a better understanding from these adaptations.
With this work, we pave the path to ChatGPT-supported and context-aware
software documentation.

2 Method

To assess the capability of ChatGPT in producing audience-tailored software
documentation, we adopt a two-step process: i) prompt ChatGPT to generate
various versions and measure them via well-known readability metrics, and ii)
perform evaluation by subject matter experts.

Prompt Formulation. For optimal adaptation of original software documenta-
tion using ChatGPT’s zero-shot performance, we employ two distinct templates1
predicated on the intended audience: management versus developers. Utilizing
the templates in the colored boxes below when interfacing with ChatGPT ensures
the generation of appropriately adapted texts, contingent on the incorporated
documentation within the “Documentation Provided” segment.

Management Version

Documentation Provided: Insert the original code/documentation
here
Audience: Non-technical managers
Purpose: To understand the high-level overview, the purpose of the
code/tool, and its business or organizational benefits.
Details: Avoid deep technical jargon; focus on the "why" and "what"
rather than the "how". Based on the above structure, please adapt the
provided documentation for the specified audiences.

1 For the generation of these templates, we followed the official guidelines pro-
vided by ChatGPT https://platform.openai.com/docs/guides/prompt-engineering/
strategy-write-clear-instructions.

https://platform.openai.com/docs/guides/prompt-engineering/strategy-write-clear-instructions
https://platform.openai.com/docs/guides/prompt-engineering/strategy-write-clear-instructions

ChatGPT for Tailoring Software Documentation 105

Developer Version

Documentation Provided: Insert the original code/documentation
here
Audience: Developers/technical audience
Purpose: To understand the code/tool deeply, so they can implement
and modify it.
Details: Highlight technical specification, intricacies, dependencies, and
any other relevant information details. Based on the above structure,
please adapt the provided documentation for the specified audience.

Metrics Used for Analysis. We measure i) text characteristics and ii) text
readability. The characteristics refer to the structural properties of the docu-
mentation generated by ChatGPT, such as number of paragraphs, number of
headers, etc. Next, we computed text readability metrics to assess the gener-
ated texts. More specifically we applied: i) Coleman-Liau Index [3]; ii) Flesch
Reading Ease [5]; and iii) Difficult words [4]. We created Python scripts to com-
pute the aforementioned metrics. We used standard Python libraries like nltk
and textstat to compute the metrics. In particular, for each audience (Man-
ager, Developer) our script takes as input 3 different documentation samples
(Amazon, Facebook, Euronym) to which we apply the functions to compute the
metrics. Each audience’s documentation has 12 versions that were generated by
the application of the same prompt. The source code and dataset are published
on GitHub2 and openly available under MIT License.

Expert Survey. We engaged subject matter experts in a structured survey
methodology. The aim was to leverage their specialized knowledge and practi-
cal experience to critically assess the accuracy, coherence, relevance, and audi-
ence alignment of the AI-generated documents. Our sampling strategy inten-
tionally follows the logic of purposeful sampling, targeting professionals with a
demonstrated history of engaging with technical documentation in management
or development roles [9]. The survey was conducted following ethical research
standards, guaranteeing the anonymity and confidentiality of the participant’s
responses. The survey was methodically structured, starting with an introduc-
tory briefing, a consent form, and a self-identification step where respondents
specified their role as either managers or developers. This was followed by a role-
specific scenario to contextualize their evaluation of the technical documentation
with a specific and typical task in mind. Participants were first randomly pre-
sented with one of the three original pieces of documentation, which they rated
on clarity, detail adequacy, and suitability for either managerial or technical
stakeholders on a Likert scale ranging from 1 (terrible) to 5 (excellent).

Subsequently, they were introduced to the ChatGPT-generated documen-
tation, with the order of presentation for management and developer versions
randomized to mitigate sequence bias. After reading, they rated these documents
2 Source code and data: https://github.com/s41m1r/ChatGPT-Documentation.

https://github.com/s41m1r/ChatGPT-Documentation

106 S. Bala et al.

on the same criteria used for the original, with additional queries concerning any
factual errors, inconsistencies, or omissions relative to the source material.

The survey finished with demographic queries – age, gender, employment
status, and years of professional experience – and an open-ended section for
final remarks. This structured approach was designed to furnish a comprehen-
sive evaluation of ChatGPT’s performance in the realm of technical documen-
tation, steering the investigation toward identifying potential disparities, gaps,
and avenues for refinement in the AI-generated content.

3 Results

Document Analysis. The results for all the text characteristics metrics of the
analyzed datasets can be found on our GitHub repository. Table 1 reports the
characteristics with the most significant values. The columns in Table 1 list the
average counts throughout the 12 versions of each type of audience. The audi-
ences are indicated by the values of Dev (Developers), Man (Managers), and Ori
(the original documentation text used as a baseline). From the data in Table 1,
we can already notice the capacity of ChatGPT to lay out the text in a struc-
tured way. This is mostly evident by looking at the Amazon documentation text.
We notice that the original text only had one paragraph, whereas the ChatGPT-
generated texts had, on average, 22.67 paragraphs. Furthermore, we can observe
that ChatGPT is also able to reduce the number of paragraphs based on the
target audience. In the case of Euronym, the original text had 28 paragraphs.
We can see here how the number of paragraphs reduced to 12.25 on average
when it came to Managers. We assumed that ChatGPT expects managers to
require more condensed information. This is also confirmed by the number of
words (462.92 on average vs. 1066 words in the original text). Moreover, this
behavior of ChatGPT to re-organize the text is consistently seen in the metrics
Headers and Lists. Especially, comparing the original texts from Facebook and
Amazon, which did not use or used at most one header or list, we can observe
that the generated data contains several of such elements.

Table 1. Text characteristics for the different documentation versions

Project Audience Paragraphs Headers Lists Sentences Words
Amazon Developers 22.67 3.33 14.25 29.67 571.33

Managers 12.50 0.58 3.83 27.08 479.08
Original 1.00 0.00 0.00 24.00 420.00

Euronym Developers 27.75 7.67 12.75 33.58 730.00
Managers 12.25 4.08 2.92 23.83 462.92
Original 28.00 10.00 10.00 41.00 1066.00

Facebook Developers 39.42 5.08 26.17 37.75 712.83
Managers 16.75 1.33 4.17 32.42 562.42
Original 12.00 0.00 1.00 61.00 1857.00

ChatGPT for Tailoring Software Documentation 107

Table 2 shows the results of the readability metrics applied to the ChatGPT-
generated documentation. We observe the differences between the metrics of
the text for a management and development audience, compared to the original
baseline. For all three documentation (Amazon, Euronym, Facebook), ChatGPT
generated documentation shows different scores than the original. Developer-
adapted ChatGPT documentation consistently scores lower readability com-
pared to the baseline (i.e., higher Coleman-Liau, higher Difficult Words, and
lower Reading Ease values). This is not necessarily a sign of worse readability;
instead, it could potentially signal more technical-intense jargon usage. Manager-
adapted ChatGPT documentation presents opposite scores compared to the base-
line: lower Coleman-Liau, lower Difficult Words, and higher Reading Ease. In
other words, these texts are easier to read and understand. We also looked into
the texts qualitatively and noticed that most of the manager-adapted ChatGPT
documentation has a summary or takeaway message at the end, different from
the developer-adapted ChatGPT documentation.

Table 2. Readability metrics for three different technical documentations

Readability Metric Documentation Average StdDev
Original Developer Manager Developer Manager

Coleman-Liau Index Amazon 10.66 9.90 9.91 1.45 0.72
Euronym 20.05 13.92 13.95 1.86 1.72
Facebook 12.41 11.21 11.22 1.87 0.51

Difficult Words Amazon 71.00 68.50 66.50 9.19 10.43
Euronym 142.00 98.00 96.00 10.32 10.91
Facebook 168.00 89.50 88.50 15.53 7.87

Flesch Reading Ease Amazon 57.16 59.51 60.23 6.72 4.82
Euronym 35.34 42.47 45.26 6.48 7.97
Facebook 53.51 56.74 55.95 6.15 4.08

Expert Survey Results. The survey engaged a total of 25 professionals, con-
sisting of 13 developers and 12 managers. Gender distribution included ten
females, 14 males, and one participant preferring not to disclose their gender.
Most respondents, 22 in number, were employed full-time, with two identifying
as students and one categorized as ‘other’. The age distribution predominantly
fell within the 25–34 years range, encompassing 20 participants, while four were
aged between 35 and 44, and one was between 45 and 54 years. Regarding profes-
sional experience, five participants had 1–2 years, 9 had 3–6 years, ten had 6–10
years, and one had less than a year of experience. This demographic composition
provided a balanced perspective across different levels of professional experience
and roles.

In terms of expert ratings, the evaluations were generally positive for all three
versions of the documentation (cf. Table 3). All original documents aligned more

108 S. Bala et al.

closely with developer needs. However, both ChatGPT adaptations, intended
for management and developer audiences, were rated as being better suited for
the management audience, compared to the original documentation, likely due
to an overall enhancement in readability by ChatGPT. This improvement was
less pronounced for the technical audience and even reversed in the case of the
Facebook documentation. The intended adaptation of documents was mostly
successful for managers, less so for developers (compare grey areas in Table 3).

Table 3. Results of the expert survey. U=understandability of the text; D=provided
level of detail; M=alignment with needs of a management audience; T=alignment with
needs of a technical audience. A=Amazon; E=Euronym; F=Facebook

Average all experts (StdDev)Average managers (StdDev)Average developers (StdDev)
Eval Doc Ori Dev Man Ori Dev Man Ori Dev Man
U A 4.50 (.93) 4.13 (1.13)4.50 (.53) 4.00 (1.15)3.75 (.50) 4.50 (.58) 5.00 (.00) 4.25 (1.50)4.50 (.58)
D 2.89 (.78) 3.78 (.83) 3.78 (.83) 2.60 (.89) 3.80 (1.10)4.00 (.00) 3.25 (.50) 3.75 (.50) 3.50 (1.29)

F 4.13 (.83) 3.88 (.83) 3.88 (.99) 4.33 (1.15)4.33 (.83) 4.33 (.58) 4.00 (.71) 3.60 (.89) 3.60 (.89)
D A 4.00 (1.07)3.88 (.83) 4.50 (.53) 3.50 (1.29)3.75 (.50) 4.50 (.58) 4.50 (.58) 4.00 (1.15)2.25 (1.26)

E 3.11 (.93) 3.67 (.71) 3.67 (1.32) 3.20 (.84) 3.60 (.89) 4.40 (.55) 3.00 (1.15)3.75 (.50) 2.75 (1.50)
F 3.63 (1.06)3.13 (1.25)3.88 (.99) 2.67 (1.15)3.33 (1.15)3.00 (1.00)4.20 (.45) 3.00 (1.41)1.80 (.45)

M A 2.75 (1.45)3.63 (1.30)4.75 (.46) 2.50 (1.29)4.25 (.96) 5.00 (.00) 3.00 (1.83)3.00 (1.41)4.50 (.58)
E 2.56 (1.13)3.00 (.71) 4.56 (.73) 2.40 (1.14)3.00 (1.00)4.80 (.45) 2.75 (1.26)3.00 (.00) 4.25 (.96)
F 2.75 (1.16)4.00 (.76) 3.00 (1.07) 2.33 (.58) 3.67 (.58) 3.33 (.58) 3.00 (1.41)2.60 (1.14)4.40 (.55)

T A 3.88 (.83) 4.00 (.53) 2.50 (1.20) 3.75 (.50) 3.75 (.50) 2.75 (.96) 4.00 (1.15)4.25 (.50) 2.25 (1.50)
E 3.22 (.83) 3.56 (.73) 2.56 (1.24) 3.20 (.84) 3.40 (.89) 2.80 (1.10)3.25 (.96) 3.75 (.50) 2.25 (1.50)
F 4.00 (.76) 3.00 (1.51)1.63 (1.06) 4.00 (1.00)2.67 (1.53)2.00 (1.73)4.00 (.71) 3.20 (1.64)1.41 (.55)

Often, the original documentation was better rated by developers than the
developer version by ChatGPT. These differences in different measurements were
partially supported by t-tests: the comparison between the original and man-
agement versions of Facebook documentation showed the management version
as less aligned for the technical audience (two-tailed t-test, p = .00015); the
original versus management versions of Euronym documentation indicated the
management version as more aligned with manager needs (two-tailed t-test, p
= .00039); and for Amazon, the management documentation was less aligned
with developer needs (two-tailed t-test, p = .018) but more aligned for managers
(two-tailed t-test, p = .0027).

4 Conclusion

In this paper, we addressed the problem of generating documentation that is tar-
geted to specific audiences who work with different requirements and do not pos-
sess the same knowledge about software development details. Our approach uses
ChatGPT version 4 to aid the restructuring and content according to manage-
ment and development audiences. The results show clear distinction according
to general document and readability metrics. An expert evaluation showed that
managers reported improved readability and understandability of the catered
versions from ChatGPT.

ChatGPT for Tailoring Software Documentation 109

Acknowledgements. This research was supported by the Einstein Foundation Berlin
under grant number EPP-2019-524 and the Weizenbaum Institute under grant number
16DII133.

References

1. Abrahamsson, P., et al.: Chatgpt as a fullstack web developer - early results. In:
XP Workshops. Lecture Notes in Business Information Processing, vol. 489, pp.
201–209. Springer, Cham (2023)

2. Aghajani, E., et al.: Software documentation issues unveiled. In: Proceedings of the
41st International Conference on Software Engineering, ICSE 2019, pp. 1199–1210.
IEEE Press, Montreal, Quebec, Canada (2019)

3. Coleman, M., Liau, T.L.: A computer readability formula designed for machine
scoring. J. Appl. Psychol. 60(2), 283 (1975)

4. Dale, E., Chall, J.S.: A formula for predicting readability: instructions. Educ. Res.
Bull. 37–54 (1948)

5. Flesch, R.: A new readability yardstick. J. Appl. Psychol. 32(3), 221 (1948)
6. Garousi, G., Garousi, V., Moussavi, M., Ruhe, G., Smith, B.: Evaluating usage and

quality of technical software documentation: an empirical study. In: Proceedings
of the 17th International Conference on Evaluation and Assessment in Software
Engineering, EASE 2013, pp. 24–35. Association for Computing Machinery, New
York (2013)

7. Pace AI: Chatgpt for technical documentation (2024). https://paceai.co/chatgpt-
for-technical-documentation. Accessed 21 June 2024

8. Pan, W., Ming, H., Kim, D.K., Yang, Z.: Pride: prioritizing documentation effort
based on a pagerank-like algorithm and simple filtering rules. IEEE Trans. Software
Eng. 49, 1118–1151 (2023)

9. Patton, M.Q.: Two decades of developments in qualitative inquiry: a personal,
experiential perspective. Qual. Soc. Work. 1(3), 261–283 (2002)

10. Ronanki, K., Daniel, B.C., Berger, C.: Chatgpt as a tool for user story quality eval-
uation: trustworthy out of the box? In: XP Workshops. Lecture Notes in Business
Information Processing, vol. 489, pp. 173–181. Springer, Cham (2023)

11. Sommerville, I.: Sommerville Software Engineering, vol. 291. Pearson (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://paceai.co/chatgpt-for-technical-documentation
https://paceai.co/chatgpt-for-technical-documentation
http://creativecommons.org/licenses/by/4.0/

The AI Scrum Master: Using Large Language
Models (LLMs) to Automate Agile Project

Management Tasks

Zorina Alliata1, Tanvi Singhal2(B), and Andreea-Madalina Bozagiu3

1 Zorina Alliata, Munich, Germany
2 Tanvi Singhal, Munich, Germany

Tanvi.singhal1990@gmail.com
3 Andreea-Madalina Bozagiu, Bucharest, Romania

Abstract. There is a high demand across industries for intelligent devices to
automate and optimize processes. Generative AI has soared in popularity and it
is the first AI technology to be used by everyone. It is already automating junior-
level office work, as well as highly complex creative tasks. This paper studies how
Generative AI can automate some of the Agile project management tasks, such as
reporting and creating requirements that correctly cover the scope.

Keywords: AI · Agile · Scrum Master · Project Management · LLM ·
Generative AI

1 Introduction

There has been a rise in the use of large languagemodels (LLMs) as amethod for creating
synthetic data as amean to automate some repetitive tasks, or to provide inputs for model
training. Large language models (LLMs) such as ChatGPT and Claude can generate
synthetic datasets through their remarkable in-context learning skills and enormous
pre-trained linguistic information.

As examples, Josifoski et al. [6] artificially create a dataset consisting of 1.8 million
data points in a reverse fashion and showcase the efficacy of this method in closed
information extraction.Whitehouse et al. [7] employmultiple LanguageModels (LLMs)
to enhance three datasets and evaluate the authenticity and logical consistency of the
created examples.

The crucial factors are 1) ensuring that the use case aligns with the capabilities of
this technology, and 2) ensuring that the data generated is suitable for this technology.

Use cases considered for this paper:

– Use Case 1: Generate status reports

o Interpret a burndown chart and create a narrative report

– Use Case 2: Expanding content from an outline or seed

o Create user stories from given Epics.

© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 110–122, 2025.
https://doi.org/10.1007/978-3-031-72781-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_12&domain=pdf
https://doi.org/10.1007/978-3-031-72781-8_12

The AI Scrum Master 111

2 Methodology

We use publicly available LLMs (Claude 3 Sonnet and Microsoft Copilot/ChatGPT
4.5) to generate synthetic data and measure accuracy of the new dataset. Prompting is
needed for more meaningful data generation. We use ROUGE [1], METEOR [8] and
BERTSCORE [2] evaluation methods to measure the generated data accuracy.

Use Case 1: Interpret a burndown chart and create a narrative report
Original data set:
1A. No context: Prompt: Please comment on this image (Fig. 1).
This is an image of a burndown chart for a team. The number of story points com-

mitted is 120, and they have 7 days to deliver. Looking at the graphic, it shows that first
the team delivered slower than expected, and after day 4, they started delivering faster
than expected. A possible explanation is that the team had a delay in testing the stories,
and then released several at the same time. They finished the work on time and delivered
all the committed story points.

1B. With context: Prompt: There are 3 days left in the sprint. Write a narrative status
report of the burndown chart included (Fig. 2).

Looking at the burn down chart, it seems the team is behind the schedule in delivering
user stories. With only three days left in the sprint, the team still has almost half the
story points still not completed. It also looks like the actual hour spent by the time
have been decreasing in the last two days. The cause is a team member who is out
unexpectedly. Remediations include getting another developer to help out, descoping
some of the stories, or moving some stories to the next sprint until the team is at the
expected capacity again.

LLM Prompts:

– 1C. Only feed it the burndown chart image with no other context (Fig. 1)
– 1D. With context:

o Prompt: The team sprint ends in 3 days. Please see attached burn-down chart and
create a narrative report that explains the chart and the status of the delivery. (Fig. 2)

The result is a narrative that describes the burndown chart and reports on the work
status for the team.

1C. This image appears to be a release burndown chart. A burndown chart is a
graphical representation commonly used in agile software development to track the
amount of work remaining over in a project or sprint. The chart plots the amount of
work or story points remaining on the y-axis against the time periods (e.g., sprints or
iterations) on the x-axis. In this particular burndown chart, the y-axis represents the
“Story Points” or work items, while the x-axis represents the sprint or iteration numbers
(1 to 7). The red line depicts the actual progress or “work done” over time, while the
gray line represents the planned or “ideal” progress if work was completed at a constant
rate. The chart shows that the team started behind schedule (the red line is above the
gray line initially), but managed to catch up and even get ahead of the planned progress
towards the end of the project or release cycle.

With context:

112 Z. Alliata et al.

Fig. 1. No context prompting. (Color figure online)

Fig. 2. Sample Burndown Chart (Color figure online)

Prompt: The team sprint ends in 3 days. Please see attached burndown chart and
create a narrative report that explains the chart and the status of the delivery.

Claude 3 Sonnet:
1D. Based on the burndown chart for the Sample App, I can provide the following

narrative report:
The chart displays the planned work hours, actual hours spent, remaining effort, and

ideal burndown rate over an 8-day period for the project.
At the start of the project, the total planned effort was around 250 h. The ideal burn-

down line shows a steady, linear decrease in remaining work, representing the expected
rate of progress if work proceeded perfectly as planned.

However, the actual remaining effort line (in blue) indicates that progress has been
slower than the ideal rate. The team appears to have fallen behind the planned schedule,
with more remaining work than expected at each day’s point.

The green and yellow bars show the planned and actual hours spent each day, respec-
tively.While the planned hours remain relatively consistent, the actual hoursworked have
fluctuated, sometimes exceeding the planned hours and other times falling short.

The AI Scrum Master 113

With 3 days remaining until the end of the sprint, there is still a substantial amount
of remaining effort, approximately 100 h based on the latest data point. This suggests
that the team may struggle to complete all the planned work within the allotted time
unless they can significantly increase their productivity or reassess the scope.

Overall, the chart indicates that the project is behind schedule, and the team may
need to take corrective actions, such as allocating additional resources, extending the
timeline, or descoping certain features, to ensure a successful delivery.

Use Case 2: Create user stories from Epics
Starting data set: Backlog from auto insurance company (human generated). Data

has been anonymized and any identifiable information removed. Goal: create a new
mobile app for clients.

Original Epics:
Change of State; Copy Policy and Billing Account; Policy/Billing Notes; Renew

Policy; Add/Update/Remove Specialty Vehicle; Multi-policy: group vehicle policy with
home policy; Reissue/Reinstate/Resumption; Simple Add Driver; Simple Add Vehicle;
Simple View Policy; Simple Remove Driver; Simple Remove Vehicle; Simple Update
Driver; Simple Update Vehicle; AddCoverage; IntegrationwithOther Systems; Remove
Coverage; Update Coverage; Cancel Policy; Change In State; Complex Add Driver;
Complex Add Vehicle; Complex Remove Driver; Complex Remove Vehicle; Complex
Update Driver; ComplexUpdate Vehicle; ViewAdd/RemoveDiscounts; Cancel Rewrite
Policy; Issue New Business; Recall Quote; View/Update Account Preferences.

2A. Original data set:

Epic User Story

Add Coverage Manage Coverages

Add Coverage Renewal

Add/Update/Remove Specialty Vehicle Assigned Risk Policies

Add/Update/Remove Specialty Vehicle Specialty Vehicle Processing

Cancel Policy Billing Auto/Cycle

Cancel Policy Cancellation

Cancel Rewrite Policy Cancel/Rewrite

Change In State Change Mailing Address

Change In State Change of Address In State

Change In State Manage Coverages

Change In State Process Out of Sequence Transaction

Change In State Request Change of Address - Multi-Line

Change of State Change of Address Out of State

Complex Add Driver Activity Log

Complex Add Driver Add Driver Endorsement

Complex Add Driver Effective Date

Complex Add Driver Manage Coverages

(continued)

114 Z. Alliata et al.

(continued)

Epic User Story

Complex Add Driver Occurrences

Complex Add Driver Usage/DVA

Complex Add Driver View Policy

Complex Add Vehicle Add Auto\Cycle Endorsement

Complex Add Vehicle Effective Date

Complex Add Vehicle Inspections

Complex Add Vehicle Issue Endorse Policy Changes

Complex Add Vehicle Manage Coverages

Complex Add Vehicle Occurrences

Complex Add Vehicle Usage/DVA

Complex Add Vehicle Vehicle Customizations

Complex Remove Driver Remove Driver Endorsement

Complex Remove Vehicle Remove Auto\Cycle Endorsement

Complex Update Driver Effective Date

Complex Update Driver Issue New Business

Complex Update Driver Remove Driver Endorsement

complex update driver Renewal

Complex Update Driver Update Driver Endorsement

Complex Update Vehicle Add Auto\Cycle Endorsement

Complex Update Vehicle Add Driver Endorsement

Complex Update Vehicle Discounts

Complex Update Vehicle Manage Coverages

Complex Update Vehicle Update Auto\Cycle Endorsement

Complex Update Vehicle Update Driver Endorsement

Copy Policy and Billing Account Billing Auto/Cycle

Copy Policy and Billing Account Billing Conversion

Copy Policy and Billing Account Billing Download

Copy Policy and Billing Account Copy Policy

Copy Policy and Billing Account Policy Copy & Cloning

Integration with Privy Security

Issue New Business Documents/Forms

Issue New Business Issue New Business

Issue New Business Manage Changes to Policy

Issue New Business Renewal

(continued)

The AI Scrum Master 115

(continued)

Epic User Story

Multi-policy: group vehicle policy with home
policy

Add Auto\Cycle Endorsement

Multi-policy: group vehicle policy with home
policy

Add Driver Endorsement

Multi-policy: group vehicle policy with home
policy

Automated Multiple Policy Processing
(Multi-Line Orchestration)

Multi-policy: group vehicle policy with home
policy

Cancel/Rewrite

Multi-policy: group vehicle policy with home
policy

Cancellation

Multi-policy: group vehicle policy with home
policy

Copy Policy

Multi-policy: group vehicle policy with home
policy

Effective Date

Multi-policy: group vehicle
policy with home policy

Issue New Business

Multi-policy: group vehicle policy with home
policy

Manage Coverages

Multi-policy: group vehicle policy with home
policy

Reinstate Policy

Multi-policy: group vehicle policy with home
policy

Reissue Policy

Multi-policy: group vehicle policy with home
policy

Remove Auto\Cycle Endorsement

Multi-policy: group vehicle policy with home
policy

Remove Driver Endorsement

Multi-policy: group vehicle policy with home
policy

Request Change of Address - Multi-Line

Multi-policy: group vehicle policy with home
policy

Retrieve Quote

Multi-policy: group vehicle policy with home
policy

Save Quote

Multi-policy: group vehicle policy with home
policy

Update Auto\Cycle Endorsement

Multi-policy: group vehicle policy with home
policy

Update Driver Endorsement

Multi-policy: group vehicle policy with home
policy

Update Quote

Recall Quote Policy Profile

(continued)

116 Z. Alliata et al.

(continued)

Epic User Story

Recall Quote Retrieve Quote

Recall Quote Save Quote

Recall Quote Update Quote

Reissue/Reinstate/Resumption Confirmation Page

Reissue/Reinstate/Resumption Documents/Forms

Reissue/Reinstate/Resumption Express

Reissue/Reinstate/Resumption Reason Codes and Forms

Reissue/Reinstate/Resumption Reinstate Policy

Reissue/Reinstate/Resumption Reissue Policy

Reissue/Reinstate/Resumption Resume Policy

Remove Coverage Manage Coverages

Renew Policy Renewal

Simple Add Driver Add Auto\Cycle Endorsement

Simple Add Driver Add Driver Endorsement

Simple Add Vehicle Add Auto\Cycle Endorsement

Simple Remove Driver Remove Driver Endorsement

Simple Remove Vehicle Remove Auto\Cycle Endorsement

Simple Update Driver Update Driver Endorsement

Simple Update Vehicle Update Auto\Cycle Endorsement

Simple View Policy View Policy

Update Coverage Add Auto\Cycle Endorsement

Update Coverage Manage Coverages

View Add/Remove Discounts Discounts

View/Update Account Preferences Account Preferences

LLM Prompt:

– Generate user stories for each Epic in the list, to accomplish themajor goal of creating
a mobile app for auto insurance customers, with the following functionality:

o Policy Management

Add/edit/delete policy
Add/edit/delete vehicles, drivers, interested parties on a policy
Add/edit coverage

o Get Quote
o Set up Account Preferences

– Context:

The AI Scrum Master 117

o The Auto insurance can have one or more drivers on each policy, and one or more
Interested Parties (non-drivers)

o The Auto insurance can be combined with other policies such as home owner
insurance or motorcycle insurance

o Each vehicle has a VIN that can be queried from public records and provides basic
data about the vehicle

o There will be some integration work needed with the backend data lake where the
company stores their data.

2C. No context:
Please generate user stories to accomplish the major goal of creating a mobile app

for auto insurance customers, with the following functionality:

o Policy Management

Add/edit/delete policy
Add/edit/delete vehicles, drivers, interested parties on a policy
Add/edit coverage

o Get Quote
o Set up Account Preferences

Copilot:
Certainly! Let’s create some user stories for the auto insurance mobile app based on

the provided functionality and context. User stories help us understand what users want
to achieve and why. Here are some examples:

1. Policy Management:
o As an insurance agent, I want to add a new policy for a customer, so they can
have coverage for their vehicle.

o As a policyholder, I want to edit my existing policy, so I can update my coverage
details or add/remove vehicles and drivers.

o As an insurance administrator, I want to delete a policy, so I can manage the
policies effectively.

2. Vehicle and Driver Management:
o As a policyholder, I want to add a new vehicle to my policy by providing its VIN,
make, and model, so I can ensure it’s covered.

o As a policyholder, I want to add a new driver to my policy, including their license
information, so they can drive the insured vehicle.

o As an insurance agent, I want to edit driver details, such as updating their address
or license number, so the policy remains accurate.

o As a policyholder, I want to remove a driver from my policy, perhaps due to a
change in household members.

3. Interested Parties Management:
o As a policyholder, I want to add an interested party (such as a lienholder or
leasing company) to my policy, so they receive notifications about the policy.

o As an insurance agent, I want to edit interested party details, such as their
contact information, to keep the records up to date.

118 Z. Alliata et al.

o As a policyholder, I want to remove an interested party if they are no longer
relevant to my policy.

4. Coverage Management:
o As a policyholder, I want to add or modify coverage options (e.g., liability,
collision, comprehensive) for my policy, so I can tailor it to my needs.

o As an insurance agent, I want to review and approve coverage changes, ensuring
they comply with company guidelines.

5. Get Quote:
o As a potential customer, I want to request a quote for auto insurance by providing
basic information (vehicle details, driving history), so I can compare prices.

o As an insurance agent, I want to generate a quote based on the provided data
and send it to the customer for review.

6. Account Preferences:
o As a policyholder, I want to set my communication preferences (email, SMS,
phone) for policy updates and reminders.

o As a policyholder, I want to manage my account settings, including password
changes and security options.

o As an insurance administrator, I want to integrate with the backend data lake,
ensuring seamless data synchronization between the app and our systems.

Remember, these user stories serve as a starting point. You can further refine them,
prioritize, and break them down into smaller tasks during development.

2D. With context:
You
Epics: Change of State Copy Policy andBillingAccount Policy/BillingNotes Renew

Policy Add/Update/Remove Specialty Vehicle Multi-policy: group vehicle policy with
home policy Reissue/Reinstate/Resumption Simple Add Driver Simple Add Vehicle
Simple View Policy Simple Remove Driver Simple Remove Vehicle Simple Update
Driver Simple Update Vehicle Add Coverage Integration with Other Systems Remove
Coverage Update Coverage Cancel Policy Change In State Complex Add Driver Com-
plex Add Vehicle Complex Remove Driver Complex Remove Vehicle Complex Update
Driver Complex Update Vehicle View Add/Remove Discounts Cancel Rewrite Policy
Issue New Business Recall Quote View/Update Account Preferences Please generate
user stories for each Epic in the list, to accomplish the major goal of creating a mobile
app for auto insurance customers, with the following functionality: o Policy Manage-
ment Add/edit/delete policy Add/edit/delete vehicles, drivers, interested parties on a
policy Add/edit coverage o Get Quote o Set up Account Preferences Context: o The
Auto insurance can have one or more drivers on each policy, and one or more Interested
Parties (non-drivers) o The Auto insurance can be combined withother policies such as
home owner insurance or motorcycle insurance o Each vehicle has a VIN that can be
queried from public records and provides basic data about the vehicle o There will be
some integration work neededwith the backend data lake where the company stores their
data. Please create multiple user stories per epic, and more granular in functionality.

Copilot.
Certainly! Let’s dive deeper into each epic and create more granular user stories for

the auto insurance mobile app:

The AI Scrum Master 119

1. Change of State:
o As an auto insurance customer, I want to suspend my policy temporarily when
I’m not using my vehicle (e.g., during a long vacation).

o Benefit: This allows me to save on premiums while maintaining coverage.
o As an auto insurance customer, I want to reactivate my policy after a suspension
period.

o Benefit: This ensures seamless coverage when I start using my vehicle again.
o As an auto insurance customer, I want to cancel my policy permanently if I no
longer need auto insurance.

o Benefit: This simplifies the process and avoids unnecessary charges.
2. Copy Policy:

o As an auto insurance customer, I want to clone an existing policy to create a new
one with similar coverage.

o Benefit: This streamlines policy setup for additional vehicles or drivers.
o As an auto insurance customer, Iwant to customize the clonedpolicy by adjusting
coverage limits or deductibles.

o Benefit: This tailors the policy to my specific needs.
3. Billing Account Policy/Billing Notes:

o As an auto insurance customer, I want to view my billing history within the app.
o Benefit: This helps me track payments and understand my financial transactions.
o As an auto insurance customer, I want to add billing notes (e.g., special payment
arrangements) to my account.

o Benefit: This ensures clear communication with the insurance company.
4. Renew Policy:

o As an auto insurance customer, I want to receive a renewal reminder through
the app before my policy expires.

o Benefit: This prompts timely action to maintain continuous coverage.
o As an auto insurance customer, I want to renew my policy with a single click.
o Benefit: This simplifies the renewal process.

5. Add/Update/Remove Specialty Vehicle:
o As an auto insurance customer, I want to add a classic car to my policy.
o Benefit: This ensures proper coverage for my unique vehicle.
o As an auto insurance customer, I want to update the mileage for my RV.
o Benefit: This reflects accurate usage and affects premium calculations.
o As an auto insurance customer, I want to remove a specialty vehicle (e.g., sold
or no longer owned).

o Benefit: This keeps my policy up-to-date.
6. Multi-policy: Group Vehicle Policy with Home Policy:

o As an auto insurance customer, I want to bundle my auto and home policies for
potential discounts.

o Benefit: This simplifies management and may reduce costs.
o As an auto insurance customer, I want to view combined policy details (auto and
home) in one place.

o Benefit: This provides a holistic view of my coverage.
7. Reissue/Reinstate/Resumption:

120 Z. Alliata et al.

o As an auto insurance customer, I want to reinstatemy lapsed policy after amissed
payment.

o Benefit: This prevents gaps in coverage.
o As an auto insurance customer, I want to resume my policy after a temporary
suspension.

o Benefit: This restores coverage quickly.
8. Simple Add Driver:

o As an auto insurance customer, I want to add a teenage driver to my policy.
o Benefit: This ensures proper coverage for new drivers.
o As an auto insurance customer, I want to specify the primary driver for each
vehicle.

o Benefit: This affects premium calculations.
9. Simple Add Vehicle:

o As an auto insurance customer, I want to add a leased car to my policy.
o Benefit: This ensures coverage for the new vehicle.
o As an auto insurance customer, I want to upload vehicle documents (e.g.,
registration, inspection) via the app.

o Benefit: This simplifies paperwork.
10. Simple View Policy:

o As an auto insurance customer, I want to see my policy summary (coverages,
deductibles) at a glance.

o Benefit: This provides quick access to essential information.
o As an auto insurance customer, I want to view my policy ID card digitally.
o Benefit: This helps during traffic stops or accidents.

11. Simple Remove Driver:
o As an auto insurance customer, I want to remove an ex-spouse from my policy.
o Benefit: This keeps my policy accurate after life changes.
o As an auto insurance customer, I want to specify excluded drivers (e.g., high-risk
individuals).

o Benefit: This affects coverage and premium.
12. Simple Remove Vehicle:

o As an auto insurance customer, I want to handle changes in policy status.

Results
While ROUGE and METEOR scores are low, we know that the data generated by the
LLMs is quite accurate in accomplishing the tasks for both use cases. BERT Score is
the metric that finds the similarity and correctly points out that the LLMs generated data
that is close to the human-generated set.

For both use cases, the BERT Score is slightly higher when context is provided.
Using better prompting or RAG in the future could lead to much more accurate results.

The AI Scrum Master 121

Generated
versus
actual

BERT Score METEOR Score ROUGE Score

1C versus
1A

tensor([0.8505]) 0.28394412026
216626

{‘rouge1’:
Score(precision=0.2484472049689441,
recall=0.47058823529411764,
fmeasure=0.3252032520325203),
‘rougeL’:
Score(precision=0.14285714285714285,
recall=0.27058823529411763,
fmeasure=0.18699186991869918)}

1D versus
1B

tensor([0.8573]) 0.28376450626
73121

{‘rouge1’:
Score(precision=0.21397379912663755,
recall=0.5051546391752577,
fmeasure=0.3006134969325153),
‘rougeL’:
Score(precision=0.13100436681222707,
recall=0.30927835051546393,
fmeasure=0.18404907975460125)}

2C versus
2A

tensor([0.7834]) 0.08895303157
992328

{‘rouge1’:
Score(precision=0.23040380047505937,
recall=0.1471927162367223,
fmeasure=0.17962962962962964),
‘rougeL’:
Score(precision=0.1377672209026128,
recall=0.08801213960546282,
fmeasure=0.1074074074074074)}

2D versus
2A

tensor([0.7959]) 0.16822527395
756623

{‘rouge1’:
Score(precision=0.2911931818181818,
recall=0.3110773899848255,
fmeasure=0.3008070432868672),
‘rougeL’:
Score(precision=0.16193181818181818,
recall=0.17298937784522003,
fmeasure=0.1672780630961115)}

3 Outcomes/Conclusion

Measuring how LLMs can help the Agile Scrum Master is their project management
tasks can provide a basis for automating some of the repetitive tasks and enabling higher
productivity. Providing business context is important, and can be done throughprompting
or a RAG approach for more complex situations. Using the right metric is also important,
and in this case BERT Score was the measurement that correctly identified the accuracy
of the generated data.

In practice, Scrum Masters and project managers can use publicly available LLMs
to automate the reporting and requirements creation, with the understanding that the

122 Z. Alliata et al.

Generative AI technology is creative by design, and it might contain hallucinations or
other risks. The Scrum Masters and project managers need to review the outputs and
keep testing that the answers are correct by employing the right measurements for LLM
accuracy.

References

1. Lin, C.-Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization
Branches Out, Barcelona, Spain, pp. 74–81. Association for Computational Linguistics (2004)

2. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating Text
Generation with BERT (2020). https://doi.org/10.48550/arXiv.1904.09675

3. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language under-
standing by generative pre-training (2018)

4. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8),
9 (2019)

5. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information
Processing Systems, vol. 33, pp. 1877–1901 (2020)

6. Josifoski, M., Sakota, M., Peyrard, M., West, R.: Exploiting asymmetry for synthetic training
data generation: SynthIE and the case of information extraction. In: Bouamor, H., Pino, J.,
Bali, K. (eds.) Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, (Singapore), pp. 1555–1574. Association for Computational Linguistics (2023)

7. Whitehouse, C., Choudhury, M., Aji, A.: LLM-powered data augmentation for enhanced cross
lingual performance. In: Bouamor, H., Pino, J., Bali, K. (eds.) Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Processing, (Singapore), pp. 671–686.
Association for Computational Linguistics (2023)

8. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved
correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and
Extrinsic Evaluation Measures for Machine Translation and/or Summarization. Ann Arbor,
Michigan, pp. 65–72 (2005)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.48550/arXiv.1904.09675
http://creativecommons.org/licenses/by/4.0/

Copilot’s Island of Joy
Balancing Individual Satisfaction with Team Interaction

in Agile Development

Viggo Tellefsen Wivestad1(B) , Astri Barbala1 , and Viktoria Stray1,2

1 SINTEF Digital, 7034 Trondheim, Norway
viggo.wivestad@sintef.no

2 University of Oslo, 0373 Oslo, Norway

Abstract. This study assesses the integration of GitHub Copilot into
agile software development practices in one of Norway’s largest public
sector organizations. Through a quasi-experimental survey of 115 partic-
ipants, we differentiate the attitudes of users and non-users of GitHub
Copilot regarding their development routines. Findings reveal that Copi-
lot users experience significantly greater focus on engaging tasks and less
dependence on colleagues compared to non-users, while non-users main-
tain a more cautious stance on AI use in the public sector. Further, while
users generally showed more positive attitudes and fewer frustrations,
these differences were not statistically significant. The study advocates
for a mindful adoption of AI tools in agile settings, balancing individual
benefits with interdependence and team unity.

Keywords: Agile Software Development · GitHub Copilot · AI Tool
Adoption · Collaboration · Team dependence

1 Introduction and Background

AI Coding Assistants, a subset of Generative AI (GenAI), have recently emerged
as popular tools, reshaping how coding tasks are approached and executed [15].
Developers, managers, and Scrum Masters are all trying to evaluate the impact of
such tools on the agile software development process [15]. However, the adoption
of these tools introduces significant uncertainty in agile software development,
necessitating a fundamental shift in managerial planning and execution [4].

The role of the Scrum Master in agile projects has evolved significantly over
the last decade [1,11], with recent studies offering new insights into this transfor-
mation. These studies explore various aspects of the Scrum Master role, such as
servant leadership, facilitation, and mentorship, all crucial for enhancing team
collaboration and overcoming organizational challenges [8]. Moreover, the emer-
gence of GenAI technologies could further influence the Scrum Master’s role and
agile ways of working. Today, while some agile team members readily embrace
these tools, others may exhibit hesitation, reflecting diverse attitudes toward
technological adoption in agile environments.
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 123–129, 2025.
https://doi.org/10.1007/978-3-031-72781-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_13&domain=pdf
http://orcid.org/0009-0009-4187-0700
http://orcid.org/0000-0002-3087-3350
http://orcid.org/0000-0002-6032-2074
https://doi.org/10.1007/978-3-031-72781-8_13

124 V. T. Wivestad et al.

While new research is continually appearing, the single largest study to our
knowledge is still that of GitHub Research [6,17], which includes a survey with
over 2000 respondents. The results from this study suggest several benefits of uti-
lizing AI Coding Assistants, such as increased productivity, higher job satisfac-
tion, and being able to spend time on more enjoyable tasks. Their study utilized
the SPACE framework, which offers a comprehensive approach to understanding
developer productivity beyond conventional metrics [5]. The framework encapsu-
lates five critical dimensions: Satisfaction and well-being (S), Performance (P),
Activity (A), Communication and Collaboration (C), and Efficiency and flow
(E). In this study, we extend the original survey to answer the following research
question: What benefits of using GitHub Copilot can be identified when
comparing users to a control group?.

To answer this RQ, we articulated a series of hypotheses based on an assump-
tion that the adoption of AI Coding Assistants will yield predominantly favorable
outcomes for its users, while simultaneously reducing challenges and friction in
their daily routines.

To investigate whether the use or non-use of AI Coding Assistants made
a difference in the everyday work of agile software developers, we conducted a
quantitative study at the National Welfare Administration (NAV), a large public
sector organization based in Norway. NAV has about 1000 employees in their IT
department, and the teams follow agile principles of software development. The
organization is known for being at the forefront in implementing new tools and
practices for software development such as continuous software engineering [2],
data-driven methods [3], and a widespread use of Slack as a coordination tool
[14]. Recently, NAV has also looked into incorporating the use of GenAI tools in
their software development work, and in September 2023 the organization gave
100 developers access to GitHub Copilot.

2 Method and Study Design

The research design can be described as an exploratory, cross-sectional, natural
quasi-experiment involving two distinct groups: users and non-users of Copilot
in NAV. While the non-users in the control group had not adopted Copilot,
the experiment group consisted of 100 Copilot users who had volunteered and
been pre-approved before our arrival, as well as external consultants who had
obtained a license through other means. Our 114 respondents consisted of 67
users and 47 non-users. Among the respondents, 81% of respondents were in-
house employees; 15% were women, 79% were men, 1% identified as “other” and
5% would not disclose gender.

The survey instrument was built upon GitHub Research’s survey [16], which
utilized the SPACE framework [5] to assess the perceived productivity of subjects
participating in an unpaid technical preview of Copilot. Our study adapted a sub-
set of relevant survey items and translated them. Given that the original survey
was designed exclusively for users of Copilot, the survey items were transformed
to fit a comparative analysis between users and non-users. Items that explicitly

Copilot’s Island of Joy 125

reference the Copilot were therefore rephrased and generalized, focusing on out-
comes. Further, a few new items were added, based on ideas and concerns that
were identified during a preceding interview process, and hypotheses we wanted
to test. The hypotheses are listed in Table 1, and the complete survey instrument
is available online at: https://doi.org/10.5281/zenodo.10987170.

The final questionnaire consisted of 57 questions (28 for both groups and
an additional 29 for the users), most of them being 5-point Likert Agreement
scale-type questions. The survey had a required, initial segmentation question
that asked whether the respondent had used Copilot or not, which was used to
label the participant as either a user or non-user.

The first part of the analysis consisted of a systematic comparison of the two
groups, comparing the proportion of respondents who agreed with a statement
(strongly agree + agree) against the total number of respondents. This approach,
known as a Top 2-Box (T2B) analysis, is useful when focusing on an area of
interest [12], but does not consider the entire distribution of replies (those who
disagree or are neutral). The subsequent analysis entailed hypothesis testing.
Considering the ordinal nature of Likert-scale responses, we employed the non-
parametric Mann-Whitney U Test [9] to assess differences between the groups’
distributions, complemented by the Rank-Biserial Correlation (RBC) [7] and
the Common Language Effect Size (CLES) [10] for evaluating effect magnitude.
We used Bonferroni corrected p < 0.0056 (0.05/9) as the threshold of statistical
significance, to account for the multiple hypothesis testing problem. The analysis
was predominantly done using Python.

3 Results

The final survey collected a total of 115 responses, comprising 67 users and 48
non-users of GitHub Copilot. The results from the Top 2-Box (T2B) analysis
are depicted as a barplot in Fig. 1, and the results from the hypothesis testing
are detailed in Table 1.

A key finding related to user benefits was the enhanced ability to focus on
satisfying work; over 70% of users reported this benefit compared to only half
of the non-users. Our related hypothesis, that users would experience a higher
ability to focus on satisfying work, was statistically validated using the Mann-
Whitney U test, and confirmed to be significant, with a meaningful effect size
evidenced by both the Rank-Biserial Correlation (RBC) and the Common Lan-
guage Effect Size (CLES). Note that had we not corrected for multiple hypothesis
testing, our hypothesis that users experience higher job satisfaction would also
have been confirmed (p = 0.031). This finding indicates that using AI Coding
Assistants enables users to move faster past frustrating and demotivating tasks,
spending more time on things they enjoy.

As shown in Fig. 1, users generally had higher agreement rates regarding job
satisfaction, flow, and productivity, and disagreed more that they felt frustrated
while coding. However, none of these were found to be significant, as shown in
Table 1.

https://doi.org/10.5281/zenodo.10987170

126 V. T. Wivestad et al.

Table 1. Results from the Mann-Whitney U test, comparing attitudes differences
between users and non-users. For each item, information is provided related to the
one-sided test (Ha), sample size of the user/non-user (NU, NNU), Mann-Whitney U
value (U), P-value (P), Rank-Biserial Correlation (RBC), Common Language Effect
Size (CLES), and whether or not to reject the null hypothesis given the Bonferroni
corrected threshold.

Item Ha (NU, NNU) U P RBC CLESReject
H0

Copilot is valuable µU > µNU (61, 35) 592 0.000 0.446 0.723
Can focus on satisfying work µU > µNU (60, 36) 740 0.002 0.315 0.657
Satisfied with job µU > µNU (61, 37) 894 0.031 0.207 0.604
Is in flow when coding µU > µNU (63, 40) 1175 0.273 0.067 0.534
Productive when coding µU > µNU (63, 40) 1256 0.490 0.003 0.502

Critical of AI in public sector µU < µNU (59, 38) 660 0.000 -0.411 0.705
Dependent on colleagues µU < µNU (60, 39) 800 0.003 -0.317 0.658
Frustrated when coding µU < µNU (63, 40) 1054 0.075 -0.163 0.582
Searches for information online µU < µNU (61, 39) 1142 0.360 -0.040 0.520

Another finding was a significantly lower dependency on colleagues among
the users of Copilot. This confirmed our hypothesis, with nearly half of the
users disagreeing with the notion that they rely on assistance or guidance from
colleagues, compared to just a fifth of the non-users.

We also confirmed our hypothesis that users are noticeably less concerned
about using AI in the public sector, with “strongly disagree” being the most
frequent answer (41%), with 64% disagreeing. For non-users, the answers were
spread out on both sides, indicating a more nuanced and skeptical view. One
non-user stated in the open-text field in the survey: “I am uncomfortable with
the idea that data collected by AI is used for purposes that I am unaware of,
especially from a privacy perspective.”

The most prominent finding, aligning with our hypothesis and expectations,
indicated that users perceived Copilot as significantly more valuable than non-
users. Determining the cause is however difficult, as the groups were not ran-
domly selected. Positive responses might reflect genuine benefits derived from
using the tool, or simply capture the user’s initial motivation. It is also worth
noting that half of the non-users also agreed with the statement, suggesting a
generally positive attitude towards the tool across both groups.

4 Discussion and Implications for Practice

In this paper, we outline the findings from a survey conducted among users and
non-users of Github Copilot in a large, public-sector organization. When com-
paring the attitudes between the two groups, we identified only one significant
user benefit: the enhanced ability to focus on satisfying work. Regarding other

Copilot’s Island of Joy 127

Fig. 1. Top 2-Box plot comparing the proportion of users and non-users who
agreed/disagreed with statements related to attitudes and experiences among software
developers.

proclaimed benefits, our study found no significant differences. This is surpris-
ing, given the proclaimed benefits by users in GitHub Research’s study [6,17],
such as productivity and flow. This divergence could be a user expectancy effect
or an artifact of our general, and slightly vaguer, survey statement formulations.

Users also reported a notably higher job satisfaction than the non-users, with
87% of the users agreeing that they felt satisfied in their job, as compared to
73% of the non-users. While this could be a result of self-selection bias, it echoes
the study of Ulfsnes et al. [15] who found that usage of GenAI tools empowered
software developers by reducing tedious and repetitive tasks and freeing up time
for more satisfying work. The same study also pointed out some negative conse-
quences, with developers preferring to get help from their AI Coding Assistant
rather than their colleagues. This finding resonates with our findings, with evi-
dent signs of decreased dependence, with 45% of the users outright disagreeing
that they are dependent on colleagues for help and guidance.

Given these findings, we speculate that while AI Coding Assistants might
enhance individual satisfaction and independence, they could pose long-term
threats to teamwork, knowledge sharing, unity, and overall team interactions.
Remote workers might be especially vulnerable, as the threshold to approach,
and potentially disturb, a colleague is higher [13]. Such challenges would pose
extraordinary disruption for agile teams and Scrum Masters, whose main tasks
are to facilitate collaboration and remove team obstacles [11].

Scrum Masters can leverage these insights to balance the use of AI Coding
Assistants within agile frameworks, thereby upholding the core agile value of

128 V. T. Wivestad et al.

prioritizing individuals and interactions over processes and tools. Although AI
Coding Assistants seem to enhance focus and satisfaction among developers, it
is imperative to ensure that these benefits do not lead to isolation, where each
team member finds themselves on a solitary ‘island of joy.’

References

1. Alliata, Z., Alliata, D., Berzin, L.: Get IT! How to Start a Career in the New
Information Technology: How to Start as an Agile Scrum Master. Better Karma
LLC (2016)

2. Barbala, A., Sporsem, T., Stol, K.J.: A case study of continuous adoption in the
norwegian public sector (2024)

3. Barbala, A., Sporsem, T., Stray, V.: Data-driven development in public sector: how
agile product teams maneuver data privacy regulations. In: International Confer-
ence on Agile Software Development, pp. 165–180. Springer, Cham (2023)

4. Cleveland, S., Moschoglou, G., Millisor, E.J., Hansen, D.D.: Exploring project
uncertainty and leadership strategies: domains, factors, categories, and compe-
tencies. Int. J. Smart Educ. Urban Soc. (IJSEUS) 13(1), 1–13 (2022)

5. Forsgren, N., Storey, M.A., Maddila, C., Zimmermann, T., Houck, B., Butler, J.:
The SPACE of developer productivity. Queue 19(1), 20–48 (2021). https://doi.
org/10.1145/3454122.3454124

6. Kalliamvakou, E.: Research: quantifying GitHub Copilot’s impact on devel-
oper productivity and happiness (2022). https://github.blog/2022-09-07-research-
quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

7. Kerby, D.S.: The simple difference formula: an approach to teaching nonparametric
correlation. Compr. Psychol. 3, 11.IT.3.1 (2014)

8. Kristensen, S.H., Paasivaara, M.: What added value does a scrum master bring to
the organisation? - a case study at nordea. In: 2021 47th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pp. 270–278 (2021).
https://doi.org/10.1109/SEAA53835.2021.00041

9. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables
is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947).
https://doi.org/10.1214/aoms/1177730491. http://projecteuclid.org/euclid.aoms/
1177730491

10. McGraw, K.O., Wong, S.P.: A common language effect size statistic. Psychol. Bull.
111(2), 361–365 (1992). https://doi.org/10.1037/0033-2909.111.2.361. https://doi.
apa.org/doi/10.1037/0033-2909.111.2.361

11. Shastri, Y., Hoda, R., Amor, R.: Spearheading agile: the role of the scrum master
in agile projects. Empir. Softw. Eng. 26, 1–31 (2021)

12. Shull, F., Singer, J., Sjøberg, D.I.K. (eds.): Guide to Advanced Empirical Software
Engineering. Springer, London (2008). https://doi.org/10.1007/978-1-84800-044-
5

13. Smite, D., Mikalsen, M., Moe, N.B., Stray, V., Klotins, E.: From collaboration to
solitude and back: remote pair programming during COVID-19. In: Gregory, P.,
Lassenius, C., Wang, X., Kruchten, P. (eds.) XP 2021. LNBIP, vol. 419, pp. 3–18.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78098-2_1

14. Stray, V., Barbala, A.: Slack use in large-scale agile organizations: ESN tools as cat-
alysts for alignment? In: International Conference on Agile Software Development,
pp. 20–35. Springer, Cham (2024)

https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1145/3454122.3454124
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://doi.org/10.1109/SEAA53835.2021.00041
https://doi.org/10.1214/aoms/1177730491
http://projecteuclid.org/euclid.aoms/1177730491
http://projecteuclid.org/euclid.aoms/1177730491
https://doi.org/10.1037/0033-2909.111.2.361
https://doi.apa.org/doi/10.1037/0033-2909.111.2.361
https://doi.apa.org/doi/10.1037/0033-2909.111.2.361
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/978-3-030-78098-2_1

Copilot’s Island of Joy 129

15. Ulfsnes, R., Moe, N.B., Stray, V., Skarpen, M.: Transforming software development
with generative AI: empirical insights on collaboration and workflow. In: Nguyen-
Duc, A., Abrahamsson, P., Khomh, F. (eds.) Generative AI for Effective Software
Development, pp. 219–234. Springer, Cham (2024). https://doi.org/10.1007/978-
3-031-55642-5_10

16. Ziegler, A., et al.: Productivity assessment of neural code completion. In: Proceed-
ings of the 6th ACM SIGPLAN International Symposium on Machine Program-
ming, MAPS 2022, pp. 21–29. Association for Computing Machinery, New York
(2022)

17. Ziegler, A., et al.: Measuring GitHub copilot’s impact on productivity. Commun.
ACM 67(3), 54–63 (2024). https://doi.org/10.1145/3633453. https://dl.acm.org/
doi/10.1145/3633453

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-031-55642-5_10
https://doi.org/10.1007/978-3-031-55642-5_10
https://doi.org/10.1145/3633453
https://dl.acm.org/doi/10.1145/3633453
https://dl.acm.org/doi/10.1145/3633453
http://creativecommons.org/licenses/by/4.0/

Can ChatGPT Suggest Patterns? An
Exploratory Study About Answers Given
by AI-Assisted Tools to Design Problems

João José Maranhão Junior1(B) , Filipe F. Correia2 ,
and Eduardo Martins Guerra3

1 Institute for Technological Research, São Paulo, Brazil
joao.junior@ensino.ipt.br

2 Faculty of Engineering, University of Porto, Porto, Portugal
filipe.correia@fe.up.pt

3 Free University of Bozen-Bolzano, Bolzano, Italy

eduardo.guerra@unibz.it

Abstract. General-purpose AI-assisted tools, such as ChatGPT, have
recently gained much attention from the media and the general public.
That raised questions about in which tasks we can apply such a tool. A
good code design is essential for agile software development to keep it
ready for change. In this context, identifying which design pattern can be
appropriate for a given scenario can be considered an advanced skill that
requires a high degree of abstraction and a good knowledge of object
orientation. This paper aims to perform an exploratory study investi-
gating the effectiveness of an AI-assisted tool in assisting developers in
choosing a design pattern to solve design scenarios. To reach this goal,
we gathered 56 existing questions used by teachers and public tenders
that provide a concrete context and ask which design pattern would be
suitable. We submitted these questions to ChatGPT and analyzed the
answers. We found that 93% of the questions were answered correctly
with a good level of detail, demonstrating the potential of such a tool
as a valuable resource to help developers to apply design patterns and
make design decisions.

Keywords: ChatGPT · Design Patterns · Artificial Intelligence ·
AI-assisted tools

1 Introduction

The use of design patterns [1–3] in software development is a practice that brings
several advantages, including code reuse, better code organization, ease of main-
tenance, better scalability, and software quality [4,5]. In the context of agile
methods, these characteristics are essential to keep the code ready to change,
enabling adjustments in requirements in small iterations. However, becoming
proficient in understanding and applying these patterns can take time and
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 130–138, 2025.
https://doi.org/10.1007/978-3-031-72781-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_14&domain=pdf
http://orcid.org/0009-0001-0049-4907
http://orcid.org/0000-0002-9581-3973
http://orcid.org/0000-0001-5555-3487
https://doi.org/10.1007/978-3-031-72781-8_14

ChatGPT Suggest Patterns 131

effort [6], requiring a high degree of abstraction and practice in object-oriented
programming. Educational institutions use various learning techniques [7,8] to
engage students with real-world problems in recognizing and interpreting these
patterns.

ChatGPT is an AI-assisted tool capable of answering questions in a conver-
sational way. Recently, this kind of tool has received a lot of attention from the
media and the general public, raising questions about the potential of its appli-
cation in several fields, such as public health [9] and academia [10]. Some recent
works suggest its use for software engineering applications, such as solving pro-
gramming bugs [11] and improving other kinds of activities, like requirements
engineering and code quality [12]. GitHub Co-Pilot1 is an example of another
tool in this direction.

The goal of this paper is to investigate if an AI-assisted tool can help devel-
opers to make design decisions, like suggesting appropriate design patterns to
apply in a given scenario. To reach that goal, we performed an exploratory study
considering 56 exercises and exam questions obtained from educational institu-
tions and public tenders, which present a concrete context and ask which pattern
should be applied. We used ChatGPT for this study, and we evaluated how many
answers it answered correctly based on the question’s official answer and what
elements that can help in the pattern implementation is present in the answers.
For wrong answers, we also assessed if they could mislead the developer to the
wrong path.

We found that the AI-assisted tool answered 93% of the questions correctly,
always referring to specific details of the scenario and, in several cases provid-
ing guidance to the pattern implementation, including the classes and interfaces
that should be created. In the few cases where the tool provided wrong answers,
we found that they could be misleading and guide the developers in the wrong
direction. Based on that, we consider the results of this initial assessment promis-
ing, pointing to the potential of such tools to assist in software design decisions.
However, we also believe an experienced professional is still needed to evaluate
the suitability of the suggested solution.

2 Research Design

Based on the goal of investigating if an AI-assisted tool can help developers
in choosing the appropriate design pattern to apply in a given scenario, we
formulated three more specific research questions:

1. RQ1 - How is the success rate of the AI-assisted tool in suggesting design
patterns?

2. RQ2 - Do elements provided in the answer of the AI-assisted tool help in the
pattern implementation?

3. RQ3 - In questions where the wrong pattern is pointed, does the AI-assisted
tool answer mislead the developers?

1 https://github.com/features/copilot.

https://github.com/features/copilot

132 J. J. Maranhão Junior et al.

To answer these research questions, we collected preexisting questions pre-
pared by higher education professors or public tenders in which a scenario is
described, and it asks which design pattern should be applied. Since these ques-
tions are used to evaluate the student’s knowledge of patterns, we believe they
can also be used to evaluate the tool’s performance. We chose ChatGPT as the
AI-assisted tool for the study and submitted the selected questions to it, regis-
tering the answers. The content of the answers was analyzed, not only comparing
to the exercise correct answer (RQ1) but also analyzing what elements that can
help the developers in the pattern implementation were present (RQ2). A quali-
tative analysis was done on the wrong answers to evaluate if they could mislead
the developers (RQ3).

To select the answers, we contacted professors that teach design patterns in
universities asking for exam questions and exercises they give students. We’ve
received the material from three professors from different countries: Italy, the
United States, and Portugal. We also analyzed available exams of public tenders
for 26 Brazilian institutions. As a question inclusion criteria for this study, we
considered the following criteria: (a) the solution should be one of the “Gang
of Four” (GoF) patterns; (b) the question should describe a scenario and ask
which pattern should be applied; and (c) the question should describe a concrete
scenario and not just give general requirements.

The first criterion was included to restrict the scope of the study to these
patterns, which are well known by the software development community and
taught in university courses, which enabled finding a good number of questions.
The two other criteria were considered to choose questions that better simulate
the decision of applying a pattern in a real scenario.

The qualitative analysis inspected each correct answer and evaluated the
following criteria: (C1) If the answer mentions the described context (instead
of just giving a generic answer); (C2) If the answer explains the pattern;(C3)
If the answer describes the classes and interfaces that need to be created to
implement the pattern; (C4) If the answer describes the methods that should be
created to implement the pattern; (C5) If the answers included a UML diagram
to represent the solution; (C6) If the answer described any trade-off or negative
consequence in using of the proposed pattern.

3 Questions Database

In selecting questions, we obtained a total of 56 Design Pattern questions. There
are 19 questions from university courses: 9 questions from the United States,
6 from Portugal, and 4 from Italy. All of these questions were formulated in
English. We also found 37 questions in Portuguese from public tenders in Brazil,
inspecting selection exams of twenty-nine different institutions. Since the ques-
tions obtained from teachers are used in exams and some asked to keep them
private, we did not make the questions dataset open.

From the selected questions, all patterns in the study scope were covered with
at least one question. Figure 1 presents how many questions have each pattern

ChatGPT Suggest Patterns 133

as a correct answer. Considering the pattern categories, there are 25 questions
about behavioral pattern, 22 about structural patterns, and 17 about creational
patterns. We consider that the question database is reasonably balanced among
the pattern categories, having a good amount of questions that cover each one.
Two questions accepted more than one pattern as a correct answer; in such cases,
we consider any one of them as right. Four questions asked for a combination of
patterns as an answer; in this case, we considered that the right answer should
include all of them.

Fig. 1. Number of questions collected by design patterns.

4 Results

The questions were sent to ChatGPT (version 3.5) in the period comprised
between 2023-03-03 and 2023-04-16. Based on the results, ChatGPT was gener-
ally effective in answering our questions, with an overall accuracy rate of 93%.
Most of the questions were in Portuguese, with 31 of the 34 questions answered
correctly, while 21 of the 22 in English were answered correctly.

The answers have an average number of 1033 chars with a standard deviation
of 657, varying from a minimum of 247 to a maximum of 3127. Considering the
number of words, the average is 155, with a standard deviation of 89, varying
from a minimum of 37 to a maximum of 390 words. We used the Pearson cor-
relation coefficient to evaluate if the number of words on the question would be
related to the number of words in the answer. The value of 0,09 obtained showed
that there was no significant relation.

134 J. J. Maranhão Junior et al.

Information Present in the Answers. A qualitative analysis evaluated the
six criteria proposed in Sect. 2. The following are the results:

– (C1) 100% of the correct answers (52/52) mention the described context
(instead of just giving a generic answer)

– (C2) 57.69% of the correct answers (30/52) explain the pattern;
– (C3) 32.69% of the correct answers (17/52) describe the classes and interfaces

that need to be created to implement the pattern;
– (C4) 26.92% of the correct answers (14/52) describe the methods that should

be created to implement the pattern;
– (C5) 3.85% of the correct answers (2/52) include a UML diagram to represent

the solution;
– (C6) None of the correct answers (0/52) describe any trade-off or negative

consequence in using the proposed pattern.

Assessment of Wrong Answers. This section presents an analysis of the
questions that received a wrong answer (the ID will be used to refer to that
question later):

– (WA1) The question presented a problem in creating a solution for reports
needing two dimensions: the report type and the report format. While the
correct answer was using the Visitor pattern, the tool suggested Strategy.
In the answer, one of the dimensions of the question was ignored, and the
proposed solution focused only on the report format.

– (WA2) The question asked how the representation of more complex devices
could be dynamically created by reusing the behavior of more simple devices
that are part of it. While the correct answer was Composite, the given answer
was Factory Method. In this case, the solution described does not help in
solving the design problem presented.

– (WA3) The question presented the context of exchanging messages between
different cell phone operating systems platforms, handling distinct message
formats transparently. While the correct answer was Adapter, the answer
given was Bridge. In this case, even if the patterns share some structural
similarities, the described solution does not help solve the problem.

– (WA4) The question presented an abstract class that is responsible for trans-
parently creating objects corresponding to different types of databases. Con-
crete subclasses are responsible for instantiating specific connections and
queries for each type of database. The correct answer was Abstract Factory,
and the given answer was Factory Method. Even if both are creational pat-
terns, the given answer does not help to solve the problem because it was
necessary to create a family of objects for each type of database.

5 Discussion

This section performs a discussion based on the obtained results, answering each
research question. We also point out some limitations of the present study.

ChatGPT Suggest Patterns 135

5.1 RQ1 - How is the Success Rate of the AI-Assisted Tool
in Suggesting Design Patterns?

The study showed an efficient result with 93% correct answers in 56 questions.
We highlight that the questions selected do not just ask for information about
the patterns but present a specific and concrete scenario. To correctly answer
the question by choosing the right pattern, the relevant factors that point to the
usage of that specific pattern need to be identified in the context description. We
also highlight that in the four questions that required a combination of patterns
as an answer, the correct answer was provided by the AI-assisted tool.

ChatGPT performance can be considered good compared to other works that
proposed more specific techniques for pattern suggestion [13,14]. Consequently,
it can be considered a suitable assisting tool for developers, which can describe
the design scenario in their application and receive suggestions from the tool.

5.2 RQ2 - Do Elements Provided in the Answer of the AI-Assisted
Tool Help in the Pattern Implementation?

One positive point is that all responses mentioned the problem’s context instead
of just pointing to the pattern and providing a generic explanation. Around
one-third of the answers also provided the name of the classes and interfaces
that should be created in that case. Additionally, around one-quarter described
the methods that should be created. Few answers, only 2, also provided UML
diagrams with the structure that should be used.

Most of the answers, but not all, brought a more theoretical explanation of
the pattern, which can be useful in case the developer is unfamiliar with the
pattern. A piece of important information that was not present in any of the
answers is the trade-off in the usage of the suggested pattern since knowing
possible bad consequences is important to make design decisions.

To avoid any kind of bias, the questions used in this study were not mod-
ified; however, we acknowledge that if we explicitly included in the question
what information we wanted in the answer, the tool would include it. We did
some exploratory experiments on some of the questions, rephrasing them to ask
explicitly for some missing information. As a result, the missing information was
included correctly in the new answers. That fact highlights the importance of
how the questions are formulated, a new disciple called prompt engineering [12].

5.3 RQ3 in Questions Where the Wrong Pattern is Pointed, Does
the AI-Assisted Tool Answer Mislead the Developers?

We analyzed the four questions that received wrong answers to see if there
was any inconsistency or ambiguity in the way they were formulated, and all
authors agreed that they were clearly described and there was no doubt about
the correct answer. For all the patterns that were the correct answer for these
questions, there is at least another question with the same pattern answered
correctly.

136 J. J. Maranhão Junior et al.

In the case of WA1, the answer given by ChatGPT considered the described
context partially, and the Strategy implementation that it described could be
evolved to a Visitor. However, in WA2, WA3, and WA4, the answer leads to a way
that does not solve the problem. The answers are assertive and well-described,
and we believe can easily be accepted by a less experienced developer. Because of
that, we advise that the answers given by an AI-assisted tool should be reviewed
and understood instead of being blinded implemented. In other words, there
should be a professional that should be responsible for its analysis and adoption.

We also noticed that some of these questions used terms and expressions
closely connected to other patterns. So, we suggest avoiding expressions like
“family of algorithms” or “composite objects” that can drive the tool to a specific
pattern.

5.4 Study Limitations

Our study focused only on “Gang of Four” (GoF) design patterns, which are
well-known and widely used in the software development community. The per-
formance of ChatGPT may differ for other design patterns that are newer and
have less material available.

Our study was conducted in a controlled setting using preexisting questions.
These questions were formulated by teachers with software design knowledge,
focused on scenarios suitable for applying one of the patterns, and included all
the necessary information relevant to direct the answer to one of the patterns.
Using such a tool in a real project would require skills to identify the relevant
forces in the scenario and formulate them properly [12]. Asking which pattern
should be used might force the choice of one pattern in cases where none of them
is suitable.

6 Conclusion

This paper described an exploratory study that investigated using an AI-assisted
tool, in our case ChatGPT, to suggest design patterns using scenarios from
existing exam questions. The tool answers have good accuracy, being correct
in 93% of the cases, and always mention specific details of the scenarios, which
provide guidance for the pattern implementation. In some cases, the answers also
included information on classes, interfaces, and methods to be created, which we
believe could be improved even more using prompt engineering techniques [12].
Another finding is that wrong answers, even if given in only a few cases, could
be misleading and lead the developers in a direction that does not help the
design problem described. In conclusion, our study suggests that AI-assisted
tools can be a valuable resource for developers in understanding and applying
design patterns; however, they should not replace human expertise, and the
solutions should be reviewed before their adoption.

Future studies in this direction can focus on a different set of patterns that
have less documentation and material available on the Internet. The result of

ChatGPT Suggest Patterns 137

this new study can be compared with the one made with the GoF patterns to
assess if the AI-assisted tool can have a similar performance. Other studies can
be conducted in more realistic scenarios using the description of design challenges
faced by development teams and comparing the solutions suggested by an AI-
assisted tool with the ones adopted in the projects.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Boston (1994)

2. Joshua, K.: Refactoring to Patterns. Addison-Wesley Professional, Boston (2004)
3. Martin, R.C.: Agile Software Development, Principles, Patterns, and Practices.

Prentice Hall, Upper Saddle River (2002)
4. Holub, A.: Holub on Patterns: Learning Design Patterns by Looking at Code.

Apress, New York (2004)
5. Barros-Justo, J.L., Benitti, F.B.V., Cravero-Leal, A.L.: Software patterns and

requirements engineering activities in real-world settings: a systematic mapping
study. Comput. Standards Interfaces 58, 23–42 (2018)

6. Shalloway, A., Trott, J.: Design patterns explained: a new perspective on object-
oriented design. Addison-Wesley Professional, Boston (2004)

7. Warren, I.: Teaching patterns and software design. Conferences in Research and
Practice in Information Technology Series, vol. 42 (2005)

8. Chatzigeorgiou, A., Tsantalis, N., Deligiannis, I.: An empirical study on students
ability to comprehend design patterns. Comput. Educ. 51(3), 1007–1016 (2008)

9. Biswas, S.S.: Role of chat GPT in public health. Ann. Biomed. Eng. 1–2 (2023)
10. Lund, B.D., Wang, T.: Chatting about chatgpt: how may AI and GPT impact

academia and libraries? Library Hi Tech News (2023)
11. Surameery, N.M.S., Shakor, M.Y.: Use chat GPT to solve programming bugs. Int.

J. Inf. Technol. Comput. Eng. (IJITC) 3(01), 17–22 (2023). ISSN: 2455-5290
12. White, J., Hays, S., Fu, Q., Spencer-Smith, J., Schmidt, D.C.: Chatgpt prompt

patterns for improving code quality, refactoring, requirements elicitation, and soft-
ware design. arXiv preprint arXiv:2303.07839 (2023)

13. Hussain, S., Keung, J., Sohail, M.K., Khan, A.A., Ilahi, M.: Automated framework
for classification and selection of software design patterns. Appl. Soft Comput. 75,
1–20 (2019)

14. Hasheminejad, S.M.H., Jalili, S.: Design patterns selection: an automatic two-phase
method. J. Syst. Softw. 85(2), 408–424 (2012). Special issue with selected papers
from the 23rd Brazilian Symposium on Software Engineering

http://arxiv.org/abs/2303.07839

138 J. J. Maranhão Junior et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Education Track

Towards Improving Behavior-Driven
Development and Acceptance

Testing-Driven Development Teaching
in a University Project Course

Marina Filipovic(B) and Fabian Gilson

University of Canterbury, Christchurch, New Zealand
{marina.filipovic,fabian.gilson}@canterbury.ac.nz

Abstract. Behavior-Driven Development (BDD) improves the collab-
oration between developers and stakeholders following agile software
development practices. Acceptance Test-Driven Development (ATDD)
is an extension of BDD where requirements are accompanied by auto-
mated acceptance tests, translating functional acceptance criteria linked
to requirements. While BDD and ATDD have been successfully applied
in industry, few universities report on teaching BDD and ATDD princi-
ples as part of their curriculum. However, there is a need for education
providers to teach industry-relevant practices so that junior developers’
skills are better aligned to industry’s expectations. Therefore, we report
on how BDD and ATDD techniques have been taught in a two-semester
software engineering project, including (i) the lack of observed evidence
on the implications of applying BDD and ATDD on the functional suit-
ability of software products, (ii) the lack of engagement with BDD and
ATDD from students, and (ii) recommendations to educators to improve
students’ engagement with these practices.

Keywords: agile software development · behavior-driven
development · acceptance test-driven development · Scrum · tertiary
education

1 Introduction

Behavior-Driven Development (BDD) aims at helping software development
teams to build reliable products that are closely aligned with the needs of cus-
tomers [1]. BDD focuses on specifying the system’s behavior in natural language
so that it can be easily automated [2]. Specifically, user interactions are described
with specific keywords for preconditions, actions, and post-conditions (or effects),
i.e. Given <precondition>, When <action>, Then <post-condition> (GWT). In
Acceptance Test-Driven Development (ATDD), test code is derived from GWT
criteria to drive the design of a feature.

When successfully implemented, BDD and ATDD exhibit many benefits [3],
such as improved communications between customers and developers, improved
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 141–149, 2025.
https://doi.org/10.1007/978-3-031-72781-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_15&domain=pdf
http://orcid.org/0000-0001-5641-506X
http://orcid.org/0000-0002-1465-3315
https://doi.org/10.1007/978-3-031-72781-8_15

142 M. Filipovic and F. Gilson

productivity and decreased code defects, and automated testing of software at
the “business” level. However Farooq et al. report on challenges in using BDD
in industry, suggesting it is difficult for inexperienced developers [4]. Therefore,
particular attention needs to be put into teaching BDD and ATDD so junior
developers can be better prepared for the industry.

In this report we investigate the effects on students’ learning outcomes of a
learning-by-doing with just-in-time learning [5]. We observed 8 teams of 3rd year
undergraduate students over 5 Scrum sprints, where they applied Scrum, BDD,
ATDD, and DevOps principles, within a continuous integration pipeline. Specif-
ically, we investigate the following questions: RQ1: Can we observe a correlation
between BDD and ATDD engagement levels and functional suitability [6] of a
product developed in a project course? RQ2: To what extend learning-by-doing
is a suitable approach for 3rd year students to adopt BDD and ATDD practices?
RQ3: What challenges and success factors do 3rd year undergraduate students
face when implementing BDD and ATDD practices for the first time?

Our main findings are: (i) BDD and ATDD practices were not used to their
full potential, with teams partially disengaging around mid-project; (ii) stu-
dents needed more timely guidance to overcome technical challenges with the
implementation of complex acceptance test scenarios; and (iii) despite students
indicating they found the workshops useful (e.g., git, ATDD, DevOps), they
were not sufficient for students to engage with BDD/ATDD in the long term.

2 Related Work

While reports on BDD implementations in industry settings are well docu-
mented, there is limited research focused on teaching BDD [4].

Goulart reports on a successful application of BDD into a capstone project
conducted by a team of 3 students [7]. Amongst the lessons learned, the author
reported that students needed close mentoring, regular revision of acceptance
tests, and frequent deliveries to ensure the full benefits of applying BDD. Our
project course also implements close mentoring of teams, as well as frequent
deliveries (Scrum sprints).

Rocha et al. report on their experience with students applying TDD and
BDD in a software project course where they observed better grades and faster
delivery [8]. Where limited details are given on how the authors calculated the
grades, we focus on successful product deliveries instead of grades, which matches
more closely the expected outcome in industry.

Sarinho applies an “unplugged” and “gamified” paper-based teaching method
for students to get familiar with BDD principles [9]. However, they do not eval-
uate the effectiveness of their method beyond anecdotal observations.

Nascimento et al. suggest that an active learning methodology such as
“Challenge-Based Learning” improves students’ learning and engagement [10].
Our project-based course, applying both problem-based learning and learning-
by-doing principles, closely matches these recommendations.

Compared to existing works, we observe the effects on product deliveries of
teaching and applying BDD in an active-learning environment over five Scrum

Towards Improving BDD and ATDD Teaching 143

sprints. We also investigate students’ engagement with BDD practices over a
rather long period of time (multiple months) on a sizeable software product
(approx. 20KLOC).

3 Study Design

3.1 Context

This study was carried on a whole-year project course in the 3rd year of the
Software Engineering degree at the University of Canterbury. Before taking
the course, all students have experience in imperative (python) and object-
oriented (Java) programming, design principles, and relational databases. As
a co-requisite, students take a software engineering course that covers Scrum,
BDD, ATDD, and continuous integration. This research was conducted from
February to September 2021 (21 study weeks). 80 students were enrolled at the
start of the course, with 70 completing it. Out of these, 7 identified as women,
and 63 as men. We obtained appropriate approval from the University Ethics
Committee and students to use their anonymised data for research purposes.

3.2 Project Organisation

The project follows the Scrum framework [11] and is divided in 6 sprints lasting
3 to 4 weeks each. Because students start in sub-teams for the first sprint (for
on-boarding purposes), we gathered data from the second sprint onwards. All
teams start with the same project template containing the initial technology
stack, i.e. SpringBoot with Gradle, and Vue.js, configured to interact with a
Gitlab pipeline and virtual machines hosted by the University.

Each team of 7–8 students is mentored by a scrum master being a 4th year
student who successfully passed the course previously. A more experienced teach-
ing team is composed of lecturers and senior tutors playing the roles of product
owner (PO), technical leads, or training consultants. The PO, a lecturer, over-
looks the product backlog with acceptance criteria where technical leads and
training consultants approve additional technologies and give students a tech-
nical and methodological guidance (i.e. predefined workshops, ad-hoc support,
marking of deliverables).

Each sprint implements all Scrum events (i.e. planning, daily scrums, review,
retrospective), with each team negotiating their sprint commitment separately
with the PO during sprint planning. Each product is marked at the end of each
sprint in terms of delivered stories in regards to each team’s sprint backlog.

3.3 Workshops

During the course, specific workshops were offered (e.g. Git, Testing including
BDD and ATDD, code review). These workshops were mandatory. The dedi-
cated Testing workshop was delivered at the beginning of the project, in sprint

144 M. Filipovic and F. Gilson

2. During this workshop students learned how to write automated acceptance
tests using Cucumber1. To emphasise BDD principles, the product backlog was
made out of user stories with detailed acceptance criteria. Stories and accep-
tance criteria were written by the PO while students had to translate them into
(automated) acceptance tests.

Students worked in pairs during most workshops, as working in small groups
leads to improved learning outcomes [12]. We paired students on their engage-
ment and abilities demonstrated during the first sprint to encourage knowledge
sharing. From that workshop on, students were required to follow BDD practices,
including automated acceptance testing, into their project.

3.4 Data Sources and Metrics

To answer our RQs, we collected metrics via four sources: SonarQube with
JaCoCo2, Cucumber feature files, manual test scripts in spreadsheets, and a
survey students filled in at the end of the year where they reflected on their own
learning, including how they evaluated the content of the workshops.

Unit test code coverage: These were obtained from JaCoCo reports uploaded to
SonarQube (triggered by the Gitlab pipeline) after each sprint. Because of the
technology stack, back-end JUnit (Java) unit tests are referred to as BEUT,
while front-end Jest (Javascript) unit tests are denoted FEUT.

Automated acceptance test coverage: Students wrote automated acceptance tests
in Gherkin syntax, i.e. Given-When-Then, using Cucumber scenarios. We
manually mapped scenarios to acceptance criteria attached to user stories
after each sprint, denoted as AAT. The acceptance criteria were considered
fully covered if there was at least one Cucumber scenario per criterion.

Manual acceptance test coverage: The coverage of acceptance criteria with man-
ual tests is denoted MAT. The data was aggregated from manual inspection
of manual test scripts in spreadsheets mapped to acceptance criteria for all
stories, on a sprint basis.

Assessment of functional suitability: Each sprint delivery was assessed by a
teaching team member in terms of passed story points, denoted PSP, com-
pared to the team’s own sprint commitment (i.e. team sprint backlog).

End-of-year survey: As part of their end-of-year survey, students were given
optional questions to comment on their learning experience in the course and
on the material covered during the testing workshop.

4 Results

We report on the main findings from observations and analysis of 8 out of 10
initial teams in the project over 5 sprints3. Raw data are available on Zenodo4.
1 See https://cucumber.io/.
2 See https://www.sonarqube.org/ and https://www.jacoco.org/jacoco/.
3 Two teams were discarded as only partial manual testing data could be retrieved.
4 R sources and data: https://zenodo.org/doi/10.5281/zenodo.10064914.

https://cucumber.io/
https://www.sonarqube.org/
https://www.jacoco.org/jacoco/
https://zenodo.org/doi/10.5281/zenodo.10064914

Towards Improving BDD and ATDD Teaching 145

RQ1 - BDD and Functional Suitability. We have undertaken statistical mod-
elling in R to analyse potential relationships between different levels of test-
ing and product deliveries. We have chosen to fit a Linear Mixed-Effect model
(LMER) as we have repeated observations of clusters of data, i.e. testing metrics
per team, where teams can be considered as the random effect. Following indus-
try results [4], we postulate that any increase in ATDD-related test coverage (i.e.
AAT metric) would predict an increase in passed stories (i.e. PSP metric). We
reproduce the results of the LMER model calculation in Table 1 where we also
added the other testing coverage metrics for comparison purposes. Teams’ PSP
averages (over all sprints) ranged from 43.59% (Team A) to 77.61% (Team H).

Table 1. Results from LMER model calculation (in R).

Estimate St.Error t value Pr(>|t|)

(Intercept) 0.3159 0.1723 1.834 0.07522

FEUT 0.6323 0.2188 2.890 0.00657 **

BEUT –0.3307 0.2950 –1.121 0.26984

AAT 0.1731 0.2179 0.794 0.43230

MAT 0.3895 0.1401 2.779 0.00871 **

Asterisks next to probability values indicate sig-
nificance levels (R summary function).

From Table 1, front-end unit testing (FEUT) and manual acceptance testing
(MAT) have statistically significant effects on passed story points (PSP). How-
ever we couldn’t find any strong correlation between AAT (automated accep-
tance testing) and passed stories, i.e. functional suitability of delivered products.

RQ2 - Engagement with BDD and ATDD. In Fig. 1 we plot the AAT metrics
for all teams over all relevant sprints, as proxy for their engagement with BDD
and ATDD practices.

Two teams engaged straight after the ATDD workshop, Team F slowly dis-
engaging sprints after sprints, and Team G showing a spike in sprint 5. Teams
C, D and H engaged with automated acceptance testing from sprint 3 onwards,
Team A picking up from sprint 4. However Team D disengaged from mid-year.
The remaining two teams, B and F, never really engaged throughout the year.
All but Team C put less effort in AAT coverage during the last sprint, which is
often considered as a wrap-up sprint by students wanting to “polish” their prod-
ucts. Overall, only 3 out of 8 teams did put a regular effort into their automated
acceptance scenarios, still with rather low coverage around 50%.

RQ3 - Challenges and Success Factors: The survey ran for two weeks after
the end of the course, was anonymous, optional, and accessible online using
Qualtrics. It was composed of 17 distinct questions, with 9 directly related to

146 M. Filipovic and F. Gilson

Fig. 1. Acceptance testing coverage per team per sprint.

the Testing workshop. Seven questions were using a 5-point Likert scale, accom-
panied by a free-text box for students’ comments (lower values indicate a dissat-
isfaction), and two were open-ended. Out of 70 students enrolled in the course, 35
responded to the survey, out of which 23 were complete answers. Table 2 repro-
duces an excerpt of the survey questions, with students’ ratings and number of
respondents.

Table 2. Questions of the survey and mean of answers, with number of respondents.

IDQuestion MeanResp.

1. How satisfied were you with testing workshops in SENG302? 3.63 35

2. What do you think about timing of testing workshop? 2.89 35

3. Testing workshop has covered Unit testing, Mocking and Acceptance
testing. Did you find it beneficial to cover them all in one workshop?

3.46 28

4. For the ATDD part of the Testing workshop we have covered best
practices to write scenarios. How useful have you found this material?

3.91 23

5. Have you been using material related to best practices of scenario
writing while working on the project?

2.86 23

6. One of the tasks during Acceptance testing part of the testing
workshop was to write all possible scenarios for one of the stories from
your backlog. Was this exercise helpful? Consider your confidence in
implementing these techniques after the workshop.

3.95 23

7. During ATDD part of the testing workshop was to implement the test
steps for one or more scenarios for a story from your project backlog.
How helpful have you found this exercise?

3.69 23

8. Overall, what other improvements can we make in the future to make
testing workshops more useful?

n/a 17

9. Reflect on the year as a whole. What has helped you the most in
improving your testing skills?

n/a 17

Towards Improving BDD and ATDD Teaching 147

Most students found the content of the workshop valuable (Q1, Q3, and
Q4), but many would have preferred to have it scheduled earlier (Q2 and Q8)
as they felt they were already too far away in the project. Students mentioned
that they typically did not refer to the material later on, in line with the dis-
engagement with ATDD discussed in RQ2 (Q5). The hands-on approach taken
in the workshop was well appreciated, but some students mentioned that the
growing complexity of the backlog caused challenges regarding test modularity,
or mocking (Q6 and Q7). Students mostly mentioned that they needed more
time and support to learn how to mock properly (Q8). Many also suggested to
decompose each subject (i.e. best practices, BDD principles, and mocking) in
separate workshops, so all aspects are covered in more details (Q8, Q9).

5 Discussion

Summary of Results: Unlike some results in the industry (e.g., [2,13]), we
observed that implementing BDD practices cannot predict a high functional
suitability when applied by 3rd year undergraduate students in a two-semester
long project. As visible in Table 1, front-end and manual tests were better
predictors of a high passing rate of stories (RQ1).
Furthermore, despite hands-on workshops coupled to academic expectations
to engage with an ATDD framework (i.e. Cucumber), the level of engagement
varied across teams, as well as with time. Students mentioned that a grow-
ing complexity in the product backlog and resulting software hindered their
ability to write automated acceptance tests on the long run. Still, students
appreciated the learning-by-doing approach, including the ability to work on
their project during the workshop (RQ2).
Combining our statistical analysis and survey results, we identified that the
schedule of the workshop is primordial, and must come as early as possible
when students start working on their code base. We also identified that aca-
demic requirements are not enough for students to fully engage with BDD
and ATDD practices, but more pro-active and continuous support is needed
to get them started and keep writing automated acceptance tests, or they
may fall back to manual testing (RQ3).

Recommendation 1: Offer early and continuous hands-on guidance on testing,
BDD, ATDD and DevOps practices to students, and do not rely on theoretical
course content to increase practical engagement with the content.

Recommendation 2: Apply pair programming in hands-on workshops, using the
project code base itself, in the early stages of the project, and decompose the
content in focused sessions.

Threats to Validity: The calculation of automated acceptance and manual cov-
erage metrics have been performed manually by one author, with random
crosscheck by the other author. A potential error rate can be compensated
by the amount of data, the number of measures, and the usage of statistical
analysis, openly accessible for review (internal validity). All teams had access
to the same content, same support, working on the same product backlog

148 M. Filipovic and F. Gilson

(construct validity). Our recommendations follow clear trends observed, or
feedback given by students, however a different project course with a differ-
ent method than Scrum may lead to different conclusions, especially since not
all students provided feedback in the survey (external validity).

6 Conclusion

We have discussed our lessons learned from teaching BDD in a two-semester
project course. We combined code coverage metrics and survey results to under-
stand the adoption level of BDD and ATDD practices by teams of 3rd year
undergraduate students while developing a software following the Scrum frame-
work. We also analysed whether the application of ATDD would predict higher
degrees of functional suitability. We observed that the engagement vary across
teams and with time, despite academic expectations to do so. Students reported
that the timing of practical training is important, as well as creating focused
sessions for each aspects of testing, e.g., best practices, BDD, ATDD, mocking,
DevOps. Students also appreciated the hands-on approach where they could
learn these techniques in workshops on the actual product that they were devel-
oping in the project.

References

1. North, D., et al.: Introducing bdd (2006). Accessed 28 Mar 2024
2. Dookhun, A.S., Nagowah, L.: Assessing the effectiveness of test-driven develop-

ment and behavior-driven development in an industry setting. In: International
Conference on Computational Intelligence and Knowledge Economy (2019)

3. Latorre, R.: A successful application of a test-driven development strategy in the
industrial environment. Empir. Softw. Eng. (2014)

4. Farooq, M.S., Omer, U., Ramzan, A.: Behavior driven development: a systematic
literature review. IEEE Access (2023)

5. Brandenburg, D.C., Ellinger, A.D.: The future: just-in-time learning expectations
and potential implications for human resource development. Adv. Dev. Hum.
Resour. 5(3), 308–320 (2003)

6. ISO/IEC: ISO/IEC 25010 system and software quality models (2010)
7. Goulart, A.E.E.: Using behavioral driven development (bdd) in capstone design

projects. In: ASEE Annual Conference and Exposition (2014)
8. Rocha, F.G., Souza, L.S., Silva, T.S., Rodŕıguez, G.: Enhancing the student learn-

ing experience by adopting tdd and bdd in course projects. In: IEEE Global Engi-
neering Education Conference, pp. 1116–1125 (2021)

9. Sarinho, V.T.: “BDD Assemble!”: a paper-based game proposal for behavior driven
development design learning. In: Entmt Computing & Serious Games. (2019)

10. Nascimento, N., Santos, A., Sales, A., Chanin, R.: Teaching bdd in active learning
environments: a multi-study analysis. In: International Conference on Computer
Supporting Education (2022)

Towards Improving BDD and ATDD Teaching 149

11. Schwaber, K., Sutherland, J.: The definitive guide to scrum (2020)
12. Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., Zander, C.: Pair programming

in education: a literature review. Comput. Sci. Educ. 21(2), 135–173 (2011)
13. Nascimento, N., Santos, A.R., Sales, A., Chanin, R.: Behavior-driven development:

an expert panel to evaluate benefits and challenges. In: Brazilian Symposium on
Software Engineering. (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Agile Software Engineering Capstone
Courses: Exploring the Impact of Gender

Gyda Elisa Sæter , Camilla Kielland Lund , and Viktoria Stray(B)

University of Oslo, 0373 Oslo, Norway
{gydaes,camilltk,stray}@ifi.uio.no

Abstract. The wide adoption of agile methodologies in software devel-
opment necessitates an educational approach that prepares students for
industry practices. This study aims to explore an agile capstone course,
focusing on student learning experiences in teamwork while examining
the gender dynamics affecting team roles and engagement. We conducted
a comprehensive study of the capstone course “Software Engineering
with Project Work” at the University of Oslo, analyzing 27 presen-
tations and interviewing 10 students and two teaching assistants. The
course is designed to immerse informatics students of different special-
izations in agile methodologies and collaborative project work. Our find-
ings suggest that the students learn essential collaboration and technical
skills. However, during their final presentations, significant gender differ-
ences emerged in the topics discussed: women predominantly spoke about
design and process, whereas men focused more on technical aspects such
as architecture, technical solutions, and algorithms. Our results under-
score the need for educational strategies that promote inclusivity and
equal participation in agile software development courses.

Keywords: Collaboration · Knowledge sharing · Human and social
aspects of agile software development · Gender diversity · Teaching
experiences · Empirical studies with students

1 Introduction

With the rise of agile methodologies in the software development industry, there
has been a corresponding need to adapt educational practices to better prepare
students for these environments. Research indicates that teamwork is critical in
agile settings, as it significantly affects the development outcomes of software
projects [18].

Meier et al. [10] underscore the importance of having students work in self-
organized, agile teams, where agile values are not only taught but also expe-
rienced through practical projects. Team autonomy is a crucial aspect of agile
work [6]. Similarly, Sahin et al. [14] highlight a deficiency in non-technical skills
among students, advocating for an integration of soft skills training through
collaborations with social sciences and industry. Such soft skills are crucial for
thriving in agile software development [15].
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 150–158, 2025.
https://doi.org/10.1007/978-3-031-72781-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_16&domain=pdf
http://orcid.org/0009-0001-4809-8372
https://orcid.org/0009-0000-4685-7809
http://orcid.org/0000-0002-6032-2074
https://doi.org/10.1007/978-3-031-72781-8_16

Agile Software Engineering Capstone Courses 151

Multiple studies show that the formation of agile teams is crucial [20]. This
naturally follows from the importance of teamwork in software development [3].
Team formation is especially important in agile education, impacting both learn-
ing outcomes and project success [8]. In line with previous studies, it is essen-
tial to form teams that have a diverse mix of skills and gender representation
to ensure well-rounded team composition. [16]. There are strategies for form-
ing effective teams that include both instructor-formed and self-formed teams.
Instructor-formed teams, in particular, can serve as a powerful enabler for learn-
ing by ensuring a diverse and balanced group that might not naturally form in
a student-driven setting.

The “IN2000 Software Engineering with Project Work” is a course at the
University of Oslo, and is a typical Softwar Engineering capstone course [17]. It
is conducted over a semester and is structured as a team-based project course
with teams of six students (slightly larger than the most common size found
in [17]). Unlike many courses that lack an external client, our projects involve
a real-world client, providing students with practical, hands-on experience. We
adhere closely to agile development methodologies, emphasizing the production
of key deliverables such as artifacts, project reports, and presentations.

The course had 240 informatics students in 2023, placed in teams with dif-
ferent gender and expertise compositions. We aimed to explore how gender
affects their agile teamwork and learning experience by investigating the fol-
lowing research question:

RQ1: “How does gender affect role allocation and team dynamics in an
agile software engineering capstone course?”

To investigate this research question, we conducted interviews and obser-
vations within IN2000. This approach provided a comprehensive view of the
agile methodologies taught, the complexities of teamwork faced, and how these
elements interact with gender dynamics to influence the students’ learning expe-
riences.

2 Methodology

2.1 About IN2000

In the software engineering capstone course examined in this study, students
work on a project for 12 weeks to build a software application that meets certain
given requirements. They conclude this period by delivering a report that out-
lines the software they developed and their approach to the project, they also
give a presentation and have an exam. In 2023, the course enrolled around 240
students who were organized into 40 teams, each composing six students. Teams
are formed by the instructors, but students can pre-assemble a team consisting
of 2–3 members. Each team receives guidance and mentorship from designated
teaching assistants. For many students, this project often represents the initial
exposure to applying agile techniques within a collaborative environment.

152 G. E. Sæter et al.

The course is offered in the fourth semester and is mandatory for bache-
lor’s degree students in three distinct programs: 1) Programming and Systems
Architecture, 2) Digital Economics and Management, and 3) Design, Use, and
Interactions. The course aims to deepen students’ understanding of the founda-
tional aspects of software engineering beyond just coding. This includes learning
about Agile methodologies, how to manage a project, and the importance of
working well in a team.

2.2 Data Collection and Analysis

As part of the course’s evaluation, all teams presented their collaboration pro-
cess and demonstrated their Kotlin-developed app to the instructors at the end
of the course in May/June 2023. During these presentations, each member’s gen-
der and speaking topic during the presentations were noted down, categorized,
and analyzed for patterns. Only teams with at least one woman were included
in the analysis, yielding observations from 27 teams’ project presentations; see
Appendix A for an overview.

In March 2024, we conducted 12 semi-structured interviews, including 10 stu-
dents and 2 teaching assistants, as part of an ongoing research effort to under-
stand teamwork dynamics. These interviews were recorded and transcribed with
participants’ consent, and the transcripts were analyzed using Nvivo. This anal-
ysis was guided by the principles of thematic analysis as defined by Braun and
Clarke [1]. The interviewees were involved in the course in 2023. Six women
and six men were interviewed. Three teams had two interviewees representing
different viewpoints from the same team. For a detailed overview of the intervie-
wees, see Appendix B. This study builds on our earlier analysis of two surveys
conducted within the same course, reported in [13].

3 Results

A total of 40 teams presented their projects and teamwork. The majority, approx-
imately 84% of the teams, reported having used ScrumBan in their project work,
7.5% chose to implement Scrum as their agile methodology, 7.5% Kanban, while
1% reported others.

Our findings indicate that students acknowledged the importance of learn-
ing to collaborate in teams. They viewed teamwork as essential for effectively
mastering agile software development techniques. One student explained:

“It was a very positive experience working in a team. It was also very
beneficial to finally try programming in groups. Until then, I had mostly
worked alone due to the coronavirus, thinking programming was something
you had to do alone at home, requiring brilliance to understand. But what
was great about the group work in IN2000 was that I gradually realized it’s
actually about programming together and discussing code, which is how you
truly improve.”

Agile Software Engineering Capstone Courses 153

Students reported that the opportunity to select up to two peer students in
their teams made it easier and safer to give feedback and build on a somewhat
existing dynamic. They also stated that being placed in teams with strangers
made the teamwork more challenging but also more of a learning experience,
compared to being in a team only with friends:

“It was definitely educational, while at the same time, one should not sweep
under the rug that there were challenges in our teamwork at times.”

Students emphasized the significance of leadership being a significant fac-
tor in successful teamwork. Teams with an abundance of dominant personalities
experienced power struggles over decision control. When more submissive stu-
dents worked in teams with assertive students, the submissive students reported
not feeling like there was room for their opinions and preferences. This results
in most decisions being in the dominating person’s favor. This was prominent
in teams with few women, as men tend to be more assertive, and women more
agreeable [4].

3.1 Gender Distribution in Speaking Topics

A crucial part of the course is to present the work at the end of the teamwork
period. As described in the method section, we observed these presentations and
analyzed the speaking topic with regard to gender. After analyzing these notes,
eight categories of interest were identified, namely Introduction, Development
Process, App Demo, App Architecture, Design, Technical solution, Algorithm,
Requirements and Modelling. Findings revealed a significant gender difference
between five of the topics as illustrated in Fig. 1. A total of 34 women and 51
men presented within these five topics. Topics within designs include user test-
ing, user interface, and user experience. Architecture encloses apps’ technical
implementation of MVVM architecture, folder structure, third-party libraries
supporting architecture implementation, and object-oriented principles. Techni-
cal Solutions include speaking about programming language-related details, git
and version control, chosen APIs, and third-party libraries supporting front-end
or back-end code. The topic includes agile methodology, project timeline, team-
work experiences, and chosen cooperation tools. Design processes are excluded
from this topic and considered within the broader design topic. Algorithm top-
ics describe the technical and mathematical details of the app’s main algorithm.
Typically going into the details of code makes the algorithm of apps. The topic
is only relevant to a few teams, as few app cases demand advanced computing
or non-API-related back-end code.

Importantly, students were free to choose their presentation topics and com-
positions, theoretically allowing any member to present any topic. This suggests
that the observed gender patterns in topic selection are not strictly a function
of the male-majority enrollment.

Furthermore, all men who spoke about design were in the men-dominated
teams with only one or two women. Moreover, the women who spoke about

154 G. E. Sæter et al.

Fig. 1. Gender distribution of students’ speaking topics in the project presentations.
Percentages are calculated from all speakers on that topic.

architecture were in balanced or women-dominated teams with three or four
women.

Reflects the Work Roles Throughout the Project. When asked to elab-
orate on how their team decided which members were to speak about what
topics, most students said that it naturally followed the pattern of the team’s
role distribution. Those who had designed throughout the project talked about
design, while those who programmed presented the technical aspects of the app.
Students also found it natural to delegate the task of speaking about design,
to the students who belonged to the design informatics study program. About
their speaking topic delegation, a male student stated:

“Partly because that’s what we had been working on. I’m now seeing that
it’s not optimal, though.” [M4]

Through this, a gender role pattern emerged. As the gender distribution of
students in this course enrolled in the design study program is balanced, the role
delegation could not only reflect the student’s study program. Students identified
an unconscious gender bias in the project’s role delegation, where many of the
students acknowledged how the role and speaking topic delegation would have
changed with a different gender team composition. A woman stated:

“I find it irritating. I want the girls to talk just as much about algorithms
and programming as the guys.” [W3]

Women Have Overview, Men Are Specialized. Another explanation for
the gender division in the presentations is gender stereotypes about qualities and

Agile Software Engineering Capstone Courses 155

strengths traditionally associated with each gender. Women were described as
having a broader project overview, encompassing team processes, design choices,
and selected technology. Conversely, male students tended to specialize in specific
technological facets. As one male student explained:

“The one girl on our team was more thoughtful about the process than all
five of us boys combined ... I believe she had a better overview of the entire
project, while us boys were very focused on detailed issues, especially on
the technical side.” [M4]

Furthermore, due to the historic gender division in aesthetic and design
domains, a gender bias follows:

“It may have something to do with norms, that everyone thinks it’s natural
for girls to talk about design. Because, yes, design is associated with, like,
people, aesthetics, and usability. And it’s something the at has been female-
dominated in all other areas of society, in a way.” [W1]

The High Stakes of Speaking About Tech. Several female students
expressed apprehension about presenting the technical aspects of the app, fear-
ing they were not competent enough to present it. This imposter syndrome was
suggested to be due to men’s greater confidence in technical aspects and their
tendency to dominate these areas. A woman who did not engage in program-
ming throughout the project, despite studying programming and wanting to,
explained:

“I feel like that might be the reason why boys take on more of the technical
aspects; you need a bit firmer control. In contrast, when discussing design,
you can speak more freely. Even though I feel confident in my abilities, I
still tend to hold back because I’m afraid of saying something wrong.”

Men on the other hand usually reported that they found it natural to speak
about the technical aspects, as they felt they excelled in it individually or among
the team members: “The API part that I worked on, I felt like I knew a lot
about... I worked more on it than anyone else.” [M3]

This aligns with a confidence difference between boys and women. One teach-
ing assistant’s observation supported this:

“So there was this girl who had done the entire architecture by herself, and
I was like, ’why aren’t you talking about this? You’re the one who knows
this better than anyone here.’ [TAM2]”

4 Discussion and Conclusion

This study presents our experiences running a software engineering capstone
course [17] and teaching students agile methodology and teamwork. We have

156 G. E. Sæter et al.

examined how gender affects agile student teamwork through observing student
presentations and conducting in-depth interviews with 12 participants,

Aligning with former research [5,10], we found the Scrum Master role and
good leadership to be a crucial variable to the student’s teamwork experience.
This relates to gender as research has found women to naturally fit the Scrum
Master role [12].

Moreover, we found the personalities of the team members to affect the team-
work. A study from 2020 examining agile teams found members’ ability to get
along with the team members to have a significant positive influence on the
teamwork [19]. Conversely, we found members with non-agreeable personalities
to have a destructive effect on collaboration, resulting in imbalanced decision-
making and workloads, and inefficient meetings. We suggest that dominant per-
sonalities threaten shared leadership in student teams that opt to rotate the
role, as they are inclined to dominate meetings. Women are more exposed to
this challenge, as men are perceived as more assertive and dominating within
the context of technical domains in this course.

Furthermore, we found that gender differences in speaking topics, when pre-
senting their teamwork, revealed barriers keeping women from presenting tech-
nical aspects and men from presenting the design and process. Furthermore,
students’ choices in speaking topics indicate a gender difference in role distri-
bution. Results highlight the importance of building confidence and providing
support for women in agile student teams, as well as addressing gender stereo-
types that may hinder learning in teamwork courses. This aligns with research
identifying lack of confidence as a significant barrier keeping women from partic-
ipating in software engineering education, recognizing the necessity of providing
women with greater exposure to programming [2,7]. Some research found that
girls show increased enthusiasm for programming when they can learn in set-
tings exclusive to their gender, providing a more comfortable environment for
exploration [9].

A structured onboarding process and regular feedback mechanisms signif-
icantly enhance the self-efficacy and social integration of team members [11].
These findings support our emphasis on carefully designed team compositions
to ensure that all members, regardless of gender or background, can effectively
contribute to and benefit from the collaborative learning experience.

Future work should explore measures empowering students to step outside
the gender stereotypes and roles. Specifically, one could investigate the impact of
gender-inclusive leadership training to enhance the confidence and engagement
of female students in technical discussions. Additionally, examining the effec-
tiveness of mixed-gender team configurations and their influence on equitable
participation across different project roles could provide deeper insights into
fostering a balanced educational environment in software engineering capstone
courses.

Appendix A: Team presentation observations

An overview over the observed team presentations is available online:

Agile Software Engineering Capstone Courses 157

https://doi.org/10.5281/zenodo.10996589.

Appendix B: Overview of the interviews

An overview over the interviews is available online:
https://doi.org/10.5281/zenodo.10996595.

References

1. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006)

2. Chachra, D., Kilgore, D.: Exploring gender and self confidence in engineering stu-
dents: a multi method approach. In: 2009 Annual Conference & Exposition, pp.
14–614 (2009)

3. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software
projects. J. Syst. Softw. 81(6), 961–971 (2008)

4. Costa, P.T., Jr., Terracciano, A., McCrae, R.R.: Gender differences in personality
traits across cultures: robust and surprising findings. J. Pers. Soc. Psychol. 81(2),
322 (2001)

5. Fernandes, S., Dinis-Carvalho, J., Ferreira-Oliveira, A.T.: Improving the perfor-
mance of student teams in project-based learning with scrum. Educ. Sci. 11(8),
444 (2021)

6. Gustavsson, T., Berntzen, M., Stray, V.: Changes to team autonomy in large-scale
software development: a multiple case study of scaled agile framework (SAFe)
implementations. Int. J. Inf. Syst. Proj. Manag. 10(1), 29–46 (2022)

7. Happe, L., Buhnova, B.: Frustrations steering women away from software engi-
neering. IEEE Softw. 39(4), 63–69 (2021)

8. Løvold, H.H., Lindsjørn, Y., Stray, V.: Forming and assessing student teams in
software engineering courses. In: Proceedings of the 21st International Confer-
ence on Agile Software Development: Agile Processes in Software Engineering and
Extreme Programming–Workshops: XP 2020 Workshops, Copenhagen, Denmark,
8–12 June 2020, Revised Selected Papers, pp. 298–306. Springer International Pub-
lishing (2020)

9. Marquardt, K., Wagner, I., Happe, L.: Engaging girls in computer science: do
single-gender interdisciplinary classes help? In: 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering: Software Engineering Education and
Training (ICSE-SEET), pp. 128–140. IEEE (2023)

10. Meier, A., Kropp, M., Perellano, G.: Experience report of teaching agile collabora-
tion and values: agile software development in large student teams. In: 2016 IEEE
29th International Conference on Software Engineering Education and Training
(CSEET), pp. 76–80. IEEE (2016)

11. Moe, N.B., Stray, V., Goplen, M.R.: Studying onboarding in distributed software
teams: a case study and guidelines. In: Proceedings of the 24th International Con-
ference on Evaluation and Assessment in Software Engineering, pp. 150–159 (2020)

12. Petrescu, M.A., Motogna, S., Berciu, L.: Women in scrum master role: Challenges
and opportunities. In: 2023 IEEE/ACM 4th Workshop on Gender Equity, Diversity,
and Inclusion in Software Engineering (GEICSE), pp. 49–55. IEEE (2023)

https://doi.org/10.5281/zenodo.10996589
https://doi.org/10.5281/zenodo.10996595

158 G. E. Sæter et al.

13. Sæter, G., Stray, V., Alm̊as, S., Lindsjørn, Y.: The role of team composition in agile
software development education: A gendered perspective. In: šmite, D., Guerra, E.,
Wang, X., Marchesi, M., Gregory, P. (eds.) Agile Processes in Software Engineering
and Extreme Programming, LNBIP, vol. 512, pp. 1–16. Springer, Cham (2024)

14. Sahin, Y.G., Celikkan, U.: Information technology asymmetry and gaps between
higher education institutions and industry. J. Inf. Technol. Educ. Res. 19, 339
(2020)

15. Stray, V., Florea, R., Paruch, L.: Exploring human factors of the agile software
tester. Softw. Qual. J. 30(2), 455–481 (2022)

16. Tafliovich, A., Petersen, A., Campbell, J.: Evaluating student teams: do educators
know what students think? In: Proceedings of the 47th ACM Technical Symposium
on Computing Science Education, pp. 181–186 (2016)

17. Tenhunen, S., Männistö, T., Luukkainen, M., Ihantola, P.: A systematic literature
review of capstone courses in software engineering. Inf. Softw. Technol. 159, 107191
(2023)

18. Villavicencio, M., Narvaez, E., Izquierdo, E., Pincay, J.: Learning scrum by
doing real-life projects. In: 2017 IEEE Global Engineering Education Conference
(EDUCON), pp. 1450–1456. IEEE (2017)

19. Vishnubhotla, S.D., Mendes, E., Lundberg, L.: Investigating the relationship
between personalities and agile team climate of software professionals in a tele-
com company. Inf. Softw. Technol. 126, 106335 (2020)

20. Zainal, P., Razali, D., Mansor, Z.: Team formation for agile software development:
a review. Int. J. Adv. Sci. Eng. Inf. Technol 10(2), 555–561 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

PhD Symposium Track

Towards Continuous Certification
of Software Systems for Aerospace

J. Eduardo Ferreira Ribeiro(B)

Department of Informatics Engineering, Faculty of Engineering, University of Porto,
4200-465 Porto, Portugal

jose.eduardo.ribeiro@fe.up.pt
https://pt.linkedin.com/in/joseeduardoribeiro

Abstract. Safety-critical systems are subject to strict regulation by
domain-specific standards and documents. One such example is the DO-
178C standard for aerospace, which provides guidance to organizations
to ensure system safety and produce the necessary evidence for certi-
fication. In these regulated environments, most organizations rely on
traditional development processes, unlike the widespread adoption of
Agile in the broader software industry. This PhD research is a collab-
oration between academia and industry, involving the Faculty of Engi-
neering at the University of Porto (FEUP), the University of Coimbra
(UC), and Critical Software SA (CSW), as part of the Doctoral Program
in Informatics Engineering at FEUP. The study focuses on integrating
Agile methods and practices into safety-critical software development for
aerospace applications, specifically adhering to the DO-178C standard.
The goal is to define a new process that enhances safety-critical soft-
ware development, moving towards continuous certification of software
systems for aerospace. The research aims to establish a quasi-continuous
certification process by evaluating new guidelines, practices, and tools,
thereby ensuring high-quality and traceable software releases. Prelim-
inary results are promising, as the initial case study involving a real
industry project demonstrated positive outcomes using our innovative
process. The findings are anticipated to advance the adoption of Agile
methods and practices in safety-critical domains.

Keywords: Agile, Aerospace · DO-178C · FAA · Safety-critical ·
Software development

1 Introduction

This PhD research originates from an ongoing collaboration between academia
and industry, specifically involving the Faculty of Engineering at the Univer-
sity of Porto (FEUP)1, the University of Coimbra (UC)2, and Critical Soft-
ware SA (CSW)3, under the Doctoral Program in Informatics Engineering at
1 https://sigarra.up.pt/feup/en/web_page.inicial.
2 https://www.uc.pt/en/.
3 https://criticalsoftware.com/en.
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 161–168, 2025.
https://doi.org/10.1007/978-3-031-72781-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_17&domain=pdf
http://orcid.org/0000-0002-1894-3993
https://sigarra.up.pt/feup/en/web_page.inicial
https://www.uc.pt/en/
https://criticalsoftware.com/en
https://doi.org/10.1007/978-3-031-72781-8_17

162 J. E. F. Ribeiro

FEUP. Section 1 presents an overview of the research context, theme, and moti-
vation, outlining the research problem, objectives, hypotheses, and expected out-
comes.

In Sect. 2, we discuss the challenges faced in our research and seek feedback
and guidance to enhance and refine our research and validation efforts. Section 3
summarizes previous studies on the application of Agile methods and practices to
safety-critical software development, aiming to improve existing software devel-
opment lifecycle processes. We also assess their applicability to aerospace soft-
ware development, particularly in compliance with the DO-178C [1] standard.

The study focuses on integrating Agile methods and practices into safety-
critical software development for aerospace applications while adhering to the
DO-178C standard. The objective is to define a novel process that enhances
safety-critical software development, moving towards continuous certification of
software systems for aerospace. This research aims to create a quasi-continuous
certification process by evaluating new guidelines, practices, and tools, thus
ensuring high-quality and traceable software releases. This approach seeks to
streamline the certification process by implementing shorter, more frequent cer-
tifiable delivery cycles.

Section 4 addresses the limitations and threats to validity identified so far and
the measures being taken to mitigate them. Finally, Sect. 5 provides an overview
of the research progress, preliminary results, and future plans.

1.1 Research Theme and Motivation

CSW specializes in developing and validating safety-critical software systems for
major organizations such as NASA, ESA, and AIRBUS, among others. Addi-
tionally, CSW has been at the forefront of using Agile software development
methods for their projects, influencing their clients’ adoption of such methods.

In our review of previous work related to Agile methods and practices in
safety-critical systems, more precisely for aerospace, we observed that most stud-
ies focus on Agile principles and values, with only a limited exploration of specific
Agile practices. This indicates a need for further research in this area. Our aim is
to investigate the feasibility of enhancing agility in the development of aerospace
software systems while adhering to the DO-178C standard [2,3].

A core value of the Agile manifesto is “responding to change over following
a plan” [4]. We believe this value underscores a significant challenge in current
processes: the difficulty in accommodating shorter feedback loops and increasing
the maturity of requirements. Our research seeks to integrate Agile methods and
practices into safety-critical software development for aerospace applications in
compliance with the DO-178C standard. The objective is to develop a new
process that improves safety-critical software development. Ultimately, our goal
is to transition towards a quasi-continuous and iterative certification process.

Towards Continuous Certification of Software Systems for Aerospace 163

1.2 Research Problem and Goals

Our research focuses on exploring innovative approaches to enhance the devel-
opment of safety-critical software systems for aerospace. Specifically, we aim to
investigate how Agile methods and practices can be employed to improve the
development of these systems while moving towards continuous certification in
line with relevant guidelines and standards, such as DO-178C.

In light of these considerations, this work aims to propose and evaluate guide-
lines, activities, practices, and tools in an industrial context to ensure the certifia-
bility of smaller, independent software releases. Essentially, this involves evolving
towards more frequent and incremental certifications.

1.3 Hypothesis and Expected Results

We hypothesize that it is possible to enhance aerospace software development
towards a quasi-continuous certification process that incorporates Agile practices
while maintaining the quality and traceability required by existing standards
such as the DO-178C. Our goal is to refine the current software development
lifecycle processes to achieve a quasi-continuous certification model for aerospace
software.

2 Seeking Guidance

As an author, I encounter several challenges in my research journey that require
valuable advice and insights. First, industry confidentiality presents a significant
obstacle, limiting the availability of scientific publications and hindering my
exploration of specific topics in depth. This scarcity of accessible literature poses
a considerable challenge.

Second, I face cultural resistance to publishing findings related to integrat-
ing Agile methods with safety-critical development practices. This resistance is
driven by stringent compliance standards within the safety-critical domain, mak-
ing introducing novel approaches deviating from traditional practices difficult.

Furthermore, I seek advice on various methods to validate my proposed inno-
vative processes. The limited availability of industry projects for study and indus-
tries’ reluctance to participate in case studies present significant hurdles. Thus,
exploring alternative validation methods is crucial in this context.

In summary, I am eager to receive guidance on navigating these challenges
and finding effective strategies.

3 Building on the Past

Firstly, building on our initial study [2], Fig. 1 illustrates the progression from the
planning phase, where software requirements are defined, to the use of system
lifecycle process outputs in developing High-Level Requirements (HLR). The

164 J. E. F. Ribeiro

software design process then utilizes the HLR to refine and create the soft-
ware architecture and Low-Level Requirements (LLR), which serve as a basis for
implementing the source code. The figure also maps the relationships between
integration, V&V, HLR, design, LLR, and source code. Additionally, Fig. 1 shows
when each State of Involvement (SOI) event should achieve successful V&V and
certification-ready status.

Fig. 1. DO-178C Software Development Process, adapted from [1].

Our analysis in [2] reveals that the DO-178C standard does not prescribe
any specific software development method. Instead, it delineates the software-
level activities and outputs necessary for successful certification, thus aligning
with Agile methods. This conclusion solidifies that the DO-178C standard is
conducive to adopting Agile methods and practices.

Towards Continuous Certification of Software Systems for Aerospace 165

Secondly, we conducted a Systematic Literature Mapping (SLM) to gain a
comprehensive overview of relevant literature. Following the guidelines of [5], an
SLM results in an inventory of publications mapped to a classification, facilitat-
ing the identification of research gaps and trends. To ensure the transparency and
reproducibility of our SLM, we developed a replication package using a Repli-
cation Package Builder (RPB) [6]. This package includes the resulting datasets
and provides detailed information about our search strategy, including inclusion
and exclusion criteria, data extraction forms, and outcomes. These resources
empower other researchers to replicate our study and leverage its findings. Addi-
tionally, we explored data from post-mortem analyses of concrete aerospace
industry projects provided by CSW. While these industry projects offer valu-
able information for research, access to their data is often restricted due to
confidentiality concerns.

Our work in [3] was guided by two main objectives: to investigate the major
concerns and challenges associated with adopting Agile methods and practices in
safety-critical software development, particularly within the aerospace industry,
and to identify key opportunities for enhancing such development using Agile
approaches in the same context.

The study aimed to assess the adoption of Agile methods and practices in
the aerospace domain, pinpoint existing concerns and challenges, and uncover
potential opportunities for further research and development. The insights and
conclusions from these efforts are presented in our causal loop diagram (Fig. 2)
and detailed in our publication [3].

Fig. 2. Current System Causal Loop Diagram, adapted from [3].

Figure 2 illustrates our understanding of the causes and effects associated
with the interactions among key system variables, highlighting the major con-
cerns and challenges. This demonstrates that even with a complete initial require-
ments specification, there is a risk of immaturity due to limited system knowl-
edge. These issues heighten the effort for requirements and output management
and V&V, leading engineering teams to have fewer but larger and less frequent
deliveries [3].

166 J. E. F. Ribeiro

4 Validity Threats

During the research, we identified several limitations and threats to validity
and are actively working to mitigate them. Since the review of publications was
conducted by a single author, there was a potential bias in the selection process
that could have influenced the outcome of the mapping study. We developed and
utilized a replication package builder (RPB) incorporating defined inclusion and
exclusion criteria to address this internal threat to achieve reliable results. We
have also made the replication package of our Systematic Literature Mapping
(SLM) available here [6] to ensure reproducibility and transparency.

Another aspect affecting validity was the limited access to detailed informa-
tion during the post-mortem analysis. To overcome this, we obtained additional
data on three aerospace industry projects provided by CSW, including inter-
views with some of the project participants. These projects served as valuable
complements to the analysis, enabling a deeper understanding of past mistakes
and identifying opportunities for improvement. Strict adherence to confiden-
tiality constraints was crucial for maintaining privacy and protecting data. We
primarily relied on project documentation to investigate the activities, outputs,
and documents required for DO-178C certification. The project names were
anonymized to safeguard privacy, and the data and conclusions were presented
abstractly.

Regarding the previous external threats to validity-limited access to detailed
information during post-mortem analysis and the necessity of strict adherence
to confidentiality constraints-both the first and third authors followed a well-
defined process of reporting and publication. They conducted a comprehensive
analysis using appropriate methods and techniques suitable for the available
data. A detailed report meticulously documented this study’s findings, lessons
learned, and recommendations. When presenting the results, utmost care was
taken to preserve project confidentiality.

To address the potential threat of non-representative results due to project
similarities, we defined an approach to normalize project data per HLR con-
tracted when comparing results between projects for the case studies. Second,
we established and followed a detailed implementation of the novel process dur-
ing the study execution in a controlled manner to reduce internal threats to
validity, particularly related to the team adapting to a new process during the
case study. Third, we identified ways to address the limitations of our novel
process in accommodating safety-critical requirements by incorporating addi-
tional V&V steps and quality gates. We validated the process using an actual
aerospace project, selecting the DO-178C software level A requirements, the
most demanding requirement level, to ensure the research’s applicability to sim-
ilar safety-critical software development projects.

In summary, we employed several strategies to enhance the robustness and
generalizability of the research findings. However, further research is required to
confirm these findings in additional contexts.

Towards Continuous Certification of Software Systems for Aerospace 167

5 Research Progress Overview and Future Plans

Upon completing the analysis of the DO-178C standard and confirming that
it does not prescribe any specific software development methodology [2], we
achieved the first critical milestone in our research. Building on this analysis,
we reviewed existing scientific literature and gathered data from real industry
projects to understand the challenges and opportunities of adopting Agile meth-
ods and practices in safety-critical software development for aerospace, particu-
larly in compliance with the DO-178C standard. This foundation enabled us to
identify key challenges and opportunities for improvement, leading to the initial
iteration of our novel process definition [3].

Our research is ongoing. We have completed our first case study with a real
industry project using our novel process for validation, which yielded positive
outcomes. We are currently finalizing a publication to share our findings with
the broader research community. At the same time, we are actively refining our
process by incorporating improvements identified during the case study. Addi-
tionally, we are increasing automation in our process steps to reduce the risk of
manual errors.

In summary, while we have made significant progress in our research, impor-
tant steps remain as we continue to refine our findings and contribute to advance-
ments in Agile methods for safety-critical software development.

Acknowledgments. The author would like to thank Critical Software SA for support-
ing the access to data on concrete aerospace projects and the analysis of the outputs.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. DO-178C, Software Considerations in Airborne Systems and Equipment Certifica-
tion. RTCA. (2011)

2. Ribeiro, J., Silva, J., Aguiar, A.: Beyond tradition: evaluating agile feasibility in
DO-178C for aerospace software development. ArXiv Preprint ArXiv:2311.04344
(2023)

3. Ribeiro, J.E.F., Silva, J.G., Aguiar, A.: Weaving agility in safety-critical software
development for aerospace. IEEE Access 12, 52778–52802 (2024)

4. Beck, K., et al.: Manifesto for agile software development http://agilemanifesto.org/
(2001)

5. Petersen, K., Vakkalanka, S., Kuzniarz, L. Guidelines for conducting systematic
mapping studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18
(2015)

6. Ferreira Ribeiro, J., Gabriel Silva, J., Aguiar, A.: Replication package for a sys-
tematic literature mapping of agility in safety-critical software development within
the aerospace industry. Zenodo, December 2023. https://doi.org/10.5281/zenodo.
10354398

http://arxiv.org/abs/2311.04344
http://agilemanifesto.org/
https://doi.org/10.5281/zenodo.10354398
https://doi.org/10.5281/zenodo.10354398

168 J. E. F. Ribeiro

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Shared Leadership for Better Understanding
Agile Teams

Jakub Perlak(B)

AGH University, Krakow, Poland
j.perlak@gmail.com

Abstract. Leadership has been considered from every angle (almost) and the
efforts are going strong. New ideas, books and trends, fads are popping out fre-
quently. It’s not a secret that leadership in Agile is a fundament, started looking
from attitude and roles up to practice at every level of the organization. Leadership
in Agile Teams is still under dispute. It is time to embrace shared leadership, a very
helpful concept in describing an emergent team phenomenon whereby leadership
roles and influence are distributed among team members. This approach has sur-
prising support in studies about team performance, well-established history, and
even anecdotal evidence from practitioners. This very short paper presents results
from the initial research of the author using SNA method.

Keywords: Agile Teams · Self-Organized Team · Shared Leadership

1 Introduction

The software development environment has been evolving over the years as long as the
different forms of teams have been adopted. Agile methods and the manifesto proposed
over the last two decades [1] have become a widespread phenomenon since then. One
of the most common forms of teams is self-organizing teams. Inherently, the question of
the leadership nature of such teams has been raised [2]. In this very short summary, the
author presents initial results from PhD research on shared leadership in Agile Teams.
Beginning with an overview of shared leadership and studies based on social network
analysis (SNA) then the paper is finished with early results.

2 Shared Leadership Within Research

Leadership can be examined from many angles. Looking at the top-down reporting line
in an organization can tell a lot about the formal leaders. Examining the horizontal influ-
ences among team members can bring more understanding of leadership in a team [4].
Especially this second approach brings the concept of shared leadership, which can be
described as a team-level emergent phenomenon where one or more team members take
responsibility for leaders [3]. The body of empirical research on shared leadership men-
tions multiple benefits like team performance, team confidence, cohesion, and creativity

© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 169–174, 2025.
https://doi.org/10.1007/978-3-031-72781-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_18&domain=pdf
http://orcid.org/0000-0002-9639-9655
https://doi.org/10.1007/978-3-031-72781-8_18

170 J. Perlak

[4]. Shared leadership among many possible leadership concepts that can help better
understand the teams working with Agile methods, shared leadership brings promising
light [2]. Shared leadership is a vivid concept and is under profound research by many
scholars [4]. One of the interesting research streams in Shared Leadership is the usage
of social network analysis [4]. In contrast to the aggregation method, which is based on
examining the formal leader using a typical questionnaire [4].

The author takes inspiration from the classification of shared leadership [5] divided
into four categories (Fig. 1). The categories are created on a level of parameters, from
low to high levels of density and decentralization. The first category concerns the low-
est level of shared leadership, which is potentially hierarchical, where a low level of
decentralization (or, conversely, a high level of centralization) indicates leadership still
based on a certain hierarchy of the dominant person in the middle of the network, with
the density of connections is high, which indicates that the connections are strong with
people at the center of the network. The second category, defined as a low level of shared
leadership, is characterized by a low level of both decentralization and the level of den-
sity of connections and corresponds to low shared leadership in the proposal of Carson
and colleagues [3]. The third category, originally called moderate level, concerns an
egalitarian distribution of leadership but with a low level of interaction, defined by low
density [4]. Here, the more the level of density increases, but still only to the medium
level, we have the equivalent of the medium level of shared leadership [3]. The last
category is the category with a high level of shared leadership, where the network of
connections is highly decentralized (or in other words the level of centralization is low)
and the level of network density is high.

Fig. 1. Shared leadership classification

Shared Leadership for Better Understanding Agile Teams 171

3 Method

The data collected as part of the survey was used for network analysis. Social network
analysis, abbreviated SNA (Social Network Analysis), is widely used in social sciences
including its rising popularity in management sciences [6]. Examples of research focus
on social capital, interrelations between organization up to influence among people [6].
Studying the systems of social relations between various actors and their connections is
a research challenge. Network analysis tools allow for a comprehensive capture of such
dependencies [5]. It is no coincidence that SNA is commonly used in studying constructs
such as shared leadership in a team [4].

The typicalmethodof usingSNA is creating an adjacencymatrix (Fig. 2) representing
relations among every actor in the network. The author used the method proposed by
Carson and others [3] using a question to every teammember on how to rely on a person
in terms of leadership on a scale of 1 – never to 5 always then the data was dichotomized
from 0 to 1 if the answer was at least 3 on scale 1–5.

Fig. 2. Adjacency matrix and network graph

The advantage of the graphical presentation of the network, as it can be seen on
Fig. 2, is visual evaluation [5]. We can draw a first intuition on the potential dynamics
in the network.

Data analysis in the case of social networks offers many possibilities and has a very
rich number of measures [6]. The study in this paper focuses on twomeasures of network
density and decentralization. Density (G) in a directed network is the number of nodes
(m) divided by the number of all possible nodes (n), which can be represented by the
formula:

G = m

n(n − 1)

The common measure in SNA is the centrality measure [5]. The group degree cen-
trality (GDC) is the sum of the difference of the maximum degree centrality of a vertex
(maxDC) to the specific degree centrality of a given vertex (DC) by the number of
vertices in the network, which can be expressed by the formula:

GDC =
∑

(maxDC′ − DC′)
(N − 1)(N − 2)/(2N − 1)

172 J. Perlak

The group degree centrality measure takes values from 0 to 1.Where 0means that all
vertices in the network are equal, and when the value is 1, we have a case where one node
completely dominates other nodes. Those two measures allow sufficient examination of
the data and usage of the Shared leadership categorization.

4 Results

As part of PhD research, the author surveyed Agile practitioners fromMarch to October
2023. The collected datawas sufficient for examining the 9 teams.Most of the researched
teams were working in the IT industry, then some teams pointed the banking and finance
sector or telecommunication sector. Regarding the software development method used
by the teams, Scrum was the most popular one, second Kanban and the rest was a
mixture of multiple methods, including an in-house approach. The team members were
on average at least 3 years experienced. Responders of the survey work mostly in large
multinational organizations.

The teams network representations were plotted on the graph (Fig. 3). Looking
the results most of teams were around the average level of shared leadership. Missing
responses from most team members, as in the case of teams 4 and 1, placed the shared
leadership score in the “egalitarian leadership” quadrant, or in the low level of shared
leadership, as in the case of teams 8 and 7. Only team number 5 presents high level of
shared leadership.

Fig. 3. Results of SNA analysis

Network visualization along with the definition of shared leadership allows for a
deeper look at the situation in each team and provides for recommending improve-
ments. Details of obtained data with sociograms and shared leadership categorization
are presented in Table 1.

Shared Leadership for Better Understanding Agile Teams 173

Table 1. Shared leadership vs distributed leadership

Id. Density and GDC Team size Sociogram Shared leadership

1 0.23 and 0.44 6

Egalitarian leadership

2 0.66 and 0.5 3

Moderate level shared

leadership

3 0.5 and 0.22 4

High level of shared

leadership

4 0.11 and 0.24 10

Egalitarian leadership

5 0.55 and 0.24 5

High level of shared

leadership

6 0.45 and 0.38 5
Moderate level shared

leadership

7 0.25 and 0.63 5

Low level shared lead-

ership

8 0.13 and 0.51 8
Low level shared lead-

ership

9 0.5 and 0.75 3

Low level shared lead-

ership / Hierarchical

leadership

As part of the SNA analysis conducted, data such as a measure of network density
and centralization, calculated according to the group degree of centralization (GDC), and
visualization of connections in the formof a sociogramof the networkwere obtained. The
results collected in this way were placed collectively in a table along with determining
the level of shared leadership.

5 Discussion

Shared leadership studied using Social Network Analysis can be a useful lens for exam-
ining leadership in teams, including Agile Teams. The amount of data collected from
individual teams did not allow for a full SNA analysis. However, the collected sample
showed the possibility of the method in the study of shared leadership. Self-organizing
teams on average have a moderate level of shared leadership. It can be an implication
for collaboration that is important in Agile methods [1].

174 J. Perlak

Presenting the above analysis to assembled teams demonstrates the potential of social
network analysis in exploring the issue of shared leadership. The undoubted advantage
of the graphical illustration of the network in the form of a sociogram allows conclusions
about its potential characteristics. Of course, this is a fragment of a rich method of social
network analysis [6] and is only a foretaste of the possibilities offered by SNA, with a
larger number of responses from teams.

Further research on leadership in self-organizing teams is recommended.

Disclosure of Interests. The author has no competing interests to declare that are relevant to the
content of this article.

References

1. Highsmith, J., Fowler, M.: The agile manifesto. Softw. Develop. Mag. 9(8), 29–30 (2001)
2. Srivastava, P., Jain, S.: A leadership framework for distributed self-organized scrum teams.

Team Perform. Manag. 23(5–6), 293–314 (2017)
3. Carson, J.B., Tesluk, P.E., Marrone, J.A.: Shared leadership in teams: an investigation of

antecedent conditions and performance. Acad. Manag. J. 50(5), 1217–1234 (2007)
4. Zhu, J., Liao, Z., Yam, K.C., Johnson, R.E.: Shared Leadership: a state-of-the-art review and

future researchAgenda. J. Organ. Behav. 39, 834–852 (2018). https://doi.org/10.1002/job.2296
5. Pastor, J.C., Mayo, M.: Shared Leadership In Work Teams: A Social Network Approach.

Working Papers Economia wp02–10, Instituto de Empresa, Area of Economic Environment
(2002)

6. Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences.
Science 323, 892–895 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1002/job.2296
http://creativecommons.org/licenses/by/4.0/

Design Framework for Software Startups
Applying Remote Work

Triando(B)

Free University of Bozen-Bolzano, Bolzano, Italy
Dtriando@unibz.it

Abstract. Remote work is commonplace nowadays, with software star-
tups actively embracing it. However, remote work poses various chal-
lenges, among which team challenges are prominent and highly relevant
to early-stage software startups, since effective team collaboration is one
key factor for them to operate and succeed in uncertain environments.
Challenges faced by early-stage software startup teams are less explored,
especially in remote work settings. This research will propose a design
framework to address the challenges faced by early-stage software startup
teams in remote work settings. This research uses multi-case study to
facilitate a deeper understanding of the phenomenon. Expected signifi-
cance of findings lies in the identification of unique challenges and key
practices to tackle those challenges, offering actionable insights and inno-
vative solutions.

Keywords: software startups · team challenges · remote work · design
framework

1 Introduction

Remote work is on the rise in recent years. The advancement of technology
enables an increasing number of people to fulfil their tasks not only from their
workplaces but from wherever they want. Already in 2013, Fried and Hansson [5]
stated that “the future (referring to remote work) is already here - it’s just not
evenly distributed”. With the outbreak of the COVID-19 pandemic, remote work
has become an evenly distributed reality. Many software startups were among
the early adopters of remote work and have fully embraced it ahead of the mass
adoption wave triggered by the pandemic. GitLab1 and Basecamp2 are the well-
known examples. The global pandemic extended remote work to numerous other
startups.

Remote work brings many benefits to companies, such as more engaged and
productive employees, reduced real estate costs, “talent on the cloud”, reduced
attrition, and better employee retention [2,12]. However, it also poses various

1 www.gitlab.com.
2 www.basecamp.com.
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 175–180, 2025.
https://doi.org/10.1007/978-3-031-72781-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_19&domain=pdf
http://orcid.org/0000-0001-8849-1286
www.gitlab.com
www.basecamp.com
https://doi.org/10.1007/978-3-031-72781-8_19

176 Triando

challenges, among which are those associated with teamwork. Brainstorming
and problem-solving can be less effective when workers are distributed across
different time zones and rely more on asynchronous communication because
of reduced business-hour overlap [1]. Knowledge sharing may happen less fre-
quently. Distributed colleagues cannot just tap one another on the shoulder to
ask questions or get help. Another major worry for remote workers is the poten-
tial to feel isolated socially and professionally, missing the camaraderie feeling
[10].

These team challenges in remote work can be exacerbated in the context of
early-stage startups because of the pivotal role the team plays and the nature of
the work in the early phases. The team behind a startup is often as important
as the idea itself, if not more so. The right team can navigate the challenges of
starting a business, drive innovation, and significantly increase the chances of
success.

Building a startup team is one of the key challenges faced by early-stage soft-
ware startups, together with other team challenges including managing multiple
tasks and, staying focused and disciplined [6]. What remain unclear are how
these challenges are manifested when the startup teams work remotely and how
the challenges can be tackled effectively.

2 Research Questions

In this research, the research questions are as follow:

1. What are the team challenges faced by early-stage remote software startups?
2. How to tackle those unique challenges within remote software startups?
3. What are the keys practices in the design of framework for remote software

startups?

3 Related Work

3.1 Software Startups Team Challenges

There was a survey study of ten key challenges in early-stage software startups,
among which three challenges are pertinent to startup teams [6]:

– Building entrepreneurial teams
Create and inspire a team that embodies entrepreneurial qualities, including
the capacity to assess and respond to unexpected circumstances.

– Managing multiple tasks
Handle multiple tasks within a limited time frame, such as managing respon-
sibilities ranging from business to technical matters.

– Staying focused and disciplined
Maintain a level of insensitivity to external influences from various stakehold-
ers, including customers, partners, investors, and both current and potential
competitors.

Design Framework for Software Startups Applying Remote Work 177

In the same study, the authors substantiated these challenges with two
cases of early-stage software startups. For the two startups studied, building
an entrepreneurial team implies several specific challenges related to teamwork,
team motivation, as well as appropriate composition of the team. In both cases,
the two teams are overburdened with lots of activities in a short time. Stay-
ing focused and disciplined is particularly challenging for a startup that has
distributed team members.

3.2 Remote Work Challenges

The transition to remote work has been facilitated by technological advance-
ments, yet it also poses several challenges. The first challenge is in effectively
utilizing technology to support remote work [3,4,8]. While tools like video con-
ferencing and project management software are readily available, there can be a
learning curve associated with their implementation and integration into daily
workflows.

Inefficient collaboration is another significant challenge in remote work envi-
ronments [3,4,8]. Without the physical presence of coworkers, spontaneous inter-
actions and idea exchanges are limited. Moreover, poor communication is also
a challenge that sometimes lead to misinterpretation or incomplete information
sharing [3,4,11]. Lack of clarity in instructions or expectations can affect progress
on tasks and projects.

Striking a balance between work and personal life becomes increasingly diffi-
cult in a remote setup [4,9,11]. The boundaries between work hours and personal
time blur, making it challenging for employees to make a physical separation of
office and home. Remote work also introduces a gap in personal connections
among team members [7,11]. Casual interactions that build team cohesion are
less frequent in virtual environments.

Decreased engagement among team members is a common consequence of
remote work, without the social dynamics and accountability present in tradi-
tional office settings, employees may feel isolated from their colleagues [8,9]. Fur-
thermore, remote work can lead to reduced visibility into team members’ tasks
and progress [3,7,8,11]. Without physical proximity, managers may struggle to
monitor workload distribution and identify potential bottlenecks or inefficiencies.

3.3 Remote Work Challenges as Contributing Factors in Software
Startups Team Challenges

Building entrepreneurial teams is influenced by several factors, including
inefficient collaboration, characterized by a lack of synchronized efforts among
members; poor communication, leading to misunderstandings and affecting work
progress; gaps in personal connections, which can affect trust and cooperation;
decreased engagement among team members, resulting in lowered morale and
productivity; and reduced task visibility, making it challenging to track progress
and allocate resources effectively.

178 Triando

Managing multiple tasks is affected by several key elements: the challenge
of leveraging technology to facilitate remote work, affecting seamless coordina-
tion and communication among team members; inefficient collaboration, where
efforts are not harmonized, leading to redundancy and delays; poor communi-
cation, resulting in misunderstandings and inefficiencies; struggles with main-
taining work-life balance, potentially causing burnout and reduced productivity;
decreased engagement among team members, decreasing motivation and syn-
ergy; and reduced task visibility, making it difficult to prioritize and allocate
resources efficiently.

Staying focused and disciplined is influenced by several factors: ineffi-
cient collaboration, where the lack of streamlined teamwork leads to distractions
and wasted efforts; poor communication, which can result in confusion and dis-
rupt workflow; and struggles with managing work-life balance, impacting one’s
ability to allocate time effectively and maintain a consistent level of concentra-
tion. Overcoming these challenges requires strategies to enhance collaboration,
improve communication channels, and establish boundaries to achieve a har-
monious balance between professional and personal commitments, promoting
sustained focus and discipline.

4 Timeline

The research is planned to be run on three years as follow:

1. Literature review and identify team challenges
2. Collect data and design framework
3. Validate design framework in startups

5 Study Plan

Topics that require a deepening of expertise and the suitable means of study:

1. Remote team dynamics and challenges
2. Designing effective framework

6 Summary of the Current Status of the Research
Project

Currently, a literature review is conducted, which serves as the foundation for
subsequent phases and undertaking empirical research to analyze the unique
challenges faced by software startup teams operating within remote environ-
ments.

Design Framework for Software Startups Applying Remote Work 179

7 Plans for Publications

1. XP2024 (PhD symposium and workshop paper)
2. ICSOB2024 (PhD symposium and workshop paper)
3. XP2025 (PhD symposium and full paper)
4. ICSOB2025 (PhD symposium and full paper)
5. XP2026 (PhD symposium and full paper)
6. ICSOB2026 (PhD symposium and full paper)

8 Future Work

I intend to refine it through a comprehensive review of software startups litera-
ture, followed by empirical studies. In the empirical investigation, I particularly
plan to conduct interviews and case studies. Therefore, good practices for effec-
tive remote work will be identified, focusing on successful startups and online
communities (e.g. open-source software development community, online gaming
community). Finally, I aim to evaluate design framework in startups, to sup-
port the identified successful practices and mitigate remote work challenges in
software startups.

References

1. Choudhury, P.: Our work-from-anywhere future. Harvard Business Review 98(6)
(2020)

2. Coffey, R., Wolf, L.: The challenge and promise of remote work: a brief study of
remote work and best practices. Technical Report, Argonne National Lab.(ANL),
Argonne, IL (United States) (2018)

3. Ferreira, R., Pereira, R., Bianchi, I.S., da Silva, M.M.: Decision factors for remote
work adoption: advantages, disadvantages, driving forces and challenges. J. Open
Innov. Technol. Market Complexity 7(1), 70 (2021)

4. Flores, M.F.: Understanding the challenges of remote working and it’s impact to
workers. Int. J. Bus. Market. Manage. (IJBMM) 4(11), 40–44 (2019)

5. Fried, J., Hansson, D.H.: Remote: office not required. Currency (2013)
6. Giardino, C., Bajwa, S.S., Wang, X., Abrahamsson, P.: Key challenges in early-

stage software startups. In: Agile Processes in Software Engineering and Extreme
Programming: 16th International Conference, XP 2015, Helsinki, Finland, 25–29
May 2015, Proceedings 16, pp. 52–63. Springer (2015)

7. Koehne, B., Shih, P.C., Olson, J.S.: Remote and alone: coping with being the
remote member on the team. In: Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work, pp. 1257–1266 (2012)

8. Lenka, R.M.: Unique hybrid work model-the future of remote work. PalArch’s J.
Archaeol. Egypt/Egyptol. 18(7), 2687–2697 (2021)

9. Popovici, V., Popovici, A.L.: Remote work revolution: current opportunities and
challenges for organizations. Ovidius Univ. Ann. Econ. Sci. Ser 20(1), 468–472
(2020)

10. Schieffer, L.: The benefits and barriers of virtual collaboration among online
adjuncts. J. Instruct. Res. 5, 109–125 (2016)

180 Triando

11. Wang, B., Liu, Y., Qian, J., Parker, S.K.: Achieving effective remote working during
the covid-19 pandemic: a work design perspective. Appl. Psychol. 70(1), 16–59
(2021)

12. Wiik, N.: The remote revolution: preparing for the boom in distributed work with
data-based insights. AV Technol. 13(3), 42 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Bridging Silos: Amplifying InnerSource
Adoption Using an Activity Theory Perspective

Clare Dillon(B)

University of Galway, Lero, Ireland
clare.dillon@live.ie

Abstract. My research explores the adoption of InnerSource, a practice that inte-
grates open source methodologies within organizations to foster collaboration and
overcome the traditional silo mentality. InnerSource and Agile implementations
share many values such as transparency, employee empowerment, and a flexible
response to change. InnerSource adoption can come before, after, or in parallel
with Agile transformations. Despite the increasing recognition of InnerSource as
a pivotal driver for developer productivity and its growing presence in industry
discussions, academic research on the subject remains in its infancy. Leverag-
ing my involvement with the InnerSource Commons community and drawing
from Activity Theory, my research aims to fill critical gaps in our understanding
of InnerSource adoption. Specifically, it investigates the activities organizations
engage in to enable InnerSource, identifies blockers hindering its implementa-
tion, and proposes effective strategies to counteract these challenges. At the XP
2024 PhDSymposium, I intend to share some preliminary findings ofmy research,
derived from a Systematic Literature Review and a pilot studywith an InnerSource
practitioner working group. My research not only seeks to advance theoretical
knowledge in the field but also offers practical insights for organizations striving
to change software development practices, contributing to a more collaborative
and efficient software development environment.

Keywords: innersource · inner source · collaborative software development

1 Introduction

The adoption of open source practices and tools within an organization, referred to as
InnerSource, is now part of a larger management strategy to change the typical enterprise
silo-based mentality and enable collaboration across an organization [1]. InnerSource
adoption has grown in the past number of years. In 2023 InnerSource appeared in the
Gartner Hype Cycle for Software Development [2] and was listed as one of Gartner’s
top 6 strategic technology trends for Software Engineering[3]. Industry surveys have
reported that InnerSource is perceived as a top driver of developer productivity [4].
Furthermore, the InnerSource Commons [5], a community of over 3000 InnerSource
practitioners, has tracked over 100 public mentions and case studies of InnerSource
adoption across a wide variety of industries and geographies.

© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 181–186, 2025.
https://doi.org/10.1007/978-3-031-72781-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_20&domain=pdf
http://orcid.org/0009-0008-6205-0296
https://doi.org/10.1007/978-3-031-72781-8_20

182 C. Dillon

I have been involved in the InnerSource Commons (ISC) community since 2018, and
served as the inaugural Executive Director of the ISC Foundation from 2021–2023. The
motivation for my research originated throughmy involvement with the ISC community,
and the wish to advance knowledge in the area.

While some InnerSource case studies and experience reports have been referenced
in software development literature ([6–9]), research in the area has remained in a nascent
state.A survey in 2020 identifiedonly 25 empirical studies and concluded that “theorising
the inner source approach is important since there is lack of cohesion, cumulative tradi-
tion and clarity” [10]. In fact, it has been noted that there is still less research literature on
InnerSource than there are practitioner reports [11].Amore recent reviewof the literature
reveals a gap in terms of examining the contradictions or barriers that inhibit InnerSource
activities, and that may demotivate practitioners and limit InnerSource roll-outs.

In 2022, Morgan et al. explored how InnerSource has been adopted with Agile
practices over time [12]. They conclude that “inner source is a complimentary value
add to agile, providing companies with the capability to build on existing solutions
whilst not conflicting with their ability to work fast and adapt to change.” InnerSource
practitioners are also interested in the topic of how InnerSource can be adopted with
other methodologies such as Agile.

I have identified Activity Theory as a theoretical lens to examine efforts to accelerate
InnerSource adoption within organizations. Activity Theory has been used to examine
Agile implementations andmaturity ([13, 14]).However, no research has been conducted
so far on InnerSource transformations using an Activity Theory lens, and research on
InnerSource in the Information Systems domain as a whole is relatively sparse.

2 Research Questions

I propose to address the following research questions on the activity systems relating to
InnerSource, which have not been studied in academic research to date. These include:

1. What activities are organizations engaging in to enable or amplify InnerSource
adoption within their organizations?

2. What are the blockers (contradictions or tensions within related activity systems) to
InnerSource implementations within organizations?

3. What activities are effective in counteracting InnerSource blockers?

3 Areas for Advice

Research Theme: Feedback from InnerSource practitioners indicates that InnerSource
is often practiced alongside Agile. I would welcome insights into activities that can
enable or accelerate both InnerSource and Agile implementations.

Theoretical Framework: Activity Theory has been used to examine obstacles in agile
implementations ([13, 14]). I would value feedback on my choice of Activity Theory as
a theoretical lens for development methodologies.

Research Methodology: What are the most effective strategies for conducting quali-
tative and longitudinal studies on software development teams?

Bridging Silos: Amplifying InnerSource Adoption 183

Emerging Trends: I seek insights into emerging trends in Agile software development,
in particular how AI bots and agents are being incorporated into Agile practices.

Publication and Dissemination: Advice on targeting the right venues for publishing
interdisciplinary research that spans software engineering and another field.

4 Current Research Progress

4.1 Systematic Literature Review

My research is an article-based PhD. In order to more accurately identify research
problems and identify gaps, I began a Systematic Literature Review (SLR) within the
InnerSource and open source fields of literature. That review has revealed a gap in terms
of examining the contradictions or barriers that inhibit InnerSource activities, and in
particular how this may demotivate practitioners and limit InnerSource roll-outs.

4.2 Theoretical Lens

An initial review of literature on Information Systems theories has identified Cultural
Historical Activity Theory (Activity Theory) as an excellent lens through which I could
explore the activities organizations engage in while implementing InnerSource. CHAT,
originated by Lev Vygotsky and further developed by scholars such as Engeström,
focuses on the study of how human activities are socially situated and mediated by
tools, signs, and systems of activity [15]. Activity Theory allows for the analysis of
blockers or barriers to change and examines the broader impact of InnerSource activities,
where human interaction, cultural norms, and collaborative practices play a central role
alongside the adoption of tools and processes. The theory aligns with many aspects of
InnerSource:

• Emphasis on social and cultural context: InnerSource initiatives are deeply influ-
enced by the social and cultural context of an organization. Activity Theory’s empha-
sis on these aspects helps to analyze how organizational culture, norms, and values
affect the adoption and effectiveness of InnerSource practices.

• Focus on the whole work system: Activity Theory looks at the entire work sys-
tem, including the tools, tasks, rules, community, and the division of labor. 4GAT
includes the concept of interacting activity systems. This holistic view is essential for
understanding InnerSource, which impacts not just the technical aspects of software
development but also organizational structures, collaboration patterns, and cultural
elements.

• Interactions between tools and people: InnerSource relies heavily on tools (e.g.,
source code repositories, communication platforms). Activity Theory’s focus on the
interaction between tools and people can help unpack how these tools enable or hinder
collaboration, knowledge sharing, and community building.

• Role of communities: Activity Theory acknowledges the importance of communities
and networks of practice within activity systems. InnerSource initiatives thrive on the
formation of communities of practice, and Activity Theory can provide insights into
how these communities form, function, and contribute to InnerSource adoption.

184 C. Dillon

• Understanding of contradictions: Activity Theory includes the idea that there may
be contradictions and tensionswithin and between different components of an activity
system. In the context of InnerSource, these contradictions could be between tradi-
tional siloed development practices and the collaborative approach of InnerSource.
Identifying and exploring these contradictions can provide insights into what may be
blocking InnerSource implementations and how to address those constraints.

• Dynamic perspective: Activity Theory recognizes that activity systems are con-
stantly evolving. This perspective aligns well with InnerSource, which is recognized
as an evolving practice.

The fourth generation of Activity Theory (4GAT) extends these ideas into a more
interconnected and networked analysis of activities, emphasizing systemic contradic-
tions and their resolution as the primary drivers of change and development within activ-
ity systems ([16, 17]). The latest generations ofActivityTheory focusmore on networked
activity systems, and the complexity and contradictions that may arise when actors have
different motivations. As Activity Theory has been used to examine Agile implemen-
tations and maturity ([13, 14]), I anticipate that it will also be a useful framework with
which to explore InnerSource.

4.3 Pilot Study

In 2023, I embarked upon a pilot study with members of the new InnerSource Program
Office Working Group (ISPO WG) at InnerSource Commons using Activity Theory as
a theoretical lens. InnerSource Program Offices (ISPOs) are a relatively new concept
that has not as yet been explored in academic literature. In their nascent efforts to define
what is an ISPO, the ISPOWG references the concept of Open Source Program Offices
(OSPOs). OSPOs have been defined as an “the center of gravity for an organization’s
open source operations and structure. This can include training developers, ensuring
legal compliance, engaging with and building communities, and defining policies that
govern code usage, distribution, selection, auditing and more.” [18]. The WG members
have defined an ISPO in similar terms. One definition lists an ISPO as acting as a “central
governing body responsible for overseeing and facilitating the adoption of InnerSource
practices across different departments and teams.”

The ISPO WG is a group of individuals who are explicitly employed to enable or
accelerate InnerSource adoption within their organizations. I have conducted hour-long
semi-structured interviews with 10 individuals from 10 organizations and am in the
process of analyzing the results. An examination of the activities ISPOWG community
members engage in, and the barriers they face will allow me to generate insights to
help further address my research questions. The aim of my research is not only to
comprehend the foundational aspects of ISPOs but also to distil and share the insights
gained from pioneers in this domain. By doing so, I intend to provide valuable guidance
for organizations that are considering the adoption of InnerSource practices through the
establishment of an ISPO.

Through my pilot study and my engagements with InnerSource practitioners, I con-
tinue to identify priorities and emerging themes that may warrant further research. Some
of the emerging themes in the last year include automated tooling to support Inner-
Source implementations within enterprises (e.g. to create Software Bills of Materials

Bridging Silos: Amplifying InnerSource Adoption 185

or SBOMs); how bots and GenAI code generation will impact InnerSource implemen-
tations; how global culture impacts InnerSource implementations (e.g. with feedback
from emergingAsian communities); and how InnerSource implementations impact other
software development methodologies, specifically Agile practices.

As this research progresses, my objective is to shed light on the complex dynamics
of InnerSource adoption through a rigorous academic lens. I also aim to offer actionable
strategies and insights that organizations can use to address any blockers that might
occur as they implement InnerSource.

References

1. Morgan, L., Gleasure, R., Baiyere, A., Dang, H.P.: Share and share alike: how inner source
can help create new digital platforms. California Manag. Rev. 64(1), 90–112. bth. (2021)

2. Hype Cycle for Software Engineering, 2023. (n.d.). Gartner, https://www.gartner.com/en/doc
uments/4590099. Accessed on 02 Apr 2024

3. Gartner Identifies the Top Strategic Technology Trends in Software Engineering for 2023.
(n.d.). Gartner. https://www.gartner.com/en/newsroom/press-releases/gartner-identifies-the-
top-strategic-technology-trends-in-software-engineering-trends-for-2023. Accessed on 02
Apr 2024

4. Linux Foundation FINOS Annual Report 2022. https://project.linuxfoundation.org/hubfs/
LF%20Research/FINOS%20Annual%20Report%202022%20-%20Report.pdf?hsLang=en.
Accessed on 02 Apr 2024

5. InnerSource Commons, I. (n.d.-b). InnerSource Stories. https://innersourcecommons.org/sto
ries/. Accessed on 02 Apr 2024

6. Dinkelacker, J., Garg, P. K., Miller, R., & Nelson, D. Progressive open source. Proceedings
of 24th International Conference on Software Engineering, 177–184. (2002)

7. Gurbani, V.K., Garvert, A., Herbsleb, J.D.: A case study of a corporate open source devel-
opment model. In: Proceedings of 28th International Conference on Software Engineering,
pp. 472–481 (2006)

8. Riehle, D., et al.: Open collaboration within corporations using software forges. IEEE Softw.
26(2), 52–58 (2009)

9. Wesselius, J.: The bazaar inside the cathedral: business model for internal markets. IEEE
Softw. 25(3), 60–66 (2008)

10. Edison, H., Carroll, N., Morgan, L., Conboy, K.: Inner source software development: current
thinking and an agenda for future research. J. Syst. Softw. 163, 110520 (2020)

11. Riehle, D., Capraro, M., Kips, D., Horn, L.: Inner source in platform-based product
engineering. IEEE Trans. Softw. Eng. 42(12), 1162–1177 (2016)

12. Morgan, L., Gleasure, R., Baiyere, A.: Is inner source the next stage in the agile revolu-
tion? In: Co-creating for Context in the Transfer and Diffusion of IT, pp. 130–136. Springer
International Publishing (2022)

13. Chita, P.: Agile SoftwareDevelopment –Adoption andMaturity:AnActivity Theory Perspec-
tive. In: Garbajosa, J., Wang, X., Aguiar, A. (eds.) Agile Processes in Software Engineering
and Extreme Programming, pp. 160–176. Springer International Publishing (2018)

14. Stray, V., Hoda, R., Paasivaara, M., Kruchten, P.: Agile implementation and expansive learn-
ing: identifying contradictions and their resolution using an activity theory perspective. In:
Agile Processes in Software Engineering and Extreme Programming, vol. 383. Springer
(2020)

15. Engeström, Y.: Learning by expanding: An activity-theoretical approach to developmental
research. OrientaKonsultit (1987)

https://www.gartner.com/en/documents/4590099
https://www.gartner.com/en/newsroom/press-releases/gartner-identifies-the-top-strategic-technology-trends-in-software-engineering-trends-for-2023
https://project.linuxfoundation.org/hubfs/LF%20Research/FINOS%20Annual%20Report%202022%20-%20Report.pdf%3FhsLang%3Den
https://innersourcecommons.org/stories/

186 C. Dillon

16. Karanasios, S., Allen, D.K., Finnegan, P.: Activity theory in information systems research.
Inf. Syst. J. 28(3), 439–441 (2018)

17. Spinuzzi, C.: Working alone together: coworking as emergent collaborative activity. J. Bus.
Tech. Commun. 26(4), 399–441 (2012)

18. Ruff, N.: Open Source Law, Policy and Practice: Second Edition. (Chapter 19). Oxford
University Press (2022)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Posters Track

Where Do Developers Admit their
Security-Related Concerns?

Moritz Mock1(B) , Thomas Forrer2, and Barbara Russo1

1 Free University Bozen-Bolzano, Bolzano, Italy
{momock,brusso}@unibz.it

2 R&D Department, Würth Phoenix, Bolzano, Italy
thomas.forrer@wuerth-phoenix.net

Abstract. Developers use different means to document the security con-
cerns of their code. Because of all of these opportunities, they may forget
where the information is stored, or others may not be aware of it, and
leave it unmaintained for so long that it becomes obsolete, if not use-
less. In this work, we analyzed different sources of code documentation
from four large-scale, real-world, open-source projects in an industrial
setting to understand where developers report their security concerns.
In particular, we manually inspected 2.559 instances taken from source
code comments, commit messages, and issue trackers. Overall, we found
that developers prefer to document security concerns in source code com-
ments and issue trackers. We also found that the longer the comments
stay unfixed, the more likely they remain unfixed. Thus, to create aware-
ness among developers, we implemented a pipeline to remind them about
the introduction or removal of comments pointing to a security problem.

Keywords: Security Indicators · Mining Software Repositories ·
Continuous Integration/Continuous Development · Pipeline

1 Introduction

Developers use different means to document their activity and store their arte-
facts. Generally speaking, source code is the preferred one, Krüger and Hebig [6],
but when specific tasks are concerned, the opportunities multiply. For instance,
the most common places where developers document not-quite-right code that
works (technical debt, [3]) is again source code, but also commit messages, issue
tracker, and pull requests, [7,11].

Source code comments are also used to store knowledge about security con-
cerns, [2,5]. Security Indicators are keywords [2] which are left behind by devel-
opers to express their worry connected to security within an application; this
worry can be a vulnerability, potentially exploited by a third party. Current
studies also combine information from different sources to investigate the same
concern. For instance, code and comments were explored to identify both tech-
nical debt and code vulnerabilities, [5,9].
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 189–195, 2025.
https://doi.org/10.1007/978-3-031-72781-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_21&domain=pdf
http://orcid.org/0009-0009-3156-6211
http://orcid.org/0000-0003-3737-9264
https://doi.org/10.1007/978-3-031-72781-8_21

190 M. Mock

In this work, we aimed to answer the research question: Where do developers
admit their security-related concerns?, therefore, we investigate the relevance of
different sources where developers might express security concerns. The approach
follows the idea that SAST/DAST tools, like SonarQube [13], SemGrep [12] or
Invicti [14], do not fully leverage textual data in the form of comments, commit
messages, and issue trackers; hence we want to explore those sources to iden-
tify their usability. We have mined three different sources (commit messages,
comments, and issue tracker) from four large-scale projects from the industry
with a history of up to 29k commits spanning 20 years. Furthermore, we have
manually inspected 2.559 instances from different sources to understand which
security indicators and sources are most relevant for developers. We found that
developers mostly use source code comments to admit security concerns; further
investigations are needed to understand if there is a similar correlation between
the severity of code, which is not quite right at the time of introduction, the
longer it stays within the code base [1]. Additionally, we observed that those
comments are either fixed soon (around ten releases) or they stay (almost) per-
manently. Therefore, we have developed a CI/CD bot that warns the developers
whenever a security indicator is introduced or removed so that they are fully
aware of comments that hint towards security concerns that are not captured by
a SAST/DAST tool. The replication package can be found here: https://github.
com/moritzmock/MiningSecurityIndicators.

2 Methodology

The following section describes some of the characteristics of the mined projects,
how we performed the extraction of relevant information from the different
sources for the commit messages, source code comments, and issue tracker and
how the security indicators were evaluated against the inspected sources and
repositories.
Characteristics of the Mined Projects - Table 1 illustrates the characteristics
of the four projects mined in the following section. It should be noted that
the two projects are of the same origin, namely GLPI [15]; however, this was
considered in the evaluation. Additionally, the number of years of history, #
releases, and # commits is limited as the project was created at the beginning
of 2020. Furthermore, one of the evaluated projects, icingaweb2-module-slm, is
a project developed completely in-house, whereas the other projects are loaned
from open source and specific extensions are elaborated for them.
Commit messages - We leveraged PyDriller [10], which allowed us to easily
access and extract the commit messages for each of the inspected projects. For
the commit messages, we have mined all the commits and not only those of the
release tags, as we did for the source code comments, else the inspection scope
was too limited.
Source Code Comments - We utilized PyDriller to extract the corresponding
commit hash of the release tags, then checked out the repository at the obtained
hash. At the given commit hash, we performed an analysis of all the present files,

https://github.com/moritzmock/MiningSecurityIndicators
https://github.com/moritzmock/MiningSecurityIndicators

Where Do Developers Admit their Security-Related Concerns? 191

Table 1. Characteristics of the projects

Project years of history # releases # commits lines of code

GLPIv3 [15] 20.25 10 20.269 2.473.459
GLPIv4 [15] 4.25 34 195 2.557.746
icingaweb2 [16] 11 379 15.674 1.528.409
icingaweb2-module-slm 4.83 217 2.470 42.557

tracing each file with the corresponding comments in order to gather insights into
how long it has been in the software repository and when it has been removed.
We decided to inspect each tag rather than the commits to avoid including
comments introduced for the short term, e.g., as a remark for the developer
where they stopped and need to continue the next time.
Issue Tracker (JIRA/Github) - Some projects are loaned from open source, and
others are developed internally. Therefore, two different issue trackers are used
across the inspected projects. For JIRA, we used the Python package jira [18]
in combination with JQL-query (Jira Query Language to obtain all the relevant
information. Whereas for GitHub, we used the available REST API [17].
Manual Inspection - The obtained data was analysed based on proportional
sampling [4] with a confidence interval of 95% and a marginal error of 5% result-
ing values. Proportional sampling was selected as a methodology for reducing
the overall sample size, which needs to be manually inspected. Resulting in 2.559
instances, 819, 1.076, and 683, respectively, for commit messages, source code
comments, and issue trackers. The number of samples was calculated based on
each individual source and summed up to final numbers. Additionally, we evalu-
ated if pairs of security indicators occur and if those express a security concern
only together or also individually.

3 Results

In the following section, each of the mined sources (commit messages, comments,
and issue trackers) are discussed. In the following section, at the paragraph
Manual Inspection, some general observations are made regarding keywords that
individually did not address any security concern but paired with others that
were used by developers to address security concerns in source code.
commit Messages - We observed that security indicators used in commit mes-
sages are used to address that certain parts of the code are now improved or
fixed rather than admitting existing security issues in the code, e.g., “fix search
engine for XSS”. XSS (Cross-Site Scripting) is a security vulnerability in which
a third party injects malicious scripts into a web page viewed by other users.
This could potentially allow attackers to hijack user sessions or steal sensitive
information. This observation is further supported by a quantitative evaluation
of the data: 30% of commits containing a security indicator have an associated
issue linked to it, e.g., “Fix minor bug in LDAP aliases #2”.

192 M. Mock

Source cod3e Comments - We have analyzed the three sources (commit mes-
sages, source code comments, and issues tracker) and found that not all 288
security indicators are relevant to security-related issues. E.g., “signature”, which
was used for documenting how the digital signature is handled within the appli-
cation addressed by comments like: “// signature widget”. Resulting in a differ-
ent semantic for it compared to the originally intended one. Furthermore, we
observed that some security indicators are removed after a relatively short time,
usually around ten releases, or they stay permanently. Depending on the project
years of history, see Table 1, we observed a shift of the breaking point up to 200
release tags, which was the case for the project GLPIv3, which is maintained
for more than 20 years and 20 thousand commits. Figure 1 illustrates the num-
ber of release tags needed such that security indicators are removed after their
introduction. Issue tracker (JIRA/Github) - From the inspected instances, we
observed that the security indicators like “hack”, “ldap”, and “openssl” are present
due to sharing the same name with a PHP package rather than indicating a secu-
rity concern. Whereas “password” and “username” are used in an example code
to underline what the issue was; however, they were not related to a security
issue.

Fig. 1. Percentages of comments that have or have not been removed over release tags
for the project GLPI. After the breaking point of 2,7 release tags, the proportion of
non-removed comments becomes greater. On top of the line, the absolute values can
be found.

Manual Inspection - Our manual inspection of the different sources (commit
message, comment, and issue tracker) classified 98 different security indicators,
from which 79 were classified to be relevant. Additionally, we inspected whether
security indicators appeared together and performed the inspection of their com-
bination. In a work running in parallel [8], we performed an inspection of com-
ments by three authors independently from each other for a manual classification
of security indicators. 68.3% of the keywords are identified in the work running
in parallel and in this work as being relevant security indicators. The remaining
31.6% are only identified by this work, which might be due to different sources,

Where Do Developers Admit their Security-Related Concerns? 193

programming languages, temporal aspects, or sampling techniques that were
leveraged in the two approaches. Inspecting those keywords that were only clas-
sified by this as relevant, many of them are related to login, e.g., “two factor”,
“user account”, or “user name”, hinting at the project-specific domains of user
authentication, especially for GLPI [15].

At this point, we observed that quite general keywords such as “ldap” are
used together with “login” or “authentication”, which is not really surprising as
LDAP (Lightweight Directory Access Protocol) is an authentication protocol.
However, due to the connection with other keywords, more attention needs to
be brought to seemingly irrelevant ones.

4 Conclusion

Mining various sources demonstrated the potential of combining them to increase
the available context. We have manually inspected more than two thousand
instances from different sources (commit message, comment, and issue tracker),
unveiling that 1© not every source has the same quality, i.e., in future work, we
need to consider that not all sources provide the same information and richness,
and 2© not every indicator has a unique semantic meaning, making it harder to
detect those keywords which in fact are indicating a security concern. To answer
our initial question: Where do developers admit their security-related concerns?
Our preliminary results indicate that developers use source code comments as the
most reliable means. The security indicators applied to the commit messages and
issue tracker generate a lot of false positives, hence being a less reliable resource
for identifying security admissions.

We plan to expand this work in future work by leveraging deep learning (DL)
approaches to automate detection and classification. Besides the challenges in
designing a DL approach, building and maintaining trust in such an application
is one, if not the major, issue we need to overcome. The DL is planned to be
deployed in a CI/CD pipeline to automate the detection of different kinds of
issues detached from the development process. Additionally, we plan to investi-
gate the different behaviours of open source and industry developers, especially
in a mixed state when practitioners from industry loan projects of open-source
and expand them for their needs. Furthermore, how packages and projects are
assessed and selected for internal use, i.e., which are the attributes developers
consider most important to trust a third-party application.

Acknowledgements. Moritz Mock is partially funded by the National Recovery and
Resilience Plan (Piano Nazionale di Ripresa e Resilienza, PNRR - DM 117/2023). The
research was carried out during an internship of Moritz Mock at Würth Phoenix, Italy.
The work has been funded by the project CyberSecurity Laboratory no. EFRE1039
under the 2023 EFRE/FESR program.

References

1. Bavota, G., Russo, B.: A large-scale empirical study on self-admitted technical
debt. In: Proceedings of the 13th International Conference on Mining Software

194 M. Mock

Repositories, MSR 2016, pp. 315–326. Association for Computing Machinery, New
York, NY, USA (2016). https://doi.org/10.1145/2901739.2901742

2. Croft, R., Xie, Y., Zahedi, M., Babar, M.A., Treude, C.: An empirical study of
developers’ discussions about security challenges of different programming lan-
guages. Empir. Softw. Eng. 27, 1–52 (2022)

3. Cunningham, W.: The wycash portfolio management system. ACM Sigplan Oops
Messenger 4(2), 29–30 (1992)

4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

5. Ferreyra, N.E.D., Shahin, M., Zahedi, M., Quadri, S., Scandariato, R.: What can
self-admitted technical debt tell us about security? a mixed-methods study (2024).
https://doi.org/10.48550/arXiv.2401.12768

6. Krüger, J., Hebig, R.: To memorize or to document: a survey of developers’ views on
knowledge availability. In: Kadgien, R., Jedlitschka, A., Janes, A., Lenarduzzi, V.,
Li, X. (eds.) Product-Focused Software Process Improvement, pp. 39–56. Springer,
Cham (2024). https://doi.org/10.1007/978-3-031-49266-2_3

7. Li, Y., Soliman, M., Avgeriou, P.: Automatic identification of self-admitted techni-
cal debt from four different sources. Empir. Softw. Eng. 28(3), 65 (2023). https://
doi.org/10.1007/s10664-023-10297-9

8. Mock, M., Melegati, J., Kretschman, M., Díaz Ferreyra, N.E., Russo, B.: MADE-
WIC: Multiple annotated datasets for exploring weaknesses in code. In: work in
progress (2024)

9. Russo, B., Camilli, M., Mock, M.: WeakSATD: detecting weak self-admitted techni-
cal debt. In: Proceedings of the 19th International Conference on Mining Software
Repositories, MSR 2022, pp. 448-453. Association for Computing Machinery, New
York, NY, USA (2022). https://doi.org/10.1145/3524842.3528469

10. Spadini, D., Aniche, M., Bacchelli, A.: PyDriller: Python framework for mining
software repositories. In: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2018, pp. 908-911. Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3236024.3264598

11. Zampetti, F., Fucci, G., Serebrenik, A., Di Penta, M.: Self-admitted technical debt
practices: a comparison between industry and open-source. Empir. Softw. Eng.
26(6), 1–32 (2021). https://doi.org/10.1007/s10664-021-10031-3

12. SemGrep. http://semgrep.dev, Accessed May 2024
13. SonarQube. https://www.sonarsource.com/, Accessed May 2024
14. Invicti. https://www.invicti.com, Accessed May 2024
15. GLPI. https://github.com/glpi-project/glpi, Accessed May 2024
16. icingaweb2. https://github.com/Icinga/icingaweb2, Accessed May 2024
17. Github documentation. https://docs.github.com/en/rest/issues/issues, Accessed

May 2024
18. Jire python package. https://pypi.org/project/jira/, Aaccessed May 2024

https://doi.org/10.1145/2901739.2901742
https://doi.org/10.48550/arXiv.2401.12768
https://doi.org/10.1007/978-3-031-49266-2_3
https://doi.org/10.1007/s10664-023-10297-9
https://doi.org/10.1007/s10664-023-10297-9
https://doi.org/10.1145/3524842.3528469
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1007/s10664-021-10031-3
http://semgrep.dev
https://www.sonarsource.com/
https://www.invicti.com
https://github.com/glpi-project/glpi
https://github.com/Icinga/icingaweb2
https://docs.github.com/en/rest/issues/issues
https://pypi.org/project/jira/

Where Do Developers Admit their Security-Related Concerns? 195

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Digital Twin Adapted Agile Software
Development Life Cycle

Mariam Jaber(B) , Abdallah Karakra , Ahmad Alsadeh ,
and Adel Taweel

Department of Computer Science, Birzeit University, Birzeit, Palestine
1215021@student.birzeit.edu, {akarakra,asadeh,ataweel}@birzeit.edu

Abstract. Digital Twin (DT) stands as the premier technology within
Industry 4.0 used in multiple sectors. Although there has been consid-
erable recent literature on DT, there has been limited focus on the life
cycle methodologies for its development. Lacking a well-defined process
can significantly complicate DT development. This paper proposes an
augmented Agile Software Development Life Cycle as a methodology for
DT development.

Keywords: Digital Twin · Agile · Software Development Life Cycle

1 Introduction

Building an effective DT is a challenging and iterative endeavour [4,5]. Without
a clear process for DT development, it can become exceedingly complicated and
may result into not addressing sufficiently essential DT specific system features.
Therefore, following a software development life cycle (SDLC) methodology for
DT development is essential to ensure the successful creation, deployment, and
maintenance of such complex systems to operate in critical environments. Several
SDLC models were developed to organize and streamline the software creation
processes, each tailored for specific project types. Waterfall, Agile, and Rapid
Application Development (RAD) models are among the most widely used models
in the industry [11]. Adopting the right SDLC model not only streamlines the
development process but also significantly increases the likelihood of delivering a
successful and quality product. Therefore, organizations must carefully evaluate
their project requirements and choose a SDLC model that aligns with their goals
and needs to ensure successful software delivery.

The Agile model relies on an iterative and incremental approach, emphasizing
collaboration to create software system that meets evolving customer needs in
complex domains. This model enables quick adaptation to changes, ensuring the
project remains flexible and responsive [3]. In this paper, we will propose an
augmented Agile for DT development, given the complex, dynamic, changing
and adaptive nature of DT environments, where they are typically deployed to

c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 196–202, 2025.
https://doi.org/10.1007/978-3-031-72781-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_22&domain=pdf
http://orcid.org/0009-0002-4828-2054
http://orcid.org/0000-0002-2688-150X
http://orcid.org/0000-0002-5893-4805
http://orcid.org/0000-0003-0240-9857
https://doi.org/10.1007/978-3-031-72781-8_22

Digital Twin Adapted Agile Software Development Life Cycle 197

operate with multitude of diverse and critical systems and technologies. One is
more likely to become lost in the implementation of technologies for the DT than
to take use of its advantages due to the high cohesiveness of the DT’s supporting
technologies. Hence, we must consider the manufacturing and environmental
context and specific DT characteristics, to accomplish DT capabilities, such as
scalability and interoperability [2].

The paper is organized as follows: related work are provided in Sect. 2, Sect. 3
presents the need for augmenting Agile methodologies for DT development. The
proposed approach is described in Sect. 4, Sect. 5 validates the sufficiency of the
proposed Agile SDLC, and Sect. 6 presents conclusion and future work.

2 Related Work

There are only a few studies, in the literature, that examine the life-cycle path
that guides the detailed development of DT systems. This section explores var-
ious methodologies documented in the literature for implementing DT in the
healthcare sector.

Laybenbacher et al. [6] devised a strategy for constructing a DT of an immune
system, and is structured as a four-stage process. Stage 1: defines a specific appli-
cation and constructs an appropriate generic template model. Stage 2: person-
alizes the template model to an individual patient. Stage 3: final immune DT
testing and uncertainty quantification. Stage 4: collects individual patient data
for ongoing improvement of the immune DT. Alternatively, Karakra [4] proposed
a methodology for designing a DT of patient pathways in a hospital. The phases
of this methodology are the design phase that has two steps (construction and
validation), inclusive of transformation and deployment.

Sinner et al. [10], on the other hand, employed a typical process develop-
ment cycle for their case study on microbial upstream bioprocessing. The paper
used standard process development cycle of five phases: early strain and process
characterisation, process design, process transfer, monitoring and control, main-
tenance and continuous improvement. It emphasised that if the DT and under-
lying models are regularly adjusted to newly available data, DT can integrate
with the whole process development cycles. However, for secure DTs, Satyarthi
et al. [8], recommended a Secure Software development Life Cycle (SSDLC)
methodology, to create and manage secure software. The proposed SSDLC pro-
cess, based on SDLC, includes configurable catalogue of security controls. It
defines several activities: 1) Requirement analysis and description 2) Designing
and Deployment 3) Testing and Maintenance 4) Security requirements identifi-
cation 5) Security Training and Audits 6) End-product evaluation and Configu-
ration 7) Pre-selection of security objectives 8) Exploration of pre-selected ideas
9) Formation of Simulation based prototype and Data Optimization 10) Real-
time asset and component management 11) Virtual verification and validation
12) Iteration based virtual testing and finalizes the product.

From the literature, we observed that limited literature work focused on life
cycle methodologies for developing DT. Moreover, proposed SDLCs for develop-
ing DT are custom-tailored to meet the specific needs of the respective areas in

198 M. Jaber et al.

which they were applied. This indicates the necessity for an adapted, systematic
methodology for structuring DT development. The Agile model, known for its
iterative, update-centric approach, appears particularly suited for DTs due to
their need for regular updates to reflect real-world changes. However, there are
certain aspects lacking within the various SDLC phases, hence, an augmented
Agile SDLC is proposed.

3 Why Augmented Agile SDLC?

Choosing an augmented SDLC for DT over a traditional one is essential due to
the nature of DTs. DTs rely on continuous real-time data to function accurately.
The standard practices of agile SDLC may not fully address the complexities of
integrating and processing real-time data, synchronised from several sources,
continuously updating the DT.

While Agile methods provide a solid foundation for adaptability and cus-
tomer focused development, however they do not explicitly ensure the require-
ments of DT that includes real-time data integration, interdisciplinary collabo-
ration, diverse resources interoperability and complex analytics. Thus, an aug-
mented approach to the Agile SDLC to fully address these challenges is needed.

4 Augmented Agile SDLC

In contrast to traditional software development, creating DTs demands unique
considerations. Beyond the standard Agile SDLC, the integration of real-time
data, modeling and simulation, and interaction with physical assets necessitate
specialized knowledge and equipment. The Agile SDLC phases have been tai-
lored with additional techniques, technologies, and practices, aligning with the
distinctive characteristics of DT.

In this section, we introduce an augmented Agile SDLC as a methodology for
DT development. Figure 1 describes the suggested simplified model: each rectan-
gle represents an Agile SDLC stage: 1- Requirements 2- Design 3- Implementa-
tion 4- Testing 5- Deployment. In each stage, blue circles represent common steps
of traditional software and DT, black circles represent the traditional software
steps, and red circles represent DT steps.

4.1 Requirements Stage

In traditional software development, the requirements for each iteration are taken
from the product backlog. DT relies on data to address these requirements,
with different sources for this data including physical resources such as sensors,
devices or other IoT and mechanical IoT instruments, and historical data that
has been previously recorded can be incorporated into the model and utilised for
additional analysis [1]. Data collected from this stage for DT should be stored
either locally or in a cloud [1].

Digital Twin Adapted Agile Software Development Life Cycle 199

Fig. 1. Agile SDLC simplified model for an iteration.

4.2 Design Stage

In traditional software development, multiple design options for the product
architecture are proposed based on the identified requirements. These alterna-
tives are documented within a Design Document Specification (DDS). In DT, the
design consists of three steps [7]: (1) identifying the DT classes, (2) incrementally
building the DT object-oriented (O-O) hierarchy model for the recommended DT
solution, and (3) checking the consistency and refining the DT O-O hierarchy
model of the recommended DT solution.

Threat modeling is, also done in the design phase for both DT and the tra-
ditional software, defined as a systematic approach used to identify, catalog,
and prioritize potential threats, facilitating the development of effective coun-
termeasures against these threats. Once the design for the DT or the traditional
software is finalized, Data Flow Diagrams (DFDs) of this design will be created
to support threat modeling. A suitable multiple threat modeling tool, such as
STRIDE, that aligns with integration into the Secure Development Life Cycle
(SSDLC), can be used, making it an integral component of security requirements
[9].

4.3 Implementation Stage

The software development process should align with the specifications outlined
in the DDS while adhering to established coding standards. Programmers are
responsible for creating a Functional Specification (FS) document, which cap-
tures all technical-level functions provided by the software. For DT, this phase
involves developing the DT models, which may include choosing algorithms and
establishing equations. Subsequently, the DT solution is created by producing

200 M. Jaber et al.

the software that encompasses the algorithms, equations, inputs, and combines
all the components of the DT.

4.4 Testing Stage

The verification and Validation (V&V) process is used for testing purposes
[12]. In traditional software development, verification involves self-review, peer-
review, online-review, offline-review, and walk through, while validation includes
unit testing, integrated testing, system testing, and user acceptance testing.

In DT, verification is employed to verify that the requirements, specifica-
tions, and regulations are satisfied, ensuring that DT successfully attains its
intended objectives without defects or deficiencies. Formal verification methods,
such as reach-ability analysis, model-checking, equivalence-checking, and simu-
lations, are commonly used [12]. Validation evaluates whether DT satisfies the
user’s needs, primarily at the end of the development process. Typically, histori-
cal data is utilized for sensitivity analysis to evaluate the effects of input changes
and physical system changes on outputs.

4.5 Deployment Stage

In traditional software development, after receiving a ‘Pass’ from the testing
phase, the product is considered ready for release. The software will either be
deployed to production servers or made available for users to install on their
machines. In DT, the deployment process for the physical part consists of [2]:
(1) preparation for data transmission, (2) provision of an instance of the virtual
part of the system, and (3) establishment of a connection between the two parts.

5 Evaluation

To evaluate the adequacy of the proposed augmented Agile SDLC and its addi-
tional or modified processes, the model was reviewed by three software engi-
neering experts. These experts were given descriptions of three different health-
care environments within a local small community clinic: the radiology unit,
pathology unit, and emergency unit. These departments were selected due to
their diverse dynamic behavior, sensitive real-time monitoring, and processing
requirements.

The experts were asked to validate the following: 1- The requirements of
the selected healthcare environments consistently include the intrinsic features
mentioned above. The experts examined the environments against these require-
ments. 2- The life cycle model contains dedicated processes that produce a sys-
tem addressing these intrinsic features at various development stages. 3- The life
cycle model does not overlook any critical requirements specific to a dynamic
complex healthcare environment.

Preliminary results indicate that the proposed augmented Agile SDLC model
effectively addresses the identified intrinsic features of the healthcare environ-
ments studied, demonstrating its adequacy. However, additional validation is
needed to examine larger and more complex healthcare environments.

Digital Twin Adapted Agile Software Development Life Cycle 201

6 Conclusion

This paper proposes an augmented Agile SDLC methodology for the SDLC of
DTs. The Agile SDLC phases have been tailored with additional techniques,
technologies, and practices adapted to DTs, addressing the distinctive charac-
teristics and challenges associated with developing DT systems. In future work,
we will develop a more complex case study in the healthcare domain, focusing
on the emergency department, to validate the proposed model.

References

1. Ariansyah, D., Fernàndez del Amo, I., Erkoyuncu, et al.: Digital twin development:
a step by step guideline (2020)

2. Enders, M.: Understanding and Applying Digital Twins - Results of Selected Stud-
ies. Ph.D. thesis (2022)

3. Flora, H.K., Chande, S.V.: A systematic study on agile software development
methodologies and practices. Int. J. Comput. Sci. Inf. Technol. 5(3), 3626–3637
(2014)

4. Karakra, A., Fontanili, F., Lamine, E., Lamothe, J.: Hospit’win: a predictive
simulation-based digital twin for patients pathways in hospital. In: 2019 IEEE
EMBS International Conference on Biomedical & Health Informatics (BHI) (2019)

5. Karakra, A., Fontanili, F., Taweel, A., Lamine, E., Lamothe, J., Barghouthi,
H.: Digital twin in healthcare: security threat meta-model. In: 2022 IEEE/ACS
19th International Conference on Computer Systems and Applications (AICCSA),
pp. 1–6. IEEE (2022)

6. Laubenbacher, R., Niarakis, A., Helikar, T., An, G., et al: Building digital twins
of the human immune system: toward a roadmap. npj Dig. Med. 5(1), 64 (2022)

7. Qamsane, Y., Moyne, J., et al.: A methodology to develop and implement digital
twin solutions for manufacturing systems. IEEE Access 9, 44247–44265 (2021)

8. Satyarthi, S., Pandey, D., Khan, M.W.: Adaptation of digital twins as a method-
ology for management and development of secure software systems. NeuroQuan-
tology 19(7), 300–309 (2021)

9. Shevchenko, N., Chick, T.A., O’Riordan, P., Scanlon, T.P., Woody, C.: Threat
modeling: a summary of available methods. Technival report. Carnegie Mellon
University Software Engineering Institute Pittsburgh United (2018)

10. Sinner, P., Daume, S., Herwig, C., Kager, J.: Usage of digital twins along a typ-
ical process development cycle. In: Digital Twins: Tools and Concepts for Smart
Biomanufacturing, pp. 71–96 (2021)

11. Tiky, Y.: Software development life cycle. THe Hongkong University of Science and
Technology, Hongkong (2016)

12. Upadhyay, P.: The role of verification and validation in system development life
cycle. IOSR J. Comput. Eng. 5(1), 17–20 (2012)

202 M. Jaber et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Drawing Based Game for Teaching Scrum

Krzysztof Marek(B) and Kamila Martyniuk-Sienkiewicz

Warsaw University of Technology, 00-661 Warsaw, Poland

krzysztof.marek@pw.edu.pl

Abstract. Over the years, the use of gamification in teaching differ-
ent agile approaches become more popular. Many proposed solutions are
based on moving tasks on physical or virtual boards. Some connect task
realisation with the performance of simple, repetitive manual tasks. The
approach described in this paper utilises the activity of drawing simple
icons on post-its to mimic the active and creative aspect of e.g. software
development. The described game allows for teaching multiple practices
used in Scrum software development connected to software quality and
requirements, including the importance of the Definition of Done, accep-
tance criteria and continuous improvement based on Sprint Review and
Retrospective. Initial results are promising while working with students
with no or almost no previous understanding of the software develop-
ment process. Additionally, the game can be easily modified or extended
to help with teaching other aspects of the Scrum software development
process.

Keywords: Gamification · Scrum · Educational games

1 Motivation

When teaching Scrum to university students with little to no previous experience
in commercial software development, we encountered problems while covering
different practices used by Software Development Teams working in Scrum. The
biggest observed issues included: distinguishing between the Definition of Done
and specific requirements in the form of user stories and acceptance criteria,
applying principles of continuous adaptation in practice and overall understand-
ing of how self-organisation and self-management of the Scrum Team works.
Based on those observations, a working theory was established that to build a
better understanding of Scrum students need to experience working in it. Due
to time restrictions of the classes and, in many cases, lack of programming skills
among students, real software development in Scrum wasn’t possible. There-
fore an idea to create a two-hour workshop showcasing work in Scrum without
programming has been formulated.

2 Related Works

The use of games in education is becoming more and more popular, especially
in the area of computer science. Many studies have shown that the use of gami-
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 203–208, 2025.
https://doi.org/10.1007/978-3-031-72781-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_23&domain=pdf
http://orcid.org/0000-0003-0199-4839
http://orcid.org/0000-0002-9531-2060
https://doi.org/10.1007/978-3-031-72781-8_23

204 K. Marek and K. Martyniuk-Sienkiewicz

fication in the learning process is a better answer than the traditional teaching
process [1]. The use of gamification in the process of teaching agile approaches,
especially Scrum and Kanban, has significantly risen in the last ten years. Recent
studies on multiple Scrum and Kanban educational games and literature review
shop a wide variety of possible games to choose from. Przybylek and Olszewski
tested 12 simple games for OpenKanban [2]. However, many games for Scrum
mostly focus on simulating task movements on virtual or physical boards, in
many cases using popular task tracking tools like Jira or Trello, where task com-
pletion is automatic or based on random methods [3–5]. Games that are not a
direct translation of work, but methods of consolidating knowledge in the form
of tests, are also popular [6,7]. Among the proposed games, we can also find a
card game approach, where students learn basic concepts and learn to respond
to problems introduced by the opposing team [8].

In the process of gamification of Scrum learning, simpler design tasks are
often created, which, by making the task itself easier, allow students to focus on
understanding the methodology. One approach uses the Minecraft game, where
during a semester-long project, students build a building inside the computer
game using Scrum [9]. Other approaches provide some easier manual activity as
a parallel to the completion of a real task. Most common examples of such games
are Scrum Simulation with LEGO Bricks [10], SCRUMIA [11] or SCRUMIA vari-
ation with origami-based tasks [12]. The first has been adopted in professional
training courses and uses LEGO bricks to allow for building LEGO houses and
cars based on provided user stories. The second takes inspiration from the LEGO
game and proposes a cheaper alternative in the form of making paper hats and
aeroplanes. Providing a simple form of manual activity/game helps with showing
the idea of delivering value to the client at the end of each Sprint. We did not
find any games that used drawing as a way to simulate work or value creation.
Therefore, the authors decided to build on this idea and explore its possibilities.

3 Game Overview

3.1 Game Requirements and Preparation

During the game, multiple groups of students act as teams, developing icon
sketches for a client while working in Scrum. A single team consists of 2 Devel-
opers (only persons allowed to draw icons), a single Tester (a person with a list
of Acceptance Criteria for each icon) and a Product Owner (the only person
who can contact the client). To facilitate different group sizes, the role of Prod-
uct Owner and Tester can be performed by a single student, making the team
size more flexible. The teacher is filling the role of the Scrum Master and client
whenever needed. Each team receives the same preselected Sprint Backlog to
deliver during the Sprint and tries to deliver as many complete icons as possible.
Example Product Backlog Items have been shown in Fig. 1. Each team has 2
stacks of post-its, 2 black markers and 3 different colour markers or crayons at
their disposal. At the beginning of the game, the teacher describes the roles and
rules. Only one icon can be drawn on a single post-it. Each icon has to fulfil the

Drawing Based Game for Teaching Scrum 205

corresponding acceptance criteria, colour requirements have to be matched, and
any changes to colours have to be consulted with the client. The game usually
consists of multiple game cycles - Sprints presented in Fig. 2.

Fig. 1. Single game cycle

3.2 Gameplay

Once the teams are ready, the teacher starts the first game cycle by starting the
implementation simulation phase (drawing icons). The simulated implementa-
tion lasts only 3 min, leaving as much time for discussions and explanations as
possible. After the icon growing has ended, each team posts their ready icons
onto the whiteboard. Next, a review with a client (teacher) is performed. Deliv-
ered icons are checked for compliance with acceptance criteria and previously
undescribed customer expectations. Discarded icons are separated as shown in
Fig. 3.

At this time, issues regarding the general quality of icons are discussed, such
as how precise the colouring of the icons should be, what the icon orientation is
regarding the sticky side of the post-it, and what the expected size of the icon
is. After this, an official Definition of Done is created. Next, the teams perform
small retrospectives, looking for possible improvements to the process with the
teacher’s help. Here, aspects such as lack of communication, incomplete require-
ments, lack of priorities, limited access to colour markers and many others can be
discussed. Once new improvements are agreed upon, the game can be restarted,
and the game cycle can be repeated. In the new cycle, teams repeat the Sprint
with the same backlog and tools but with new and improved policies regarding
their work. Results are quickly inspected in another review and displayed next
to the initial ones, usually showing significant improvements compared to the
first Sprint.

4 Initial Results and Future Work

The described game shows promising results despite being in an early stage of
development. The game has been tested with 4 groups of students, each between

206 K. Marek and K. Martyniuk-Sienkiewicz

Fig. 2. Single game cycle

Fig. 3. The icons created after the first Sprint by 3 teams during a single workshop.
Accepted icons are in the middle row, and discarded icons are at the bottom row.

Drawing Based Game for Teaching Scrum 207

11–17 individuals with no or almost no previous understanding of the software
development process. After each workshop, students stated that their under-
standing of Scrum had improved. During the last session, once the authors’
initial understanding of the game flow and mechanics was established, students
answered a set of advanced questions checking their deep understanding of Scrum
practises before and after the workshop. The results displayed in Fig. 4 show sig-
nificant improvement, especially in the areas connected to acceptance criteria,
the Definition of Done and the Sprint Cycle.

Fig. 4. The number of correct answers in the test given by a group of students (12
individuals) before and after the workshop, respectively.

Drawing icons as a base for simulating work in Scrum brings several advan-
tages. They don’t require expensive, branded accessories. Simplified icons are
easy to draw and don’t require any artistic skills to create. Additionally, the
icons can be used as a parallel for creating the graphical user interface. The core
of the game is quite simple and allows for multiple modifications. Initial ideas
to be explored include introductions of Sprint Planning, where students select
Product Backlog Items for the next Sprint based on their experience from the
previous one; Backlog Refinement, where students improve the lacking descrip-
tions of Product Backlog Items; item complexity estimation, e.g. drawing a squir-
rel is much more difficult than a simple square; and execution of multiple Sprints
with unfinished icons going over to the next Sprints. This flexibility in adding
or removing different parts of the simulation game potentially created an oppor-
tunity to personalize the game for each individual group of students based on
their difficulties with understanding Scrum, e.g. focusing on the planning and
refinement aspects of the Sprint cycle, not the requirements and quality as in
the initially described version. Therefore, the game also requires more extensive
and methodological validation of its teaching results, focusing on different initial
knowledge of Scrum and the impact of different game variances.
Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

208 K. Marek and K. Martyniuk-Sienkiewicz

References

1. De Freitas, S.: Are games effective learning tools? A review of educational games.
J. Educ. Technol. Soc. 21(2), 74–84 (2018)

2. A. Przybylek and M. K. Olszewski: adopting collaborative games into Open Kan-
ban. In: 2016 Federated Conference on Computer Science and Information Systems
(FedCSIS), pp. 1539–1543. IEEE (2016)

3. Marques, R., Costa, G., Mira da Silva, M., Gonçalves, D., Gonçalves, P.: A gami-
fication solution for improving Scrum adoption. Empir. Softw. Eng. 25(4), 2583–
2629 (2020)

4. Naik, N., Jenkins, P.: Relax, it’s a game: utilising gamification in learning agile
scrum software development. In: 2019 IEEE Conference on Games (CoG), pp. 1–4.
IEEE (2019)

5. Rodriguez, G., Soria, Á., Campo, M.: Virtual scrum: a teaching aid to introduce
undergraduate software engineering students to scrum. Comput. Appl. Eng. Educ.
23(1), 147–156 (2015)

6. Ciucă, G., Ciupe, A., Orza, B.: Exploring educational scenarios through interactive
environments and agile user stories: a gamified assessment case study. In: 2022
International Symposium on Electronics and Telecommunications (ISETC), pp.
1–4. IEEE (2022)

7. John, I., Fertig, T.: Gamification for software engineering students-an experience
report. In: 2022 IEEE Global Engineering Education Conference (EDUCON), pp.
1942–1947. IEEE (2022)

8. Fernandes, J. M., Sousa, S. M.: Playscrum-a card game to learn the scrum agile
method. In: 2010 Second International Conference on Games and Virtual Worlds
for Serious Applications, pp. 52–59. IEEE (2010)

9. Schäfer, U.: Training scrum with gamification: lessons learned after two teaching
periods. In: 2017 IEEE Global Engineering Education Conference (EDUCON), pp.
754–761. IEEE (2017)

10. Krivitsky, A.: lego4scrum: A Complete Guide. A Great Way to Teach the Scrum
Framework and Agile Thinking. Self-published by Alexey Krivitsky, Kyiv (2017)

11. Von Wangenheim, C.G., Savi, R., Borgatto, A.F.: SCRUMIA - an educational
game for teaching SCRUM in computing courses. J. Syst. Softw. 86(10), 2675–
2687 (2013)

12. Sibona, C., Pourreza, S., Hill, S.: Origami: an active learning exercise for scrum
project management. J. Inf. Syst. Educ. 29(2), 105–116 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Selected Concepts of Leadership
in Self-organizing Teams

Jakub Perlak(B)

AGH University, Krakow, Poland
j.perlak@gmail.com

Abstract. Self-organizing teams are a common way of organizing teamwork in
sectors related to modern technologies, especially in programming teams. Agile
methods often promote and advocate such teams. One of the problems in this form
of team organization is the issue of leadership, and particularly the relationship
between vertical leadership - one person, and horizontal leadership - team mem-
bers. In the literature on the subject, we can find traces of many concepts in such a
broad area as the issue of leadership. However, several selected concepts allow us
to capture an emerging feature in self-organizing teams which is the taking over of
leadership functions by team members. Shared leadership, where the leadership
function comes from team members, not from one appointed leader. Distributed
leadership is where leadership in the organization is taken over voluntarily by indi-
viduals. Balanced leadership, where the vertical leader enables team members to
take over leadership functions depending on the situation. The selected concepts
presented here allow for a better understanding and research of the nature and
phenomenon of leadership in self-organizing teams.

Keywords: Agile Teams · Self-Organized Team · Emergent Leadership

1 Introduction

Self-organizing teams have been becoming a common way of team organization, espe-
cially in the case of software development. There is no surprise that the key aspect of
Agile methods is work based on self-organizing teams. [2, 3]. Inspired by Agile Man-
ifesto of Software development [1] they are characterized by minimal structure, based
on collaboration of the whole team and capability to adapt for changing project require-
ments [2]. Self-organizing teams is vital topic for research with many open questions
[3].

One of challenge of such teams is aspect of leadership [6]. Especially relation
between vertical, nominated leader and horizontal leadership among team members
[5]. In practice of software development team, particularly those working with Agile
methods, the role of the formal leader is not very clear. There is of course recommen-
dation by many frameworks, like the most predominant Scrum how the leadership can
look like [7] and usually it is a supportive role.

© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 209–215, 2025.
https://doi.org/10.1007/978-3-031-72781-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_24&domain=pdf
http://orcid.org/0000-0002-9639-9655
https://doi.org/10.1007/978-3-031-72781-8_24

210 J. Perlak

As leadership play crucial role in every organization, regardless of its type and
what aspect it concerns, whole organization, project, or team. The nature of leadership
has been examined since very beginning of human’s reflection on our interactions and
include such topics like the traits of leaders, behavior, and skills, as well as source of
power and influence, among many. Scientific approaches to leadership are trying to
systemize and provide more rigor in formulating conclusions [10]. Even in management
science leadership is not very easy to define and to put in into extreme, there are many
definitions of leadership, almost as many as researchers [10].

2 Leadership Concept in Self-organizing Teams

How leadership looks like in self-organizing teams is multilevel phenomena. Staring
from the team perspective there is element of sharing responsibilities. Research on teams
working with Scrum even suggest element of shared leadership [3]. Despite the roles
defined by popular frameworks [6, 7]. If we consider multiteam set-up in organization
another concept looks very promising in shading light three is distributed leadership [9].
Whenwe consider formal and nominated leaders another concept helps in explaining the
dynamics between the team and leaders which is the balanced leadership [4]. Naturally
presented leadership theories are just small fraction from broad landscapes of leadership
theories that currently discussed in the literature.

2.1 Shared Leadership – Emergent Phenomena in a Team

Shared leadership is usually described as a team-level emergent phenomenon where one
or more team members are taking responsibility for leaders [8]. To better understand the
following Table 1, shows its characteristics [8].

Table 1. Shared leadership characteristics

Perspective Key elements Opposite situation

Source of power Influence among team members,
horizontally spread by people on the
same level of organization hierarchy

Nominated leader only, vertical
relations to the team in organization

Level of analysis Group level where leadership is
emerging

Perspective of individual behavior

Scope of influence Leadership and influence is broadly
distributed among team members

Leadership and influence is focused
in one person

Onewonderswhat is shared in the concept of shared leadership. In their analysis, Zhu
and colleagues [8] cite two approaches, the first is about what leadership style is shared,
and the second is about leadership, as a whole. Examples of leadership styles shared
within a team in the research include transformational, charismatic, or empowering, in
which case, shared leadership becomes a meta-leadership to the dominant style [8]. In

Selected Concepts of Leadership in Self-organizing Teams 211

the case of a holistic approach, the research does not suggest any specific functions, but
most broadly looks at leadership as the aggregate of all leadership activities [8]. Other
studies suggests that shared leadership is rarely examined in project-based environment
[5] and may bring better understand the team level dynamics which is integral part of
any team, including self-organizing one.

2.2 Distributed Leadership – Emergent Leadership in Organization

Distributed leadershipwas primarily examined in educational context, however its impli-
cations become useful in general application in business [9]. The practice of distributed
leadership has been relocated in Gronn’s famous 2002 article on the level of analysis
for such a view of leadership [11]. For the author of the article, distributed leadership
is understood holistically, rather than as a simple aggregation of the individual contri-
butions of individuals. Gronn called such holistic and distributed action a concert act,
in analogy to a concert and an orchestra [11]. In his analysis, proposed three forms of
distributed leadership:

1. Spontaneous collaboration - from time to time, individuals with different skills and
knowledge, from different places in the organization and levels of the hierarchy together
to use their abilities for the duration of an assignment, after which they return to their
previously assigned groups.
2. Intuitive working relationships - this form emerges over time, where at least two
members of the organization begin to rely on each other to build relationships, so that
leadership permeates the shared relationship.
3. Institutionalized practice - more or less formalized relationships supported by
organizational structures.

How distributed differs from shared leadership the Table 2. Describes.

Table 2. Shared leadership vs distributed leadership

Perspective Shared leadership Distributed leadership

Source of power Formal and informal
leaders in teams

Formal and informal leaders in
organization

Process Mutual influence among
team members

Leadership is created by first
leaders and followers through
mutual interactions

Shared understanding Shared cognition and
understanding in team

Share cognition and understand is
affected by the organization context

Advantage Team advantage Synchronized actions in
organization

Level Team Individual, team, group,
organization

212 J. Perlak

So distributed leadership in reality is a term of practice, where the emphasis is mainly
on the interactions between leaders and followers [11], rather than a single monolithic
definition.

2.3 Balanced Leadership – Interplay Between Leader and Team Members

Third concept presented in this short overview of useful leadership connects in context
of self-organizing teams is balanced leadership. The idea behind this concept is finding
a balance between vertical and horizontal leadership. The formal leader has an intention
to share responsibility when the horizontal leaders are ready and expose it [9]. Attitude,
situation, and trust are key factors for enabling balanced leadership in a team [9]. It
is temporary situation in a team and change during the project cycle. However, the
dynamics of taking reconcilability and sharing in team provides useful framework for
research (Fig. 1).

Fig. 1. Balanced leadership according to Müller [4]

The flow of sharing leadership looks as follow, at the beginning there is a need
for horizontal leadership in the project. The intentions of both leaders, the vertical and
the horizontal, are aligned. The vertical one makes the choice, and the horizontal one
expresses his desire and develops his abilities in this direction. Then, as part of the
leadership practices, the vertical leader empowers the horizontal leaders, who develop in
themselves skills related to self-management. These activities are visible to all members
of the project team. Then comes the actual leadership by the horizontal leaders, has been
delegated proficiency and responsibility. Eventually, the control and monitoring of the
work of the team and the progress of the project, and the control of the work of the leader
or horizontal leaders is still in the hands of the vertical leader. After a certain period of
time, leadership and responsibility return to the vertical leader [9].

Selected Concepts of Leadership in Self-organizing Teams 213

3 Attempt of Synthesis Presented Leadership Concepts Supporting
Self-organizing Teams

Scope of leadership in self-organizing teams is very broad. In this very short abstract,
there is only a place formost prominent concepts. Leadership has dynamical and interper-
sonal character and depends on how formal it can be and how it is spread in organization.
Visualizing the concepts at Fig. 2. Can be use as helpful tool for examining the leadership
in practice of self-organizing teams.

Fig. 2. Synthesis of leadership concepts

More insights how leadership is shaped in self-organizing teams is needed. There
are many research ongoing, and one is conducted w by the author of this abstract. Lead-
ership styles and traits of leaders and behaviors such as servant leadership, participative,
empowering, or balanced leadership primarily concern formal leaders. Self-management
and distributed leadership, as well as shared leadership, are often informal and emerge
within a team when the conditions are right.

Leadership in the selected concepts has its different origin and location, following the
lead of one can make a compilation of the leadership approaches discussed. They range
from formal and internal leadership within the team to external and informal influence
on the team. Table 3 presents those situations.

Leadership in self-organizing teams is a deep topic and presented concepts can help
articulate what kind of leadership we are discussing and allow for more research with
teams using more precise leans for leadership categorization.

214 J. Perlak

Table 3. Source of leadership in the team

Leadership location Formal leader Non-formal

Internal to the team Team leader, Project manager Shared leadership, emergent leadership

External to the team Sponsor, Coach Mentor, Coordinator

Disclosure of Interests. The author has no competing interests to declare that are relevant to the
content of this article.

References

1. Highsmith, J., Fowler, M.: The Agile Manifesto. Softw. Develop. Mag. 9(8), 29–30 (2001)
2. Hoda, R., Murugesan, L.K.: Multi-level agile project management challenges: a self-

organizing team perspective. J. Syst. Softw. 117(July), 245–257 (2016)
3. Moe, N.B., Dingsøyr, T., Røyrvik, E.A.: Putting agile teamwork to the test – an preliminary

instrument for empirically assessing and improving agile software development. In: Agile
Processes in Software Engineering and Extreme Programming, pp. 114–123. Springer, Berlin
Heidelberg (2009)

4. Müller, R., Drouin, N., Sankaran, S.: Balanced Leadership: Making the Best Use of Personal
and Team Leadership in Projects. Oxford University Press (2021)

5. Scott-Young, C.M., Georgy, M., Grisinger, A.: Shared leadership in project teams: an integra-
tive multi-level conceptual model and research Agenda. Int. J. Project Manag. 37(4) (2019).
https://doi.org/10.1016/j.ijproman.2019.02.002

6. Srivastava, P., Jain, S.: A leadership framework for distributed self-organized scrum teams.
Team Perform. Manag. 23(5–6), 293–314 (2017)

7. Sutherland, J., Sutherland, J.J.: Scrum: the art of doing twice the work in half the time.
Currency (2014)

8. Zhu, J., Liao, Z., Yam, K.C., Johnson, R.E.: Shared leadership: a state-of-the-art review and
future research Agenda. J. Organiz. Behav. 39, 834–853 (2018). https://doi.org/10.1002/job.
2296

9. Fitzsimons, D., James, K.T., Denyer, D.: Alternative approaches for studying shared and
distributed leadership. Int. J. Manag. Rev. 13(3), 313–328 (2011)

10. Yukl, G.: Leadership in Organizations, 8th Edition. Pearson (2013)
11. Gronn, P.: Distributed leadership as a unit of analysis. Leadersh. Q. 13, 423–451 (2002).

https://doi.org/10.1016/S1048-9843(02)00120-0

https://doi.org/10.1016/j.ijproman.2019.02.002
https://doi.org/10.1002/job.2296
https://doi.org/10.1016/S1048-9843(02)00120-0

Selected Concepts of Leadership in Self-organizing Teams 215

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Towards a Double-Edged Sword:
Modelling the Impact in Agile Software

Development

Michael Neumann1(B) and Philipp Diebold2,3

1 University of Applied Sciences Hannover, Ricklinger Stadtweg 120, 30459
Hannover, Germany

michael.neumann@hs-hannover.de
2 Bagilstein GmbH, Im Niedergarten 10, 55124 Mainz, Germany

philipp.diebold@bagilstein.de
3 IU Unternational University, Juri-Gagarin-Ring 152, 99084 Erfurt, Germany

philipp.diebold@iu.org

Abstract. Agile methods are state of the art in software development.
Companies worldwide apply agile to counter the dynamics of the mar-
kets. We know, that various factors like culture influence the successful
application of agile methods in practice and that sucess varies from com-
pany to company. To counter these problems, we combine two causal
models presented in literature: The Agile Practices Impact Model and
the Model of Cultural Impact. In this paper, we want to better under-
stand the two facets of factors in agile: Those influencing their application
and those impacting the results when applying them. This papers core
contribution is the Agile Influence and Impact Model, describing the fac-
tors influencing agile elements and the impact on specific characteristics
in a systematic manner.

Keywords: Agile Methods · agile practice · impact · influence · causal
model

1 Introduction

In the last decades, agile software development has gained a lot of research inter-
est (e.g., [2,10,11]). Today, agile methods are used in a wide variety of contexts
(organization, industry, region, ...) with different motivations [14]. Organiza-
tions want to improve product quality, increase the speed of delivery of product
increments, or optimize predictability. It is therefore not surprising that the
question of how to successfully apply agile methods has been investigated [1],
which led to an understanding of success factors. On this basis, (causal) models
have been defined to systematically describe the influences in the planned or
existing application of agile methods (e.g., [3,8]). Two perspectives may be dis-
tinguished here: a) The influence on agile practices in relation to their successful
application. b) The effects of the application of agile practices on product or
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 216–222, 2025.
https://doi.org/10.1007/978-3-031-72781-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_25&domain=pdf
http://orcid.org/0000-0002-4220-9641
http://orcid.org/0000-0002-3910-7898
https://doi.org/10.1007/978-3-031-72781-8_25

Modelling the Impact in Agile Software Development 217

project characteristics. Below, we will focus on two specific models considering
these two perspectives. We are aware, that further causal models exist in the SE
field (e.g., [5]). However, in this paper we are focusing on agile methods and the
possibility to define influences on or by agile methods.

Today, we know that social facets are important for the success when using
agile methods as these facets guide the behaviour of people, e.g., how they com-
municate and act [12,13,15]. Also, aspects with regard to an agile culture are
relevant for the successfull use of agile methods [4,7].

To be more precise, specific models were presented explaining the influences
of social facets like cultural characteristics on agile methods in a systematic
manner in the past. One is the Model of Cultural Impact on Agile Methods
(MoCA) [8]. It describes cultural influences on the use of agile methods on a
systematic basis. Another model, considering primarly the second perspective
is the Agile Practices Impact Model [3] (APIM) aiming to provide a systematic
description of the impact of agile practices on specific process improvement goals
like e.g. (product) quality, development costs, or time.

However, for the current understanding of the influences and impacts on
agile methods the available models, underlying theories and empirical findings
do not cover or combine both perspectives. Nevertheless, this knowledge is of
high importance as we see the need for a bigger picture supporting researchers
and practictioners to find well-suited agile practices for their context considering
their specific needs.

This motivated us in a first step to combine our models in order to cover the
both mentioned perspectives. Thus, this paper presents the Agile Influence and
Impact Model (AIIM) aiming to provide a solution for the explained challenges.

This paper is structured as follows: In Sect. 2, we give a brief introduction of
the background, in particular the models we used as a basis for our paper: the
APIM, followed by a description of MoCA. The core contribution of this paper is
the Agile Influence and Impact Model, which we introduce including a practical
example in Sect. 3. Finally, the paper closes with a conclusion in Sect. 4.

2 Background

2.1 Agile Practices Impact Model

The APIM model was created as a basis for an agile capability analysis. The
model described the impact of agile practices on the specific impact characteris-
tics, which are detailed as process improvement goals. Even if the model considers
the impact on agile practices, it focuses more on the outcome perspective. Thus,
the scientific ground for the APIM are agile practices, the impact characteristics
and the impact association between them, which is more specified using Influ-
ence Factors. The impact between both aspects is defined as binary in terms of
a positive or negative impact.

218 M. Neumann and P. Diebold

2.2 Model of Cultural Impact on Agile Methods

The MoCA model was defined to provide a systematic description of cultural
influences on agile practices. The scientific ground for MoCA are the Cultural
and Agile Elements dimensions and the specified impact between them. The
cultural dimension consists of specific characteristics based on often used cultural
models in Software Engineering. The agile elements dimension was created using
the results from a tertiary study aiming to provide an up-to-date list of agile
practices [6]. The influence between both dimensions is described as positive or
negative, in terms of the application of the agile element with regard to the
guideline in which it is defined.

3 The Agile Influence And Impact Model

In this Section, we provide an explanation of the formal structure on a presented
meta-model in Fig. 1.

Fig. 1. Agile Influence and Impact meta-model

Similar to the two underlying models, we decide to use Unified Modeling
Language (UML) as it fits to the needs explaining the formal structure of the
AIIM. Below, we explain the classes and the relationships between them.

An Agile Element (using the MoCA wider definition of the elements of agile
methods proposed in [9]) is an abstract description of agile activities, roles, and
artifacts regardless of their relationship to the different agile methods guidelines.

Modelling the Impact in Agile Software Development 219

Also, Agile Activities are abstract agile practices as defined in the paper by
Diebold and Zehler [3]. Thus, we consider for the AIIM all the elements of agile
elements including specific roles (like Scrum Master or Product Owner), artifacts
(such as a Product Backlog), or even agile practices (e.g., Daily Meetings or
Retrospectives).

Factor: A Factor can be a specific Influence Factor or Impact Factor. We decided
to use a generalized structure as we wanted clearly differ between Impact Factors
and Influence Factors to be able to consider both perspectives of influences
on agile practices and impacts of agile practices. A Condition may applies as
a precondition for a specific influence from a Factor on one Agile Element.
This influence is not binary in terms of positive or negative (similar to the
impact, which we understand as not binary). We assume that an influence of one
Influence Factor (e.g., a cultural value) on an Agile Element is defined based on
the expected application of the Agile Element with respective to the guideline in
which this practice is defined. An Impact is represented by an Impact Factor on
an Impact Characteristic, which are often related to process improvement goals,
like Development cost or time [3].

To provide a more practical perspective of the AIIM, we introduce a hypo-
thetical example. A visual represantation of this example is shown in Fig. 2.
The example covers three cultural characteristics (as influence factors), three
Agile Elements, three Impact Characteristics and the relationship between them.
Furthermore, the model covers both two organizational constraints and organi-
zaitonal goals.

Based on the influence, we defined the relationships H1..H3. H1 (in-depth dis-
cussions of questions) defines a positive influence of a High Uncertainty Avoid-
ance on a Planning Meeting, as we assume in-depth discussions for open aspects
(e.g., for requirements) by the team. This would lead to a higher quality of the
Planning Meetings outcome, which furthermore should lead to an increased pre-
dictability of the teams performance (and plans) and transparency (e.g., of the
process). Considering H2 (open communication (of problems)), a decreased open
communication of problems triggered by a high power distance would affect a
Daily Meeting in a negative way, if a manager attends the meetings. This atten-
dance further lead to a decreased transparency, even if the Daily Meeting itself
should increase the progress transparency of the team. Both Impact Charac-
teristics Predictability and Transparency would provide a trade off for specific
organizational goals. In our example, the Predictability would affect the organi-
zational goal of reducing time to market. Finally, the cultural characteristic of
a High Masculinity lead to a decrease of communication of code related prob-
lems (H3: communication of code related problems), which manifests a negative
impact on the Test-Driven Development practice, if a manager attends (or even
observe) this activity. The attendance of a manager of Agile Elements could be
triggered by the influence of interfaces, e.g., stakeholder which want more in-
depth informations. Also, it could be a management decision from a command
and control strategy perspective to act in such kind of ways. These organiza-
tional constraints are of high importance, as they implicitly trigger such Impact

220 M. Neumann and P. Diebold

Fig. 2. Example of the AIIM model

Conditions in our model. However, the Test-Driven Development practice lead
to a better process and product quality and thus, provide the opportunity to
improve the product quality.

The example presented above provide a practical perspective based on three
specific influence and impact relationships considering organizational constraints
and goals.

4 Conclusion and Future Work

In this paper, we present the Agile Influence and Impact Model (AIIM) aiming
to cover both perspectives: The influence on the elements of agile methods and
the impact by agile elements on the outcome or output while applying such
approaches.

In its current state, the AAIM is a meta-model describing both perspectives
of influences and impacts with regard to agile methods. The model was created
based on the combination of two existing models: The Agile Practices Impact
Model and the Model of Cultural Impact on Agile Methods. To be more precise,
we present furthermore a practice-oriented example of the AIIM considering in
total three influences on agile elements and three impacts on specific impact
characteristics.

We are aware, that the model is in an initial state and we are further planning
future work activities. In the next step, we want to define how the model can be

Modelling the Impact in Agile Software Development 221

applied using examples from our previous models. The vision of the AIIM is to
provide a theory which can be applied in real-world settings. Thus, we aim in
further step to define an application process for the AIIM to be able to evaluate
the new model in practice using empirical data.

References

1. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software
projects. J. Syst. Softw. 81(6), 961–971 (2008)

2. Diebold, P., Dahlem, M.: Agile practices in practice: a mapping study. In: Proceed-
ings of the International Conference on Evaluation and Assessment in Software
Engineering (2014). https://doi.org/10.1145/2601248.2601254

3. Diebold, P., Zehler, T.: The agile practices impact model: idea, concept, and appli-
cation scenario. In: International Conference on Software and System Process, pp.
92–96 (2015). https://doi.org/10.1145/2785592.2785609

4. Kuchel, T., Neumann, M., Diebold, P., Schön, E.M.: Which challenges do exist with
agile culture in practice? In: Proceedings of the Symposium on Applied Computing,
pp. 1018–1025 (2023). https://doi.org/10.1145/3555776.3578726

5. Lamersdorf, A., Münch, J.: Studying the impact of global software development
characteristics on project goals: a causal model. Open Softw. Eng. J. 4(2), 2–13
(2010). https://doi.org/10.2174/1874107X01004020002

6. Neumann, M.: The integrated list of agile practices - a tertiary study. In: Lean
and Agile Software Development, pp. 19–37 (2022). https://doi.org/10.1007/978-
3-030-94238-0 2

7. Neumann, M., Kuchel, T., Diebold, P., Schön, E.M.: Agile culture clash: unveiling
challenges in cultivating an agile mindset in organizations. Comput. Sci. Inf. Syst.
21(3), 1013–1031 (2024). https://doi.org/10.2298/CSIS230715029N

8. Neumann, M., Schmid, K., Baumann, L.: Characterizing the impact of culture on
agile methods: the moca model. In: Proceedings of the International Conference
on Software and System Processes, pp. 81–85 (2023). https://doi.org/10.1109/
ICSSP59042.2023.00018

9. Neumann, M.: Towards a taxonomy of agile methods: the tree of agile elements. In:
Proceedings of the International Conference in Software Engineering Research and
Innovation, pp. 79–87 (2021). https://doi.org/10.1109/CONISOFT52520.2021.
00022

10. Przyby�lek, A., Albecka, M., Springer, O., Kowalski, W.: Game-based sprint retro-
spectives: multiple action research. Empir. Softw. Eng. 27(1) (2021). https://doi.
org/10.1007/s10664-021-10043-z

11. Schön, E.M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering: a
systematic literature review. Comput. Stand. Interfaces 49, 79–91 (2017). https://
doi.org/10.1016/j.csi.2016.08.011

12. Schön, E., Escalona Cuaresma, M., Thomaschewski, J.: Agile values and their
implementation in practice. Int. J. Interact. Multimedia Artif. Intell. 3(5), 61–66
(2015)

13. Šmite, D., Gonzalez-Huerta, J., Moe, N.B.: “when in rome, do as the romans do”:
cultural barriers to being agile in distributed teams. In: Proceedings of the Inter-
national Conference on Agile Software Development, pp. 145–161 (2020). https://
doi.org/10.1007/978-3-030-49392-9 10

https://doi.org/10.1145/2601248.2601254
https://doi.org/10.1145/2785592.2785609
https://doi.org/10.1145/3555776.3578726
https://doi.org/10.2174/1874107X01004020002
https://doi.org/10.1007/978-3-030-94238-0_2
https://doi.org/10.1007/978-3-030-94238-0_2
https://doi.org/10.2298/CSIS230715029N
https://doi.org/10.1109/ICSSP59042.2023.00018
https://doi.org/10.1109/ICSSP59042.2023.00018
https://doi.org/10.1109/CONISOFT52520.2021.00022
https://doi.org/10.1109/CONISOFT52520.2021.00022
https://doi.org/10.1007/s10664-021-10043-z
https://doi.org/10.1007/s10664-021-10043-z
https://doi.org/10.1016/j.csi.2016.08.011
https://doi.org/10.1016/j.csi.2016.08.011
https://doi.org/10.1007/978-3-030-49392-9_10
https://doi.org/10.1007/978-3-030-49392-9_10

222 M. Neumann and P. Diebold

14. VersionOne, Collabnet: 17th annual state of agile survey (2023). https://
stateofagile.com/

15. Welsch, D., Burk, L., Mötefindt, D., Neumann, M.: Navigating cultural diversity:
barriers and benefits in multicultural agile software development teams. In: Pro-
ceedings of the Symposium on Applied Computing, pp. 818–825 (2024). https://
doi.org/10.1145/3605098.3635988

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://stateofagile.com/
https://stateofagile.com/
https://doi.org/10.1145/3605098.3635988
https://doi.org/10.1145/3605098.3635988
http://creativecommons.org/licenses/by/4.0/

An Agile Mindset in a VUCA-World

Carolina Appel Bangshøj1, Tanja Elina Havstorm2(B) , and Åsa Algulin1

1 Appel Relations AB, Olaigatan 57, 70361 Örebro, Sweden
carolina.appel@reba.se, asa@algulin.net

2 CERIS –Örebro University School of Business, Fakultetsgatan 1, 70281 Örebro, Sweden
tanja.havstorm@oru.se

Abstract. As the world is heading into a new era of software development (SD)
an Agile Mindset (AM) has been seen to provide valuable underlying guiding
elements to navigate an increasingly interconnected, turbulent, and dynamic busi-
ness landscape, a VUCA-world. This study investigates the topic of agile methods
and an AM through multiple-case studies with IT professionals from four tech
companies. The study gathers early-stage research data to better understand what
an agile SD team member does on an everyday basis in their work to exercise and
achieve an AM, and what factors in the organization are impacting them in being
able to do so. VUCA has been utilized as a conceptual background through which
the findings – AM means and influences – have been identified, concluding that
there is still much to be harnessed and learned about the elements of an AM that
can improve project success outcomes.

Keywords: Agile Mindset · Agile Software Development Methods · Project
success · Software Development · VUCA

1 Introduction

The field of software development (SD) is undergoing a significant transformation going
from the established agile methods that revolutionized the field in the early 2000s [1] to
what we now term the “infinite flow” era, often likened to the “wild west” of SD [2]. This
shift marks a new phase in SD within the technology industry [3]. Previous research has
identified challenges associatedwith adopting and using agilemethodologies, commonly
referred to as agile software development (ASD). The identified challenges include a
lack of comprehension and rationale underlying adoption and utilization [4], as well as
the presence of adverse behaviors that impede the effective application of these meth-
ods [5]. Miler and Gaida [6] studied practitioners’ opinions on effective teams and the
underlying elements of an Agile Mindset (AM). The elements were categorized into
four areas: support for business goals, relationships within the team, individual features,
and organization of work.

An AM has been seen to provide valuable underlying guiding elements to navigate
an increasingly interconnected, turbulent, and dynamic business landscape, a VUCA-
world [7]. AM is described through research [7] as an attitude towards 1) Learning spirit,

© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 223–228, 2025.
https://doi.org/10.1007/978-3-031-72781-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_26&domain=pdf
http://orcid.org/0000-0001-8604-8862
https://doi.org/10.1007/978-3-031-72781-8_26

224 C. A. Bangshøj et al.

2) Collaborative exchange, 3) Empowered self-guidance, and 4) Customer co-creation.
These attitudes make up four dimensions that the researchers found to be central in
guiding agile IT professionals’ ways of thinking and acting encompassing continuous
learning and openness, transparent workstyle and knowledge sharing, a high degree of
freedom and responsibility, and responding to customer’s changing needs [7].

On an organizational level an AM is applicable in three areas (1) Collaboration, (2)
Trust, and (3) Continuous improvement [8]. This entails that all results of work to build
software are a product of working intensely together, employees being entrusted to make
owndecisions and taking responsibility for changes and issues arising, and everyone hav-
ing an open attitude towards each other and feedback [8]. VUCA, originally a military
term [9], encompasses Volatility, Uncertainty, Complexity, and Ambiguity. These com-
ponents characterize the dynamic market landscape that businesses must navigate for
success. According to Bennett and Lemoine [10], Volatility signifies unstable change,
Uncertainty involves unclear ramifications of events,Complexity refers to interconnected
parts forming intricate networks, and Ambiguity denotes a lack of understanding of basic
rules, making predictions challenging.

Miler and Gaida [6] captured the importance of an AM, to make a team efficient, but
does not delve into what team members do to achieve such a mindset. An AM cannot
be imposed; it must be grown carefully. Simply implementing ASDMs and practices
implies doing agile whereas adopting the culture of values and principles of ASDMs
implies being agile [11]. Against this backdrop, and as previous research [7, 11] is
concluding that more studies are needed to improve our understanding of an AM, this
study aims to answer two research questions: (1) What does a team member in an ASD
team do to exercise and achieve an AM? and (2) What factors in the organization impact
the team members’ ability to exercise their AM in their work on an everyday basis? To
address these research questions, this study conducts multiple-case studies with agile IT
professionals to gain insight into their perspective on these matters.

2 Method

Our exploratory multiple-case study design [12] involved six in-depth interviews across
four diverse tech companies, meticulously selected for a comprehensive understand-
ing, employing snowball sampling strategy to represent various organizational sizes
and sectors. Interviewees included experienced IT professionals from ASD teams, both
developers and managers with at least four years of leadership experience. Participants
P1 and P6 are employed at a mid-sized private company. Participants P3 and P4work at a
large public sector company. P2 is employed at another mid-sized private company, and
P5, works at a small private company, details of the participants are presented in Table 1.
Data was collected through semi-structured interviews, guided by an interview protocol
[13], aiming to uncover insights into participants’ attitudes and behaviors within ASD
teams daily work environments. The questions asked were framed based on the values
outlined in the Agile Manifesto [14] capturing the participants’ working contexts, pro-
fessional experience and which ASDMs they adopted or had developed in their teams
and organizations.

An Agile Mindset in a VUCA-World 225

Table 1. Details of study participants.

Participant No. Role description Year of
experience

Organizational size Sector

P1 Developer in agile teams >1 Mid Private

P2 Manager and Agile leader >7 Mid Private

P3 Developer in agile teams >1 Large Public

P4 Manager and Agile leader >5 Large Public

P5 Manager and Developer in
agile teams

>7 Small Private

P6 Manager and Agile leader >15 Mid Private

The interpretative research approach [15] facilitated a nuanced exploration, enabling
rich and in-depth data collection. Thematic analysis [16] of transcribed interviews iden-
tified emergent themes within the dataset, systematically examined in relation to the
VUCA framework, illuminating the interplay between team members’ AM and the
challenges presented by the VUCA components. The emergent themes for the ana-
lytic insights came through the six following steps: (1) repeated listening through the
transcribed interviews for familiarization, (2) generating initial codes through labeling
relevant information, (3) searching for themes, then (4) reviewing themes to refine codes
and compound subcategories, (5) defining and naming themes, and lastly (6) writing the
report constructing a coherent narrative and presenting the findings. An example of an
emerging theme is Leadership and organizational support having emerged from the par-
ticipants responses entailing descriptions that would fall under the following definition:
Organizational design and structure allowing the individual team member being flexible
and taking on new assignments or roles as the understanding of needs evolve and change,
as well as fostering a psychological safe culture in the workplace and within teams.

3 Result

Following our thematic analysis, the study unveiled nine key findings concerning the ele-
ments of an AM, covering both its means and influences. These findings directly address
our two research questions: Means correspond to research question 1, while Influences
pertain to research question 2. Table 2 below provides a comprehensive summary of
each thematic element (Means M1-M4 and Influences I5-I9) and their interconnected-
ness with the VUCA framework. The following text elaborates on the answers to the
two research questions.

3.1 What Does a Team Member in an ASD Team Do to Exercise and Achieve
an AM?

The study identified four focus areas, i.e., means, (M1-M4 in Table 2) that ASD team
does to exercise and achieve an AM. Aligned with expectations the respondents name

226 C. A. Bangshøj et al.

Table 2. Overview with identified AM means and influences and relation to VUCA.

Element Theme No. Description V U C A

Means M1 Customer relationship focus X X X X

M2 User centricity X X

M3 Interdependence within team X X X X

M4 Problem-solving orientation X X X X

Influences I5 Leadership and organizational support X X X X

I6 Development of agile ways of working X X X X

I7 Providing spaces X X X

I8 Deadlines and sprinting X X

I9 Non-agile or non-technical user/customer X X X

customers (M1) Customer relationship focus and users to be in the center (M2) User
centricity of what guides their activities and how they build software. For example: “I
was treated as if I was one of the customer’s own employees, which was positive for
me. I had two workplaces I could go and work at.” [P1] and “I am driven to work by
delivering value, as many of us are, and I would say that the agile way of working allows
us to deliver value much faster […] I would say that I would experience my productivity
so much worse if I didn’t have this continuous release procedure and the feedback loop
from the users.” [P4]. Respondents acknowledge that being interdependent in their
teams (M3) and having a problem-solving approach (M4) to work they do not yet know
how to solve is of key importance. For example: “[…]after all, it is a “we” and not
an “I”. We are a team, we choose our activities together. We choose what we think we
can do during this sprint.” [P3] and “[…] to have the mandate to decide when, where
and how I should build something and starting in that order which is technically logical,
perhaps not from a user perspective, but to be able to make such decisions, it is important
to me.” [P2].

3.2 What Factors in the Organization Impact the Team Members’ Ability
to Exercise Their AM in Their Work on an Everyday Basis?

The study identified five organizational factors that influence (I5-I9 in Table 2) the team
member’s ability to exercise their AM on an everyday basis. First is Leadership and
organizational support (I5), and to being Provided spaces (I7) to work collaboratively
and speak up being factors that help in coping with demanding and strenuous situations.
For example: “We also talk a lot at the company about providing psychological safety
and feedback. To constantly focus on being able to deliver value” [P6] and “We’d have
meetings from time to time where we discussed how we wanted to work and coordinate”
[P1]. Arbitrary andManufactured deadlines (I8) can increase pressure and stress aswell
as the lack of understanding of the complexity of SD by a non-agile or non-technical
user/customer (I9). For example: “I’m probably not doing it in the best way [working
outside of office hours if not being able to meet a deadline]. I have often solved it in

An Agile Mindset in a VUCA-World 227

the evening to catch up. And it’s not really like that, or not really, it’s absolutely not the
way I want my team to work” [P2] and “Our work is extraordinarily collaborative, and
we’re constantly pulling each other into different tasks and different projects to say: I
need your opinion, what do you think about this? How have you done this in the past?
[…] What’s the best way to approach this problem? And I’ve found in the past that
trying to engage non-technical teams in that same process has been difficult. […] What
we actually really would prefer is a collaborative approach to product development to
designing all these different aspects together that go into building technology” [P5].

Also emerging through the analysis are teams’ development of tailored agile ways of
working (I6). A team’s development of their own agile ways of working is indicated to
depend on the knowledge, maturity, and perspective of what is deemed to fit the specific
organization, team, and customer/user needs. Although the values and principles of the
Agile Manifesto [14] guided all respondents, they did not express unwavering loyalty to
the agile practices and frameworks, and importantly as well as contrary to expectations,
would still consider themselves working in an agile way even if/when not following a
practice to the letter. For example: “There are actually different phases one can be in in
one’s agile way of thinking. When you understand the agile rules, you can start to break
them a little. You understand the idea and purpose behind them and then you can start
to create your own agile ways of working a little bit. And we push a lot for it. Thanks to
my boss, I think we have come a long way. We have worked with so many clients over
many years to develop this.” [P2].

Within the results we can see prominent patterns. Table 2 shows that VUCA com-
ponents are prominent in five out of nine thematic AM elements, indicating a clear
application of AM in relation to VUCA. In the remaining four elements, at least two
VUCA components are prevalent. This highlights the practical relevance of VUCA in
understanding AM, mitigating its theoretical nature. The interaction between AM and
VUCA enhances stakeholder resilience and value delivery in software development.

4 Discussion and Conclusion

In today’s VUCA-world with businesses working on all angles to maximize their effi-
ciency, it is crucial to explore the mindsets and contexts enabling effective software
delivery. A well-developed AM has potential to positively affect SD project success and
should therefore not be overlooked. The study builds on the existing body of research in
the agile field [7–11, 14] as well as of an AM in relation to the VUCA framework [7].
Connecting what research says and what business does has been of the utmost interest
throughout the study and for its future, with the components of VUCA serving as a valu-
able lens, adding to what previous research has begun to examine [7, 10]. The findings
could help organizations better harness ASD teammembers’ performance by improving
their understanding of the elements of an AM, how it can be applied in their everyday
work, and to study how the deliberate application of it over time can evolve ASD teams’
ways of working in a turbulent business landscape. We suggest future research to val-
idate these findings in various contexts and explore when doing agile fails to achieve
true agility, as previous studies emphasize the importance of being agile rather than just
doing agile [5, 8], as doing agile should not counteract being agile. This study under-
scores the importance of understanding and effectively using AM elements in ASD

228 C. A. Bangshøj et al.

teams. The community should retain insights from ASDMs and grasp organizational
factors impacting valuable software delivery through agile ways of working.

References

1. Cram, W.A.: Agile development in practice: lessons from the trenches. Inf. Syst. Manag. 36,
14–22 (2019)

2. Standish Group, CHAOS Report: Beyond Infinity (2020)
3. Digital.ai, 17th Annual State of Agile Report (2023)
4. Havstorm, T.E., Karlsson, F.: Software developers reasoning behind adoption and use of

software development methods–a systematic literature review. Int. J. Inf. Syst. Proj. Manag.
11(2), 47–78 (2023)

5. Havstorm,T.E.:CargoCult inAgile SoftwareDevelopment.ÖrebroUniversity,Örebro (2023)
6. Miler, J., Gaida., P.: On the Agile Mindset of an Effective Team - An Industrial Opinion

Survey. 2019. Polish Information Processing Society -- as since 2011
7. Eilers, K., Peters, C., Leimeister, J.M.: Why the agile mindset matters. Technol. Forecast.

Soc. Chang. 179, 121650 (2022)
8. vanManen, H., van Vliet, H.: Organization-Wide Agile Expansion Requires an Organization-

Wide Agile Mindset. 2014, Springer International Publishing: Cham. pp. 48–62
9. Baran, B.E., Woznyj, H.M.: Managing VUCA: the human dynamics of agility. Organ. Dyn.

50(2), 100787 (2021)
10. Bennett, N., Lemoine, G.J.: What a difference a word makes: understanding threats to

performance in a VUCA world. Bus. Horiz. 57(3), 311–317 (2014)
11. Klünder, J., Trommer, F., Prenner, N.: How agile coaches create an agile mindset in devel-

opment teams: insights from an interview study. J. Softw.: Evol. Process 34(12): p. n/a
(2022)

12. Yin, R.K.: Case Study Research: Design and Methods. SAGE (2009)
13. Kvale, S., Brinkmann, S.: InterViews: Learning the Craft of Qualitative Research Interview-

ing. Sage Publications, Los Angeles (2009)
14. Beck, K., et al.: The Agile Manifesto (2001). https://agilemanifesto.org/
15. Walsham, G.: Doing interpretive research. Eur. J. Inf. Syst. 15, 320–330 (2006)
16. Braun,V., Clarke,V.:Using thematic analysis in psychology.Qual. Res. Psychol. 3(2), 77–101

(2006)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://agilemanifesto.org/
http://creativecommons.org/licenses/by/4.0/

The Right Amount of Technical Debt
in an Agile Context

Marcus Ciolkowski1(B) , Philipp Diebold2,3 , Andrea Janes4 ,
and Valentina Lenarduzzi5

1 QAware GmbH, Munich, Germany
marcus.ciolkowski@qaware.de

2 IU International University, Erfurt, Germany
philipp.diebold@iu.org

3 Bagilstein GmbH, Mainz, Germany
philipp.diebold@bagilstein.de

4 Free University of Bozen-Bolzano, Bolzano, Italy
ajanes@unibz.it

5 University of Oulu, Oulu, Finland
valentina.lenarduzzi@oulu.fi

Abstract. Agile and technical debt management should have a symbi-
otic relationship, as technical debt was conceived as a metaphor (or tool)
to balance the benefits of taking shortcuts for early release and user feed-
back with the responsibility of ‘repairing’ the effects of these trade-offs.
Agile processes provide the necessary flexibility to achieve this balance.
However, in reality, feature greed often takes over, making it difficult for
development teams to ensure that technical debt is repaid. This paper
discusses experiences and best practices to address Technical Debt in an
Agile context.

Keywords: Agile · Technical Debt · Risk Management

1 Introduction

In the dynamic world of software development, Agile methodologies have become
the common approach for most projects. However, this very emphasis on rapid
delivery and customer satisfaction often raises an intriguing paradox: on one
hand, Agility values immediate functionality over long-term code quality; this
inherently encourages the accrual of Technical Debt (TD) (often called “featuri-
tis”) and can lead to a precarious buildup of maintenance challenges and future
hurdles. On the other hand, the iterative nature of Agility offers an ideal set-
ting for addressing and mitigating TD, presenting opportunities for continuous
refinement and improvement.

This position paper seeks to start discussing the complexities at the intersec-
tion of TD accumulation and Agile methodology’s capacity for debt resolution.
We aim to initiate an exchange that sets the stage for an in-depth research
agenda. This will lead to an insightful perspective on determining the optimal
c© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 229–235, 2025.
https://doi.org/10.1007/978-3-031-72781-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_27&domain=pdf
http://orcid.org/0000-0001-8494-4794
http://orcid.org/0000-0002-3910-7898
http://orcid.org/0000-0002-1423-6773
http://orcid.org/0000-0003-0511-5133
https://doi.org/10.1007/978-3-031-72781-8_27

230 M. Ciolkowski et al.

amount of TD for each unique Agile project setting. Recognizing that agility is
not a one-size-fits-all solution, we argue that the appropriate balance of TD is
intricately linked to the specific Agile practices tailored to the needs of individual
companies or projects.

Through this exploration, we aim to contribute a foundational perspective to
the ongoing debate, proposing that the future of Agile project success lies in the
strategic navigation of TD, tailored to the unique Agile context of each project.

2 Related Work

TD is a well-known metaphor in software engineering that emphasizes the impor-
tance of continuous refactoring in iterative development to increase long-term
project speed. The metaphor compares TD to borrowing money, where immedi-
ate programming with partial comprehension allows for faster code delivery and
user feedback. However, like any debt, failure to repay one or more installments
can lead to project bankruptcy. TD interest affects maintainability and various
software qualities, resulting in increased costs. Cunningham in 1992 [6] suggests
refactoring to repay TD by incorporating gained knowledge. The concept has
been both narrowed and broadened over time, encompassing deficits in internal
quality. Fowler [8] expands TD to deliberate or inadvertent, prudent or reckless
actions. The definition has further evolved to include any disliked code, fostering
discussions about software quality. Researchers began investigating TD in the
early 2000s, with a surge in studies from 2010 to 2015, categorizing and concep-
tualizing TD. Code debt is the most studied TD type, focusing on issues like code
smells and financial aspects. Commercial tools, such as SonarQube, have been
developed to identify and estimate TD, contributing to its widespread adoption
in the industry [5,11]. The industry quickly adopted the TD metaphor, aligning
with Agile concepts, practices, and frameworks that emphasize software quality
and continuous refactoring.

In the Agile context, TD holds significant economic and technical impli-
cations drawing increased attention from academia and industry. Behutiye et
al. [12] identified five key research areas in the context of Agile: managing TD,
architecture’s relationship with TD, TD know-how in Agile teams, TD in dis-
tributed Agile, and TD in rapid fielding development. According to their results,
TD in Agile is the consequence of poor software development practices, citing
quick delivery and architecture/design issues as frequent causes. Another impor-
tant aspect that can increase TD is related to the insufficient understanding of
system requirements and inadequate test coverage. As for the other development
processes [11] the possible negative effects of TD in Agile Software Development
can be summarized in reduced productivity, system degradation, or increased
maintenance costs.

3 Difficulties in the Combination

Technical Debt (TD) is a concept that has garnered considerable attention within
the software engineering community, notably due to its profound implications on

The Right Amount of Technical Debt in an Agile Context 231

project agility and overall management. The term was originally coined by Cun-
ningham in 1992, highlighting a peculiar aspect of Agile development processes:
the tendency to initiate development with an incomplete understanding of the
problem at hand [6]. This approach, while accelerating the delivery of working
code, inherently incurs what is metaphorically referred to as “technical debt”[7].

Cunningham introduced the metaphor of TD to articulate to his man-
agers the necessity of continuous refactoring, especially within the Agile frame-
work that prioritizes iterative development over traditional, waterfall method-
ologies. The benefit facilitated by such an approach mirrors financial borrow-
ing, where immediate progress is made possible by leveraging a yet-to-be-fully-
comprehended problem space. This strategy enables faster delivery of working
code, allowing for user feedback to more precisely align with user needs. Never-
theless, akin to financial debt, the accumulation of TD without periodic repay-
ment can severely hamper a project, potentially to the point of “bankruptcy”
when the cost of new features and maintenance overshadows the allocated budget
[1].

Agile methodologies offer a framework that inherently supports the manage-
ment of TD through practices such as regular backlog grooming and planning
sessions. These practices are designed to ensure that TD is acknowledged and
addressed continually, preventing it from spiraling out of control.

Despite the theoretical advantages of Agile methodologies in managing TD,
the practical application often reveals a different scenario. The urgency to intro-
duce new features frequently supersedes the inclination to address accumu-
lated debt. This preference is understandable when considering the pressures
exerted by project stakeholders, such as deadlines, milestones, and customer
demands, which provide a tangible rationale for prioritizing feature development
or enhancement.

Conversely, the decision to allocate a budget towards the resolution of tech-
nical debt is fraught with ambiguity. Often, debt quantification (both in terms of
principal and interest) remains elusive, making it challenging to justify expendi-
ture in this area. The “interest” in TD can manifest in various forms, including
increased costs for feature development due to reduced maintainability, higher
operational expenses, and usability issues that may deter users or increase their
task completion time [5]. The crux of the issue lies in determining the financial
impact of a specific debt item: how much does it cost if left unaddressed, and
conversely, what savings can be realized upon its resolution?

In conclusion, while Agile methodologies provide a structured approach to
managing TD, the practical challenges of quantifying and prioritizing debt repay-
ment necessitate a nuanced understanding and strategy. The balance between
advancing feature development and mitigating technical debt is a delicate one,
requiring careful consideration to ensure the sustainable progress of software
projects.

232 M. Ciolkowski et al.

4 How to Solve That

Balancing is not new but still needed [3]. Here, we talk about balancing fea-
tures against the payback of debt items. However, the ability to balance requires
information about both sides (here, features and debt)

Peter Drucker is often quoted as saying, “You can’t manage what you can’t
measure.” In the context of this paper, finding ways to measure technical debt
and so to increase its visibility is critical for being able to manage it. To be able
to measure TD, previous authors have decomposed it into the classical elements
of a loan: principal, the original sum of money borrowed, and interest, the cost of
borrowing the principal amount, which is charged by the lender. When paying
back a debt, part of each payment goes toward reducing the principal, and
part goes toward paying the interest. In terms of code, the principal represents
the initial deficiency in the code requiring future correction and the interest in
the costs of reduced productivity, system degradation, or increased maintenance
costs.

So the question is: How can we make the interest (or hidden cost) of debt
items more tangible? That is, how can a team support their product owner to
understand and better grasp the consequences of delaying paying back debt? A
popular way to measure debt is to use tools that identify, based on previously
defined rules, violations that indicate issues that need to be resolved. Using such
tools it is difficult to understand whether the identified violation is due to the
principal or due to the interest, i.e., because of a shortcut that was taken years
ago, today e.g., redundant code is needed.

Another approach is to identify implementation delays, risks, or product
(in)stability [2]. This can occur by studying records from issue tracking systems,
e.g., to identify tasks that took longer than estimated or to identify recurring
problems. Another approach is to analyze the logs of source code management
systems like git to identify components that need to be repeatedly fixed. There
are two challenges in this approach: first, it is difficult to identify a baseline: it is
difficult to understand that something took longer than it should. One possible
approach to address this challenge is to compare similar user stories or projects
to understand that there are delays or to use retrospectives to discuss if debt
was slowing down past activities.

The second issue in trying to measure TD based on records is that it might be
confused with waste (in the context of Lean Manufacturing and Lean Software
Development [9]): In Lean software development, “waste” refers to any activities
or processes that consume resources but do not add value to the customer.
Typically, the consideration that is made is as in Fig. 1: one starts identifying all
activities that are consuming resources (the inner circle “All activities”). Then,
these activities are divided into value-adding (the green part in Fig. 1) and non-
value-adding (the yellow part in Fig. 1). Finally, the non-value-adding activities
are further divided into necessary (the red part in Fig. 1) and not necessary
(the gray part in Fig. 1). An example of necessary, non-value-adding (for the
client) activities is “accounting” or “project management”. These activities are

The Right Amount of Technical Debt in an Agile Context 233

necessary but the customer does not care how we keep costs under control using
accounting.

However, TD and waste manifest themselves in the same way: productivity is
low because time is wasted in activities that do not provide value, the system is
degraded and this leads to a visible waste of time when extending it, maintenance
costs are high because one has to waste a lot of time understanding it when
making changes. It is, therefore, necessary to understand if observed problems
are because of debt (in this case it is necessary to repay the debt) or because of
waste, in this case, it is necessary to remove (when not necessary) or minimize
(when necessary) it.

Fig. 1. Division of activities into value-adding, non-value-adding, necessary and not
necessary (adapted from [9]).

A last consideration that we want to make is to consider the evolution of
TD. The laws of software evolution by Meir Lehman [10] predict that software
systems that perform some real-world activity are constantly under pressure for
change or become progressively less satisfactory. On one hand, this is the source
of the issues with TD: without that pressure, modifications would not be that
necessary and debt would be less of an issue; without that pressure, it would not
be necessary to constantly add features leading to the mentioned “featuritis”.

However, this pressure also includes a possibility: as software is evolving, new
necessary features are added but there are also old, not-anymore-needed features
that could be removed. Unfortunately, this is not happening (this antipattern
is called the lava flow antipattern [4]) because deleting features that have cost
a lot of work and time seems counter-intuitive but one has to consider that
unused features represent waste: they do not add value to the client but cost
resources. From a Lean and Agile perspective they should be removed or at
least moved to an external application/code base where the obsolete code can
be used only in case of need. By removing unnecessary functionality, the code
base becomes smaller, refactoring becomes simpler, and paying back debt (if it
was not removed already with the unnecessary code) becomes cheaper. In this
context, agility (in the sense of being able to adapt the code to what is adding

234 M. Ciolkowski et al.

value and to remove what is not adding value) reduces the burden of paying
back TD and—as a consequence—lowers the impact of TD when it is necessary
to make debt. We see it therefore as a requirement to continuously measure how
features are used, also after delivery, to understand how features are used, when
they are used, or if it is time to remove them.

5 Conclusion

In the future, the rules of the game may change, as the way that systems are
developed. With AI coming into play, if a whole system can be generated by
AI, the definition and perception of debt will change: in such a scenario the
development speed and agility increase. However, generating millions of lines of
code using AI that cannot be maintained is not a solution. Using AI itself might
be seen as TD if adapting AI-generated code to changed expectations will cost
more time than for hand-written code. Here, too, it will be necessary to strike a
balance between generated code and handwritten code to keep TD under control.

References

1. Ampatzoglou, A., Ampatzoglou, A., Avgeriou, P., Chatzigeorgiou, A.: A financial
approach for managing interest in technical debt. In: Shishkov, B. (ed.) Business
Modeling and Software Design, vol. 257, pp. 117–133. Springer, Cham (2016)

2. Avgeriou, P., et al.: Technical debt management: the road ahead for successful soft-
ware delivery. In: 2023 IEEE/ACM International Conference on Software Engineer-
ing: Future of Software Engineering (ICSE-FoSE), pp. 15–30. IEEE, Melbourne,
Australia (2023)

3. Boehm, Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

4. Brown, W., Malveau, R., McCormick, H., Mowbray, T., Thomas, S.W.: Lava Flow
(2017). http://antipatterns.com/lavaflow.htm. Accessed 26 June 2024

5. Ciolkowski, M., Lenarduzzi, V., Martini, A.: 10 years of technical debt research
and practice: past, present, and future. IEEE Softw. 38(06), 24–29 (2021)

6. Cunningham, W.: The WyCash portfolio management system. In: Addendum to
the Proceedings on Object-oriented Programming Systems. Languages, and Appli-
cations (Addendum) - OOPSLA 1992, pp. 29–30. ACM Press, Vancouver (1992)

7. Fairbanks, G.: Ur-Technical Debt. IEEE Softw. 37(4), 95–98 (2020)
8. Fowler, M.: Technical Debt (2019). https://www.martinfowler.com/bliki/

TechnicalDebt.html. Accessed 26 June 2024
9. Janes, A., Succi, G.: Lean Software Development in Action. Springer, Heidelberg

(2014)
10. Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.) Soft-

ware Process Technology, Lecture Notes in Computer Science, vol. 1149, chap. 12,
pp. 108–124. Springer, Heidelberg (1996). https://doi.org/10.1007/bfb0017737

11. Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., Arcelli Fontana, F.: A systematic
literature review on technical debt prioritization: strategies, processes, factors, and
tools. J. Syst. Softw. 171, 110827 (2021)

12. Nema Behutiye, W., Rodriguez, P., Oivo, M., Tosun, A.: Analyzing the concept of
technical debt in the context of agile software development: a systematic literature
review. arXiv e-prints arXiv:2401.14882 (2024)

http://antipatterns.com/lavaflow.htm
https://www.martinfowler.com/bliki/TechnicalDebt.html
https://www.martinfowler.com/bliki/TechnicalDebt.html
https://doi.org/10.1007/bfb0017737
http://arxiv.org/abs/2401.14882

The Right Amount of Technical Debt in an Agile Context 235

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Stories Vs. User Stories: A Terminological
Clarification

Xavier Franch1(B) , Hans-Jörg Steffe2, Stan Bühne3, Lidia López1 ,
and Stefan Sturm3

1 Universitat Politècnica de Catalunya, c/Jordi Girona 1-3, Barcelona 08034, Catalonia, Spain
{xavier.franch,lidia.lopez}@upc.edu

2 solvistas.com, Linz, Austria
hans-joerg.steffe@outlook.at

3 International Requirements Engineering Board (IREB) e.v., Karlsruhe, Germany
{Stan.Buehne,Stefan.Sturm}@ireb.org

Abstract. User stories are themainvehicle to describe user needs inAgile projects
and Agile project developments. But being this concept universally agreed, we
may find that not all work increments have a clear user-centric view. In this paper,
we focus on the distinction between user-centric “user stories” and other type of
simple narratives, which may be simply called “stories”, which can be at the same
level of abstraction. We propose a conceptual model in the form of UML diagram,
and associated definitions, to clarify this distinction. Themodel alsomakes clearer
the distinction among (user) story and (user) story template, which is not always
kept clear.

Keywords: User Story · Story · Template · Agile methodologies

1 Motivation

User stories lie at the heart of Agile methodologies. They were first introduced at the
end of the 90s and were quickly adopted by the upgrowing Agile community, mainly
because they are an excellent means for Product Owners to communicate requirements
to all stakeholders and developers.

Originally, user stories were conceived as an instrument to express value, as recog-
nized in the IREB glossary: “A description of a need from a user’s perspective together
with the expected benefit when this need is satisfied” [2]. But on the other side, user sto-
ries have been also considered basic management units in Agile projects. For instance,
in their glossary, the Agile Alliance states: “In consultation with the customer or product
owner, the team divides up the work to be done into functional increments called “user
stories”.1

On the other hand, in spite of the Agile Alliance clearly distinguishing them, we can
regularly see some confusion on the concept of the user story with the template used

1 https://www.agilealliance.org/agile101/agile-glossary/.

© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 236–241, 2025.
https://doi.org/10.1007/978-3-031-72781-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_28&domain=pdf
http://orcid.org/0000-0001-9733-8830
http://orcid.org/0000-0002-6901-9223
https://www.agilealliance.org/agile101/agile-glossary/
https://doi.org/10.1007/978-3-031-72781-8_28

Stories vs. User Stories: A Terminological Clarification 237

to write them, typically the “role-feature-reason” originally proposed at Connextra and
popularized byMike Cohn in his seminal bookUser Stories Applied: For Agile Software
Development [1] using the keywords “As a- I want to-so that…”.

Last but not least, as its name clearly denotes, user stories put the user in the center,
i.e. they are user-centric. However, there are certain types of tasks that are difficult to
justify from a user perspective, but still needed in order to progress in the project. Lately,
we are witnessing how some methodologies and tool providers are recognizing this fact.
For instance, the SAFe methodology2 uses the term Story and distinguishes between
User Stories and Enabler Stories, which are stories that “bring visibility to the work
items needed to support exploration, architecture, infrastructure, and compliance”.

While these ambiguities and contradictions will probably not jeopardize the success
of any Agile project, it is also true that it may create some confusion in several contexts,
especially related to training. In particular, at the InternationalRequirementsEngineering
Board (IREB), we have experienced the pernicious effects of this ambiguity both at the
level of writing material and provide training to Agile certification candidates.

2 Understanding the Problem

In order to get more insights about this perception, we contacted a number of IREB
training providers for the Agile certification. We sent them a short description of the
problem and then we asked them whether they find the term “User Story” ambiguous
(awareness), to what extent this possible ambiguity affects their training (impact), and
what solution do they propose (action). We obtained 10 responses that we summarize
below.

• Awareness. A slight majority of respondents (6) agreed that the term “User Story” is
ambiguous, e.g. “On the one hand user story as a phrase and on the other hand user
story as a small backlog item that fits into a sprint”. The rest “have never noticed any
discussion or problem on this topic”.

• Impact. From these 6 respondents, most (4) don’t experience any problem in their
daily business (“Yes, the term is sometimes used differently in practice, but I’ve never
really had any problems with misunderstandings”). Still, the others experienced that
“the teams constantly had heated discussions about what they each meant by the
terms”, and therefore they “have to explain this difference in the training sessions
and make it clear which meaning we are talking about”.

• Action. Here we find even more diversity. Reported actions are:

– Introducing variants of the term “user story”, such as “story” as generic terms, or
other subtypes of stories such as “development story” for requirements of technical
nature.

– Adhere to the well-known generic term “backlog item” and then consider a “user
story” as a particular type of backlog item.

– Slightly different than above, leaving the term “user story” as a concept for writing
requirements in Agile, but use “backlog item” when it comes to documentation.

2 story/https://scaledagileframework.com/

https://scaledagileframework.com/

238 X. Franch et al.

– Clearly distinguish a user story from the template used to write it (“I think it’s a
bit of a shame that the term user story is often reduced to the template”).

Some respondents mentioned additional nuances or threats:

• Context matters: “the meaning of the term user story almost always results from the
context in which you are currently discussing or using the term”, meaning that each
organization or team may have their own vocabulary.

• A respondent highlighted that “The confusion of terms is even worse with the terms
epic, theme, feature, etc.”, questioning that we focus on this term only.

• When different terms are considered, we need to be careful because “replacing the
term user story would definitely mean moving even further away from a standardized
terminology”.

• Finally, as yet another respondent commented, “The big tool manufacturers and the
people from SAFe have put their own interpretations of the term user story into the
world, and thus also contributed a little to the blurring of the term”.

3 Proposal

In this section, we present a conceptual model emerging from the insights of the pre-
liminary study reported in Sect. 2. It is expressed in the form of a UML class diagram.
We can see that a Backlog (of any type; details not needed in this paper) is composed
of a number of Backlog Items. For simplicity, we are showing only two types of
Backlog Items: Epics to represent high-level concepts, and Stories as proposed
in this paper. Other concepts, such as features and themes, could be integrated into this
hierarchy without impacting the core of our proposal (in fact, we remark that the spe-
cialization hierarchy, as others in the model, is qualified as “incomplete”). Besides, we
are leaving tasks out of the picture since they are on a lower abstraction level and do not
affect the current discussion.

Using Atlassian’s words, we can define a Story as “one simple narrative”.3 It is not
only their granularity what defines them; from a managerial perspective, Stories are
the fundamental unit from a project management perspective: they are estimated through
storyPoints, they have priority, and when moved to the sprint backlog, they
progress through a sequence of states.4 We recognize several types of Stories
such as Constraints (a classical concept in requirements engineering [2] and also
proposed to be added to the Agile world by Newkirk and Martin [3]), Qualities
(modeling the quasi-synonymous terms of quality attribute, quality requirement and
non-functional requirement) and then User Stories, which can be defined as user-
centric stories or more precisely, “functionality that will be valuable to either a user or
purchaser of a system or software” [1].

3 https://www.atlassian.com/agile/project-management/epics-stories-themes.
4 The types of these attributes are left open, since they may vary from project to project, and their
value does not affect our proposal.

https://www.atlassian.com/agile/project-management/epics-stories-themes

Stories vs. User Stories: A Terminological Clarification 239

Backlog Items are described following one particular Template. Nothing pre-
vents different Backlog Items in the same Backlog adhering to different Tem-
plates, even being Backlog Items of the same type. The least restrictive Tem-
plate is using just a plain Natural Language Sentence to describe the Back-
log Item, but many others may be proposed. One of them is the Connextra Tem-
plate, including exactly one Role, one Goal and one Rationale.5 Connextra
Template can be used for any type of Backlog Item, although given the motivation
of the work, it can be expected that it will be rarely used for Stories that are not User
Stories (Fig. 1).

Fig. 1. A conceptual model in the form of class diagram for backlog items and templates.

This conceptual model is then fulfilling a number of competence questions driving
this research:

• It introduces the concept of “story” as a simple narrative, being the unit of interest in
terms of estimation and prioritization.

• It recognizes the existence of different types of stories, being user stories one of them.
• It decouples the backlog items’ semantics from their syntax, which can be expressed

using different templates.
• It introduces Connextra template (“as a … I want … in order to …”) as one of these

formats, but others are possible.

5 Some authors such as Cohn [1] allowUser Storieswithout Rationale. The impact of such change
is limited to the multiplicity in the in-order-to role of the class diagram.

240 X. Franch et al.

• It allows using Connextra template (as any other template) in any type of backlog
item.

• It can be extended to host new types of backlog items, stories and templates.
• It can be integrated with the rest of fundamental concepts involved in backlogs and

their items, such as tasks, acceptance criteria or backlog types.

We interacted with participants in the 25th International Conference on Agile Soft-
ware Development (XP 2024)6 using questionnaires to be responded after the presen-
tation of our poster in the conference, in order to get some preliminary evaluation of
our proposal. On the one hand, they provided feedback aligning well with the responses
gathered from IREB training providers as reported above, concretely three out of the 7
respondents consider the term “user story” ambiguous. Only one of them declares that
this ambiguity causes some problems during their Agile projects. On the other hand, we
asked them about the nature of the items in the backlog. Responses were:

• All respondents except one disagreed (five of them strongly) on the statement all the
backlog items are user stories.

• We found a divide on the response to our main terminological proposal. To the ques-
tion “the generic term ‘story’ could be used to embrace several kinds of backlog
items”, four respondents partially agreed while three of them completely disagreed.

Last, we wanted to know current practices and possible future directions on the use
of templates for user stories (or backlog items in general). At this respect, we learned
from our respondents the following:

• Only two of the respondents agreed that all backlog items should be expressed using
a concrete template (one of them only partially agreed).

• We got diverse positions regarding the use of the Connextra template. While the two
respondents arguing above for using templates, are regular users of the Connextra
template always, the rest of respondents disagreed except for one who didn’t express
any direction.

4 Conclusions

In this paper, we have reflected on the ambiguity of the term “user story” in the Agile
development context, and proposed a conceptual model that eventually can be used as
reference for Agile development teams. The main message is the need to clearly distin-
guish different types of “stories”, being “user stories” only one of those types. We think
that this reference model is necessary because even main players in the Agile world use
these terms in a non-consistent way. When talking about stories, Atlassian documenta-
tion states “Stories, also called “user stories,” are short requirements or requests written
from the perspective of an end user” (see footnote 3). At its turn, SAFe defines “stories”
as “short descriptions of a small piece of desired functionality written from the user’s
perspective”. These fundamental contradictions are solved by our approach.

We contacted a number of IREB training providers for the Agile certification to
have a better understanding of the problem.We collected some insights referent whether

6 https://www.agilealliance.org/xp2024/.

https://www.agilealliance.org/xp2024/

Stories vs. User Stories: A Terminological Clarification 241

they find the term “User Story” ambiguous (awareness), to what extent this possible
ambiguity affects their training (impact), and what solution do they propose (action).
Most of them agreed that the term “User Story” is ambiguous, the majority of them
don’t experience any problem in their daily business. We find more diversity related to
the actions to be taken, like using the variants “story” or “backlog item”.

We plan to present this proposal in different fora, mainly using the IREB practition-
ers’ network, with particular emphasis on Agile Training Providers recognized by the
organization, in order to assess for its adequacy and therefore decide about its adoption
in the different Agile-related certification programs proposed by IREB. Also, we would
like to enlarge the study embracing other type of backlog items (epics, features, …) and
concepts, remarkably quality requirements which are always challenging to represent in
the backlog [4].

Acknowledgments. The authors want to acknowledge the effort from the Agile Working Group
at IREB.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

References

1. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley (2004)
2. Glinz, M.: Certified Professional for Requirements Engineering: Requirements Engineering

Glossary, v. 2.1.0 (2024). https://www.ireb.org/content/downloads/1-cpre-glossary/ireb_cpre_
glossary_en_2.1.pdf

3. Newkirk, J., Martin, R.C: Extreme Programming in Practice. Addison-Wesley (2001)
4. , Behutiye, W., Karhapää, P., Costal, C., Oivo, M., Franch, X.: Non-functional requirements

documentation in agile software development: challenges and solution proposal. PROFES
515–522 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.ireb.org/content/downloads/1-cpre-glossary/ireb_cpre_glossary_en_2.1.pdf
http://creativecommons.org/licenses/by/4.0/

LD@Taiga: An Embedded Learning Dashboard
for Agile Project Management in Student Teams

Carles Farré(B) , Lidia López , Marc Oriol , and Xavier Franch

Universitat Politècnica de Catalunya, c/Jordi Girona 1-3, Barcelona 08034, Catalonia, Spain
{carles.farre,lidia.lopez,marc.oriol,xavier.franch}@upc.edu

Abstract. We present LD@Taiga, a learning dashboard seamlessly integrated
into the Taiga agile project management tool. LD@Taiga provides visualiza-
tions of individual and team performance metrics, offering students valuable
feedback and aiding their decision-making. A preliminary evaluation revealed
enhanced usability compared to a previous version, although there is still room
for improvement.

Keywords: Learning Dashboard · Agile Project Management · Agile Project
Metrics

1 Introduction

Team-based software development projects serve students as a practical setting to learn
about teamwork and project management in near-to real-world scenarios. However, stu-
dents’ experiences may not always align with their expectations, e.g. having to manage
uneven contributions from team members, with some team members contributing the
bulk of the work [1]. To bridge this gap, we have explored the potential of learning dash-
boards to assist student teams in software engineering courses [2]. Learning dashboards
are visual tools specifically designed to support students and instructors in their learning
and teaching activities [3].

In this paper, we introduce our experience with LD@Taiga, a novel tool designed
to enhance the dynamics of students’ teamwork in agile development projects. Build-
ing upon our initial Learning Dashboard (LD) [2], LD@Taiga seamlessly integrates
into Taiga’s project management tool, thereby facilitating a more intuitive and cohesive
workflow for student teams.

The rest of this paper is organized as follows. Section 2 provides the context and
background for the development and implementation of LD@Taiga, detailing its pre-
decessor LD, and the initial feedback gathered from its use. Section 3 describes the
architecture and implementation of LD@Taiga, including its integration with Taiga and
the enhancements made based on previous feedback. This section also presents a pre-
liminary evaluation of LD@Taiga, analyzing usability scores and user feedback. Finally,
Sect. 4 concludes the paper with a summary of findings and outlines potential directions
for future work, including planned improvements and broader integration strategies.

© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 242–248, 2025.
https://doi.org/10.1007/978-3-031-72781-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_29&domain=pdf
http://orcid.org/0000-0001-5814-3782
http://orcid.org/0000-0002-6901-9223
http://orcid.org/0000-0003-1928-7024
http://orcid.org/0000-0001-9733-8830
https://doi.org/10.1007/978-3-031-72781-8_29

LD@Taiga: An Embedded Learning Dashboard 243

2 Context

In the 2021/2022 academic year, the Learning Dashboard (LD) [2] was introduced in
two subjects: Web Applications and Services (WAS) and Software Engineering Project
(SEP). These courses are part of the Bachelor’s degree in Informatics Engineering at
the Faculty of Informatics of Barcelona, Universitat Politècnica de Catalunya (UPC).
The aim was to provide student teams and teachers with a tool that delivers accurate
and timely feedback to monitor project progress and support task prioritization and
planning. LD is an adaptation of another dashboard, the Q-Rapids Dashboard [4], to the
teaching context. To this end, LD integrates data from two software development tools
that student teams use: Taiga, a project management tool, and GitHub, a well-known
code repository management tool. Different metrics, such as the percentage of tasks
completed by each team member, are calculated from these data sources to provide a
global view and assessment of the project. LD’s user interface is a web application that
shows these metrics’ current state and historical evolution. A screenshot of the LD’s
user interface is provided in Fig. 1.

Fig. 1. Screenshot of the LD

Access to LD was given to roughly half of the teams to have a control group. The
feedback they provided through questionnaires and interviews can be summarized as
follows [2, 5]:

• Students infer the purpose of the metrics but sometimes have difficulty integrating
them as part of their workflow.

• While the LD offers a clear user experience, it lacks the visual appeal and engagement
necessary to truly captivate users.

• Most students cite time constraints and inadequate LD training as barriers to regular
use, feeling overwhelmed by the prospect of having to learn “yet another tool.”

244 C. Farré et al.

3 LD@Taiga

Based on the LD’s feedback, we refined our strategy to achieve the full potential of
the LD. Our revised approach centers on two key principles: 1) embedding LD metrics
within Taiga, the student teams’ project management tool used at UPC, to facilitate a
more intuitive and cohesive workflow for student teams; 2) improving the clarity and
usability of the metrics’ visualizations to facilitate easier interpretation and application.

3.1 Architecture and Implementation

The architecture of LD@Taiga is presented in Fig. 2. Data from GitHub and Taiga are
fed into the Learning Dashboard through specialized Connectors, which retrieve the
required raw data and store it in a structured manner in the DB repository. Periodi-
cally, the LD-eval component evaluates the obtained raw data and computes different
metrics related to the project development (e.g. number of commits). The Learning
Dashboard provides a RESTful API, named LD-API, to get the results. The LD@Taiga
extends the Learning Dashboard architecture with the LD@Taiga-back-end and the
LD@Taiga-Chrome-extension. The LD@Taiga-back-end acts as a bridge between the
LD@Taiga-Chrome-extension and the LD-API whilst storing andmanaging the required
information in the LD@Taiga-DB, decoupling it from the core components of the Learn-
ingDashboard to facilitate itsmaintainability. Finally, theLD@Taiga-Chrome-extension
implements the visualizations embedded within Taiga as a Chrome extension. Further
details on the implementation are described in [6].

Fig. 2. LD@Taiga Architecture.

The set of metrics evaluated by LD-eval could be configured at the level of the
student’s team. Table 1 includes the complete set of metrics, and their data sources,
configured in the Learning Dashboard for monitoring all teams in the mentioned two
courses. In this specific case, the set of metrics is related to the quality of documentation
in the project management tool (e.g., acceptance criteria, tasks with Estimated Effort),
the quantity of work is assigned to the team members (e.g., tasks), and the quantity of
coding (e.g., closed tasks, modified lines). Depending on the process scope, we could
have metrics for example related to operations (e.g., number of critical issues/bugs
closed).

LD@Taiga: An Embedded Learning Dashboard 245

Table 1. Available metrics in LD@Taiga.

Type Name Description Source

Project acceptance criteria check % of user stories that include some
acceptance criteria

Taiga

pattern check % of user stories following Connextra’s
template (as a – I want – in order to)

Taiga

tasks with EE % of tasks with estimated effort
information

Taiga

closed tasks with AE % of closed tasks with actual effort
information

Taiga

deviation effort estimation Deviation in task effort estimation
(estimated vs. actual)

Taiga

unassigned tasks % of unassigned tasks Taiga

tasks sd Standard deviation of assigned tasks in
the team

Taiga

commits task reference % of commits that refer to a task id Taiga
GitHub

commits sd Standard deviation of commits in the team GitHub

User tasks % of tasks assigned to a specific team
member

Taiga

closed tasks closed tasks/assigned tasks (per member) Taiga

commits % of commits by a specific member GitHub

modified lines % of modified lines by a specific member GitHub

Figure 3 shows a partial screenshot of the LD@Taiga integrated into Taiga. Full
screenshots are not featured due to space restrictions. On the left, the Taiga platform is
displayed. On the right, the LD@Taiga displays a chart related to one concrete project-
related metric (closed tasks with AE). LD@Taiga displays the metrics grouped based
on whether they pertain to the team (Project Metrics) or to the different members (User
Metrics).

The tool provides a filtering feature allowing the visualization of concrete metrics
and/or team members. If the visualizations are filtered to see all the metrics for a given
team member, the kind of chart used is a spider chart, allowing visualization of all
the metrics for the same team member in the same chart (Fig. 4, left). LD@Taiga also
includes one option (Metrics Evaluation) to visualize all the user metrics for all the team
members in a single spider chart (Fig. 4, right).

3.2 Preliminary Evaluation

LD@Taiga replaced LD in the Fall 2023 term in the same two subjects (WAS and SEP).
Again, feedback was collected through online questionnaires and personal interviews

246 C. Farré et al.

Fig. 3. LD@Taiga visualizations.

Fig. 4. User metrics visualizations

conducted at the end of the course. This time, questionnaires included 10 questions to
analyze the System Usability Scale (SUS), widely applied for assessing usability [7].
The online questionnaires were filled by 10 students from WAS and 22 students from
SEP. Personal interviews were conducted subsequently to a subset of 8 students to gather
further insights. The feedback is summarized as follows:

• Aggregated SUS scores in WAS and SEP were 64.25 and 61.59, respectively. Con-
sidering that scores over 68 (0–100) would be considered above average, the results
suggested that, while the acceptance is not bad, there is still significant room for
improvement.

• Some students appreciate LD@Taiga’s usefulness in tracking large projects and group
performance, whereas others view it as a tool to enhance teacher oversight.

• Generally, user metrics (e.g., tasks completed by a developer) are more appreciated
than project metrics (e.g., unassigned tasks).

LD@Taiga: An Embedded Learning Dashboard 247

• User experience and usability are generally well-valued, but some issues and feature
requests exist. For instance, users complain about having to scroll down to view all
metrics, and that somemetrics are still hard to understand.Users alsowant to visualize
specific metrics using advanced filters.

• Students reported being overworked and primarily used LD@Taiga for monitoring
rather than decision-making.

4 Conclusions and Further Work

By embedding the LD’s analytical functionalities within Taiga’s versatile project man-
agement interface, LD@Taiga aims to improve student engagement, bolster team
collaboration and cohesion, and ultimately enhance overall project performance.

Future enhancements of LD@Taiga will focus on refining it based on the early
feedback and broadening its functionality. We aim to fine-tune LD@Taiga to address the
specific concerns raised in the preliminary evaluation. Additionally, we plan to introduce
gamification elements to boost engagement and motivation [8]. Exploring integration
with other project management tools, notably Jira, is also on our agenda, although the
decision to use Taiga in these courses is out of our control.

Acknowledgements. The Universitat Politècnica de Catalunya funds this project under the call
for grants for teaching improvement and innovation projects Galàxia Aprenentatge 2023. We
sincerely appreciate Gerard Álvarez for implementing LD@Taiga and Adrià Espinola and Albert
Miñana for their support in collecting and analyzing students’ feedback.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

References

1. Iacob, C., Daily, S.: Exploring the gap between the student expectations and the reality of
teamwork in undergraduate software engineering group projects. J. Syst. Softw. 157, 110393
(2019)

2. Farré, C., Franch, X., Oriol, M., Volkova, A.: Supporting students in team-based software
development projects: an exploratory study. In: RCIS 2023, pp. 568–576 (2023)

3. Verbert, K., et al.: Learning dashboards: an overview and future research opportunities. Pers.
Ubiquit. Comput. 18, 1499–1514 (2014)

4. López, L., et al.: Q-rapids tool prototype: supporting decision-makers in managing quality in
rapid software development. In: CAiSE-Forum 2018, pp. 200–208 (2018)

5. Volkova, A.: Specification and design of a dashboard for monitoring the learning process
in software projects developed by teams of students. MSc Thesis, Universitat Politècnica de
Catalunya (2022). https://upcommons.upc.edu/handle/2117/371383

6. Álvarez, G.: Integració al Taiga d’un sistema per monitoritzar el progrés de Projectes Software
d’estudiants. BSc Thesis, Universitat Politècnica de Catalunya (2023). https://upcommons.
upc.edu/handle/2117/396284

7. Lewis, J.R.: The System Usability Scale: Past, Present, and Future. Int. J. Hum.–Comput.
Interact. 34(7), 577–590 (2018)

https://upcommons.upc.edu/handle/2117/371383
https://upcommons.upc.edu/handle/2117/396284

248 C. Farré et al.

8. Farré, C., López, L., Oriol, M., Espinola, A., Miñana, A., Franch, X.: GLiDE: integrated
gamified learning dashboard environment. In: CAiSE Research Projects Exhibition, pp. 34–42
(2024)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

XP 25th Anniversary Workshop
and Panel Report

XP 25th Anniversary Workshop and Panel
Report: Innovating Software Solutions – Past,

Present, and Future

Steven D. Fraser1 and Dennis Mancl2(B)

1 Innoxec, Santa Clara, CA, USA
sdfraser@acm.org

2 MSWX Software Experts, Bridgewater, NJ, USA
dmancl@acm.org

Abstract. Software practitioners have adopted many new ways of working over
the past 25 years. Change has been driven by a diverse and global community
of users, practitioners, researchers, and vernacular programmers. What have we
learned over the past 25 years?What skillswill software researchers and practition-
ers need in the future? Will AI or other emerging technologies offer opportunities
for greater achievements, or will they become an obstacle to the human touch
needed to develop software products? This paper reports on a combined work-
shop and panel organized and facilitated by Steven Fraser (Innoxec) together with
Dennis Mancl (MSWX Software Experts) and Werner Wild (Evolution Consult-
ing). The workshop and panel were part of the 25th Anniversary Track at the XP
2024 conference held in Bolzano, Italy.

Keywords: Software Innovation · Agile · Collaboration

1 Workshop Discussion

More than a dozen participants from Europe and the Americas participated in the work-
shop. Discussion was structured around software innovation successes, challenges, and
the future.

1.1 Successes

The workshop attendees observed improvements in software innovation over the past
25 years. The improvements included the core elements of Agile development practices:
automated testing, rapid feedback, accelerated development and delivery at a sustainable
pace, plus continuous improvement. Software frameworks and libraries have also made
an enormous impact on quality and productivity. The adoption of frameworks combined
with software libraries has reduced what Fred Brooks [1] referred to as “accidental
complexity.” Peopleware [2] issues are now better understood and mitigated – inspiring
collaboration through tools and techniques such as pair programming plus new ways of
integrating teamwork and customer partnerships into software innovation.

© The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 251–257, 2025.
https://doi.org/10.1007/978-3-031-72781-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72781-8_30&domain=pdf
http://orcid.org/0000-0002-3958-6585
http://orcid.org/0000-0002-4418-6324
https://doi.org/10.1007/978-3-031-72781-8_30

252 S. D. Fraser and D. Mancl

During theworkshopdiscussion, itwas noted that the number of vernacular program-
mers [3] is increasing. These are practical computer users who are not trained/educated
as programmers but who craft software to achieve scientific, business, or personal goals.
For these developers, “design and coding” is themanipulation of spreadsheets, databases,
web authoring systems, or other tools.

1.2 Challenges

The workshop participants brainstormed various challenges associated with past and
present software practices. Workshop participants suggested that team members may
feel a sense of being overburdened with “busy work” – e.g., meetings or too many
Slack channels. Team turnover also creates gaps in “organizational memory.” There is
a loss of know-how, and companies that rely on “gig economy” models are possibly the
worst offenders since staff come and go frequently. In the past, innovation was catalyzed
in corporate labs, but today’s product innovations are more likely to be sourced from
startups. Workshop participants suggested that new communications strategies might
help inspire and better spread innovation.

Poor communication creates extra burdens. Teams are confused and can’t meet busi-
ness goals because of a lack of business awareness. Teams suffer from poor organization
and communication gaps due to geography and/or developer-customer relations. Some
teams struggle with culture conflicts, while others find that poor collaboration reduces
the amount of learning across the team.

“Agile fatigue” seemed to be a common issue. Fatigue may become evident if teams
are constantly pushed to adopt the latest tools and practices. Another discussion focused
on the extra effort required to manage project iterations when there is a complex and
evolving product backlog. Libraries and frameworks help to accelerate development, but
when they evolve frequently, rapid change may spawn more disconnects and knowledge
gaps.

“Fake Agile” was identified as another challenge. Workshop attendees suggested
that some managers may mandate long lists of required tools and practices, even when
they are unneeded. However, to be effective, agile development practices need to be
customized somewhat for each newproject “context.” For example,whenScrumMasters
and Product Owners are tasked with project management responsibilities, it may reduce
their ability to keep their team’s development processes lightweight and flexible.

1.3 Plan-Driven Versus Iterative

“Working with business executives” is another challenge faced by development teams.
Some leaders choose to give teams more independence, while others prefer to enforce a
hierarchical management structure to guide planning and execution. The workshop par-
ticipants discussed a troubling trend – development organizations that oscillate between
“iterative” and “plan-driven” approaches. It is an understandable dynamic, because each
approach has its benefits. Organizations should not be limited to a binary choice of
“pure” Agile versus Waterfall development strategies: instead, teams should focus on
practices appropriate to specific contexts.

XP 25th Anniversary Workshop and Panel Report 253

1.4 Addressing Today’s Software Product Innovation Challenges

The workshop participants offered observations on future directions for software inno-
vation, but they reached no firm conclusions. The adoption of emergent technologies
such as AI or hardware acceleration will likely influence how development practices
roles will change as technology evolves. These technologies may reduce the amount of
direct human engagement in software design. On the other hand, they may increase the
need for humans to focus on testing and configuration management.

To meet today’s challenges, software development teams should improve their skills
in communication and collaboration: partnering both internally (within their organi-
zation) and externally (customers, open-source communities). In today’s world, it is
important for teams to work with global, virtual, and external open communities. It was
also observed that development practices can be truly innovative when they focus on
outcomes, not just on the approach or process.

However, collaboration challenges will likely not be solved by the wave of new
artificial intelligence tools. AI may miraculously “shrink the work” of developers, but
collaboration is a human endeavor.

Dealing with churn and issues of predictability will continue to be a challenge – be it
fromunstable software libraries, stakeholder interactions, delivery processes, or evolving
software practices. Inmany companies, there is a natural tension betweenOperations and
Development. Ops prefers a stable configuration, and may feel that Dev teams release
too frequently. Organizational maturity can reduce churn and improve predictability;
education and coaching are also factors. The goal is to build a better business – to enable
business stability and growth.

2 Panel Discussion

Panelists included: Alberto Brandolini (an Italy-based IT consultant, the author of Intro-
ducing EventStorming and the founder of the consulting firm Avanscoperta); Brian
Fitzgerald (a software researcher and Principal Investigator at Lero, the Irish Software
Research Centre, and a professor at the University of Limerick, where he also served
as Vice President Research); Marko Hirsimäki (an Agile Coach at RELEX based in
Helsinki, Finland specializing in Agile development and designing applications and
architectures), and Diana Larsen (a US based Leadership Agility Advisor and author
of Lead without Blame; Agile Retrospectives; Liftoff ; and Five Rules for Accelerated
Learning).

The panel beganwith a question posed by theworkshop:Whatmight follow– ad-hoc,
Waterfall, and Agile software development models “post-Agile”?

Brian andDiana observed thatAgile software practices emerged as a rebellion against
the notion that there was “a single right way to develop software.” For most of us in
software development roles, software requirements are influx.Generally, it isn’t practical
to follow a “rational process.”

In his XP2024 keynote, Brian had reinforced this point by referencing the 1985
paper “A Rational Design Process: How and Why to Fake It” [4]. Parnas and Clements
explained that developers aspire to design in a rational way: “Most of us like to think

254 S. D. Fraser and D. Mancl

of ourselves as rational professionals. However, to many observers, the usual process
of designing software appears quite irrational. Programmers often appear to make deci-
sions without having reasons.” Their conclusion: “The picture of the software designer
deriving his design in a rational, error-free, way from a statement of requirements is quite
unrealistic.” Projects and teams face process challenges. The paper described the most
common knowledge gaps: incomplete and changing requirements, lack of domain expe-
rience, complexity, design mistakes, and errors in internal documentation. The authors
believed that an “ideal process” is impossible, so they suggested strategies for “faking
it.”

Diana asserted that we need to constantly update our methods. “The world is chang-
ing fast and we need to become learners. We can’t just rely on old best practices, old
knowledge. We need to be refreshing that all the time.”

Marko and Alberto agreed. Marko stated: “My goal is to find better ways to work
all the time.” Alberto noted that he would frequently change his approach, or he would
apply multiple approaches to the same problem. Even though he has a recipe, he tries
to solve problems with multiple approaches. “It doesn’t work this way, so let’s try this
other way, and then try this way.” But not everyone is so flexible. Alberto complained
that some processes aren’t staying flexible: “I’m seeing an inertia towards rigidity.” He
also lamented that Agile suffers from “bad marketing.”

The context of software developers today looks a lot different from 25 years ago.
Software intensive companies are more focused on cost-cutting and delivering value.
Programming languages and tools have evolved considerably since the turn of the century
and software practitioners are struggling to keep pace with advances in cloud technology
and AI.

Unfortunately, many trainers and coaches reference old and dated principles, prac-
tices, tools, and publications that are no longer applicable. Brian called for more flexi-
bility: “All of those [Agile] principles have to be taken in context.” Development teams
need to use their judgment to decide which parts of their work might require “docu-
ments” (for example, to communicate component interface details with third parties).
In some cases, a plan-driven approach can work effectively and efficiently because the
system’s feature set is already known and documented.

Diana explained that many ideas that were incorporated in “Agile” existed for many
years prior to 2001 [5]. For example, “customer satisfaction” was part of Total Quality
Management of the 1980s. Customer issues will remain important in the future. Diana
wanted to know “what will endure” – what are the parts of Agile that will persist beyond
the marketing name.

2.1 How to Talk About Agile Principles and Roles Today

The discussion veered in the direction of “how to address the generation gap” between
seasoned experts and today’s youthful practitioners. One of the audience members, JB
Rainsberger, an experienced software consultant fromCanada, offered this point of view:
“The things that last are either the things we take for granted, or they are the things that
we are constantly rediscovering.” If we rediscover an idea, it might satisfy a current
project need. But shouldn’t we have read about this in the literature or learned it in a
course?

XP 25th Anniversary Workshop and Panel Report 255

Learning is hard. We are constantly rediscovering useful ideas and approaches for
software development – “because they are important.” If young folks are struggling to
learn these principles today, we shouldn’t be surprised. These ideas were just as difficult
25 years ago for the pioneers of the Agile movement.

JB thought that coaches need to be more positive and supportive. When speaking to
today’s software teams, rather than “preaching” we should be more engaging. We could
say, “We wanted to go back to the arms of Waterfall. We tried it, but it didn’t work.
You’re going to try it, and it probably is not going to work for you either. Welcome to
the club! Let’s figure out what we can do about that together.”

Panel comments suggested that it is time for the younger generation to drive a new
software revolution. The next generation should craft the next set of software develop-
ment principles and practices. It’s a mistake to mindlessly adopt dated practices from
25 years ago. Software developers face new development tasks and they are working
in new contexts. The panelists explained how new development practices might require
new roles, new responsibilities, and different job titles. Role titles can be useful to raise
visibility for emerging technologies.

Brian suggested that AI is a new context. “You will have new ceremonies, roles, and
artifacts to bring AI into the agile world.” Brian said that one obvious role is “training the
AI language model.” Alberto explained that for today’s generative AI systems, “prompt
engineer” is an emergent role. (A prompt engineer [6] creates and optimizes the inputs
to generative AI systems, possibly with the help of other AI systems.) Alberto suggested
that we may also need to remove AI-generated garbage, so “content cleaner” might be
another new AI-related role. A content cleaner would clean up the content and code
generated by AI.

2.2 Education

Steve (Panel Impresario) asked the audience for their experiences in software education
programs to answer the question “how you are educating your students on how to be
more innovative,” and how to look beyond just coding.

Peggy Gregory from the University of Glasgow made several observations. She
explained “Students are still grappling with learning a lot of new technology,” and there
is considerablymore technology thanwhen shewas a student. Teaching the development
process isn’t easy. Glasgow’s curriculum requires that most software students participate
in a third-year project – working on a team and building systems for real customers. But
“learning Agile” is a challenge. “We put them in teams and we give them anAgile coach.
But they still behave like students.”

“Even after a four-year degree, their real interest is in learning the technology [lan-
guages, tools,AI]. They aremuch less interested in learning all of the other things – things
that will becomemore important to them after they leave, but we can’t yet persuade them
how important they are.”

2.3 AI and Software Development

There were a few comments about AI’s potential contributions to software innovation.
For example, will AI replace developers?

256 S. D. Fraser and D. Mancl

Brian observed that AI hasn’t made it to the undergraduate curriculum yet at the
University of Limerick. AI education is mostly directed at graduate students at present.
Because we aren’t educating average programmers and software engineers in AI, he
sees the technology as “a long way from being available.” While Brian could see AI as
a decision support tool, he wasn’t impressed by the software generated by AI.

Diana was concerned that AI might take over her writing: “I want to keep the fun
part and have AI do the drudgery part.”

2.4 Panel Wrap-Up

Each of the panelists had their own spin on software innovation.
Marko was a forceful advocate for innovation: “I don’t want to go back. We need to

keep reinventing.”
Brian emphasized the need for diversity. We need to expose young people to

technology, the experience needs to be fun, with learning from role models.
Diana suggested that new ideas (which may define new roles and career opportu-

nities) will always be emergent. Diana shared own experience in the early 1980s. She
decided to connect to the technical world, but not everyone needs to be a coder. Deciding
“what software needs to be written” is just as important.

Alberto sharedhis thoughts about the balancebetweenprofitability and sustainability.
Alberto viewed profitability as the top goal for many companies. A project might face
a choice when building some new features – whether to make the design of that feature
more sustainable while reducing the potential profitability. Maybe within the constraint
of profitability, we will try to be as sustainable as we can.

3 Summary: Innovating Software Solutions – Past, Present,
and Future

Software innovation has evolved greatly over the past 75 years. Advances in technology
have improved hardware capabilities in speed, capacity, and connectivity. In parallel,
software processes evolved from plan-driven (Waterfall) to those that are more iterative
(Agile). Future software innovation must go beyond today’s AI and cloud computing
frameworks. We must discover new ways for individuals and companies to innovate.

Both the workshop and panel observed that the context for software innovation has
changed over the past 25 years. As technologies have evolved, peopleware issues are
better understood, and companies are more sensitive to the quarterly drumbeat of the
stock market. There was consensus that it is wrong to mindlessly apply dated principles
without regard for new contexts and technologies.

“Agile fatigue” and “Fake Agile” are symptoms of a context mismatch between
today’s reality and some Agile principles based on a “25-year-old Manifesto.” In his
XP 2021 Keynote talk [7], SteveMcConnell argued for updating “Agile” with principles
such as continuous testing and limitingwork-in-progress.Workshop attendees suggested
that “busy work” was becoming more of a problem – and we should look forward to
a younger generation of developers and researchers leading a new software technology
revolution.

XP 25th Anniversary Workshop and Panel Report 257

Today’s software innovation depends on increased “business awareness” by devel-
opment teams. Without business awareness, team and company longevity is at risk.
Software is now a core part of every system, and more systems have customer-visible
requirements, such as security, safety, and responsiveness.

University curriculums are evolving in response to both student interest and company
talent needs.Our universities need to be prepared to teach both new technologies (AI, data
science tools, vernacular programmer tools) and new post-Agile software development
processes. Global innovation accelerates when relevant software practices can be taught
and learnt with less effort.

While there were no absolute predictions for the future, both the workshop and panel
observed that people issues are critical to software innovation, possibly more important
than AI.

References

1. Brooks, F.P.: No silver bullet – essence and accident in software engineering. Computer 20(4),
10–19 (1987). https://doi.org/10.1109/MC.1987.1663532

2. DeMarco, T., Lister, T.: Peopleware: Productive Projects and Teams, 3rd edn. AddisonWesley,
Boston MA (2016)

3. Shaw, M.: Myths and misconceptions: what does it mean to be a programming language,
anyhow? Proc. ACM Program. Lang. 4(HOPL), 234–277 (2020). https://doi.org/10.1145/348
0947

4. Parnas, D.L., Clements, P.C.: A rational design process: how and why to fake it. In: Ehrig,
H., Floyd, C., Nivat, M., Thatcher, J. (eds.) Formal Methods and Software Development.
TAPSOFT 1985. Lecture Notes in Computer Science, vol. 186. Springer, Berlin, Heidelberg
(1985). https://doi.org/10.1007/3-540-15199-0_6

5. Larman, C., Basili, V.R.: Iterative and incremental development: a brief history. Computer
36(6), 47–56 (2003). https://doi.org/10.1109/MC.2003.1204375

6. Genkina, D.: Don’t start a career as an AI prompt engineer. IEEE Spectr. 61(5), 30–34 (2024).
https://doi.org/10.1109/MSPEC.2024.10523015

7. McConnell, S.: 20 Years is enough! It’s time to update the agile principles and values. In:
XP2021Conference (2021). https://www.agilealliance.org/resources/sessions/20-years-is-eno
ugh-its-time-to-update-the-agile-principles-and-values/. Accessed on 21 July 2024

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1145/3480947
https://doi.org/10.1007/3-540-15199-0_6
https://doi.org/10.1109/MC.2003.1204375
https://doi.org/10.1109/MSPEC.2024.10523015
https://www.agilealliance.org/resources/sessions/20-years-is-enough-its-time-to-update-the-agile-principles-and-values/
http://creativecommons.org/licenses/by/4.0/

Author Index

A
Abrahamsson, Pekka 15
Ahmad, Aakash 15
Algulin, Åsa 223
Alliata, Zorina 110
Alsadeh, Ahmad 196
Awan, Wardah Naeem 53

B
Bala, Saimir 103
Bangshøj, Carolina Appel 223
Barbala, Astri Moksnes 33
Barbala, Astri 90, 123
Berntzen, Marthe 90
Bozagiu, Andreea-Madalina 110
Bühne, Stan 236

C
Chatzipetrou, Panagiota 63
Ciolkowski, Marcus 229
Conboy, Kieran 33
Correia, Filipe F. 130

D
Diebold, Philipp 216, 229
Dillon, Clare 181
Duc, Anh Nguyen 15

E
Emmerhoff, Jostein 33

F
Farré, Carles 242
Filipovic, Marina 141
Floryan, Marcin 33
Forrer, Thomas 189
Franch, Xavier 236, 242
Fraser, Steven D. 251

G
Gilson, Fabian 141
Griva, Anastasia 33

Guerra, Eduardo Martins 130
Gundelsby, Jan Henrik 33

H
Haase, Jennifer 103
Hanssen, Geir Kjetil 83
Havstorm, Tanja Elina 223
Helland, Per Kristian 63

J
Jaatun, Martin Gilje 83
Jaber, Mariam 196
Janes, Andrea 229

K
Karakra, Abdallah 196
Kemell, Kai-Kristian 15
Klotins, Eriks 63

L
Lenarduzzi, Valentina 229
López, Lidia 236, 242
Lund, Camilla Kielland 150

M
Mancl, Dennis 251
Maranhão Junior, João José 130
Marek, Krzysztof 203
Martyniuk-Sienkiewicz, Kamila 203
Melegati, Jorge 24
Mendling, Jan 103
Mock, Moritz 24, 189
Moe, Nils Brede 33, 63, 71, 90

N
Neumann, Michael 216

O
Oriol, Marc 242

P
Perlak, Jakub 169, 209

© The Editor(s) (if applicable) and The Author(s) 2025
L. Marchesi et al. (Eds.): XP 2024 Workshops, LNBIP 524, pp. 259–260, 2025.
https://doi.org/10.1007/978-3-031-72781-8

https://doi.org/10.1007/978-3-031-72781-8

260 Author Index

R
Rasheed, Zeeshan 15
Ribeiro, J. Eduardo Ferreira 161
Rico, Sergio 3
Russo, Barbara 24, 189

S
Sæter, Gyda Elisa 150
Sahling, Kristina 103
Salman, Iflaah 53
Sami, Malik Abdul 15
Semsøy, Susanne 71
Simaremare, Mario 3
Singhal, Tanvi 110
Smite, Darja 63
Steffe, Hans-Jörg 236

Stray, Viktoria 71, 123, 150
Sturm, Stefan 236
Systä, Kari 15

T
Taweel, Adel 196
Tkalich, Anastasiia 63
Triando, 3, 175

U
Ulfsnes, Rasmus 33, 42

W
Waseem, Muhammad 15
Wivestad, Viggo Tellefsen 42, 123

	 Preface
	 Organization
	 Contents
	International Workshop on Advances in Software Intensive Startups
	Exploring the Potential of Generative AI: Use Cases in Software Startups
	1 Introduction
	2 Related Work
	2.1 Software Startups
	2.2 GenAI and Its Potential

	3 Methodology
	4 Results
	5 Discussion
	6 Conclusion
	References

	AI for Agile Software Engineering
	Autonomous Agents in Software Development: A Vision Paper
	1 Introduction
	2 Background
	2.1 Generative AI
	2.2 Large Language Models in SE

	3 Research Methodology
	3.1 AI Agent Approach for Automating the SDLC (RQ)

	4 Preliminary Empirical Results
	5 Future Work
	6 Conclusions
	References

	Generative AI for Test Driven Development: Preliminary Results
	1 Introduction
	2 Methodology
	3 Results
	4 Related Work
	5 Conclusions
	References

	Responsible AI in Agile Software Engineering - An Industry Perspective
	1 Introduction
	2 Background
	3 Approach
	4 Industry Perspectives on Responsible AI in Software Engineering
	4.1 Bespot - Recruiting Skilled Expertise
	4.2 Knowit - Security, Sustainability, and GenAI's Mental Models
	4.3 Spotify on Algorithmic Responsibility
	4.4 Schibsted Nordic Marketplaces on Governance and Learning

	5 Discussion and Future Research
	6 Conclusions and Future Work
	References

	A Journey Through SPACE
	1 Introduction
	2 Background
	3 Method and Study Design
	3.1 Comparing Likert Scales Results

	4 Results
	5 Discussion and Implications
	References

	The 2nd International Workshop on Global and Hybrid Work in Software Engineering (GoHyb)
	Analyzing the Impact of Constant Feedback on Hybrid Agile Team Performance: Preliminary Results
	1 Introduction
	2 Study Design
	2.1 Participants
	2.2 The Steup
	2.3 Data Collection

	3 Data Analysis
	4 Results and Discussion
	5 Conclusion and Future Work
	References

	Dual Effects of Hybrid Working on Performance: More Work Hours or More Work Time
	1 Introduction and Related Work
	2 Research Methodology
	3 Results
	4 Concluding Discussion
	A Appendix: Survey Questions
	References

	Hybrid Meetings in Agile Software Development
	1 Introduction
	2 Context and Methodology
	3 Results
	3.1 Tech-Driven Asymmetries
	3.2 Social-Driven Asymmetries
	3.3 Factors Contributing to Asymmetries

	4 Discussion and Conclusion
	References

	The 11th International Workshop on Large-Scale Agile Development Information on Submission
	Agile Approaches in Critical Infrastructures
	1 Introduction
	2 The Challenge
	2.1 Culture Shock
	2.2 A Need for Agility?

	3 How to Tackle Challenges/Way Forward?
	3.1 Safe&Secure Agile Development
	3.2 Zero Trust
	3.3 Cybersecurity Barriers

	4 Conclusion
	References

	Social Capital in Software Product Management: A Case Study From a Large-Scale Agile Context
	1 Introduction
	2 Background
	2.1 Software Product Management
	2.2 Social Capital

	3 Case, Method and Data Analysis
	4 Results
	4.1 Structural Dimension: Accessibility to the Network
	4.2 Cognitive Dimension: Shared Understandings, Values and Goals
	4.3 Relational Dimension: Nature and Quality of Relationships

	5 Concluding Discussion
	5.1 The Role of Social Capital in Large-Scale Agile SPM
	5.2 Limitations and Future Research

	References

	The AI Scrum Master: Incorporating AI Into Your Agile Practices and Processes
	ChatGPT for Tailoring Software Documentation for Managers and Developers
	1 Introduction
	2 Method
	3 Results
	4 Conclusion
	References

	The AI Scrum Master: Using Large Language Models (LLMs) to Automate Agile Project Management Tasks
	1 Introduction
	2 Methodology
	3 Outcomes/Conclusion
	References

	Copilot's Island of Joy
	1 Introduction and Background
	2 Method and Study Design
	3 Results
	4 Discussion and Implications for Practice
	References

	Can ChatGPT Suggest Patterns? An Exploratory Study About Answers Given by AI-Assisted Tools to Design Problems
	1 Introduction
	2 Research Design
	3 Questions Database
	4 Results
	5 Discussion
	5.1 RQ1 - How is the Success Rate of the AI-Assisted Tool in Suggesting Design Patterns?
	5.2 RQ2 - Do Elements Provided in the Answer of the AI-Assisted Tool Help in the Pattern Implementation?
	5.3 RQ3 in Questions Where the Wrong Pattern is Pointed, Does the AI-Assisted Tool Answer Mislead the Developers?
	5.4 Study Limitations

	6 Conclusion
	References

	Education Track
	Towards Improving Behavior-Driven Development and Acceptance Testing-Driven Development Teaching in a University Project Course
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Context
	3.2 Project Organisation
	3.3 Workshops
	3.4 Data Sources and Metrics

	4 Results
	5 Discussion
	6 Conclusion
	References

	Agile Software Engineering Capstone Courses: Exploring the Impact of Gender
	1 Introduction
	2 Methodology
	2.1 About IN2000
	2.2 Data Collection and Analysis

	3 Results
	3.1 Gender Distribution in Speaking Topics

	4 Discussion and Conclusion
	References

	PhD Symposium Track
	Towards Continuous Certification of Software Systems for Aerospace
	1 Introduction
	1.1 Research Theme and Motivation
	1.2 Research Problem and Goals
	1.3 Hypothesis and Expected Results

	2 Seeking Guidance
	3 Building on the Past
	4 Validity Threats
	5 Research Progress Overview and Future Plans
	References

	Shared Leadership for Better Understanding Agile Teams
	1 Introduction
	2 Shared Leadership Within Research
	3 Method
	4 Results
	5 Discussion
	References

	Design Framework for Software Startups Applying Remote Work
	1 Introduction
	2 Research Questions
	3 Related Work
	3.1 Software Startups Team Challenges
	3.2 Remote Work Challenges
	3.3 Remote Work Challenges as Contributing Factors in Software Startups Team Challenges

	4 Timeline
	5 Study Plan
	6 Summary of the Current Status of the Research Project
	7 Plans for Publications
	8 Future Work
	References

	Bridging Silos: Amplifying InnerSource Adoption Using an Activity Theory Perspective
	1 Introduction
	2 Research Questions
	3 Areas for Advice
	4 Current Research Progress
	4.1 Systematic Literature Review
	4.2 Theoretical Lens
	4.3 Pilot Study

	References

	Posters Track
	Where Do Developers Admit their Security-Related Concerns?
	1 Introduction
	2 Methodology
	3 Results
	4 Conclusion
	References

	Digital Twin Adapted Agile Software Development Life Cycle
	1 Introduction
	2 Related Work
	3 Why Augmented Agile SDLC?
	4 Augmented Agile SDLC
	4.1 Requirements Stage
	4.2 Design Stage
	4.3 Implementation Stage
	4.4 Testing Stage
	4.5 Deployment Stage

	5 Evaluation
	6 Conclusion
	References

	Drawing Based Game for Teaching Scrum
	1 Motivation
	2 Related Works
	3 Game Overview
	3.1 Game Requirements and Preparation
	3.2 Gameplay

	4 Initial Results and Future Work
	References

	Selected Concepts of Leadership in Self-organizing Teams
	1 Introduction
	2 Leadership Concept in Self-organizing Teams
	2.1 Shared Leadership – Emergent Phenomena in a Team
	2.2 Distributed Leadership – Emergent Leadership in Organization
	2.3 Balanced Leadership – Interplay Between Leader and Team Members

	3 Attempt of Synthesis Presented Leadership Concepts Supporting Self-organizing Teams
	References

	Towards a Double-Edged Sword: Modelling the Impact in Agile Software Development
	1 Introduction
	2 Background
	2.1 Agile Practices Impact Model
	2.2 Model of Cultural Impact on Agile Methods

	3 The Agile Influence And Impact Model
	4 Conclusion and Future Work
	References

	An Agile Mindset in a VUCA-World
	1 Introduction
	2 Method
	3 Result
	3.1 What Does a Team Member in an ASD Team Do to Exercise and Achieve an AM?
	3.2 What Factors in the Organization Impact the Team Members’ Ability to Exercise Their AM in Their Work on an Everyday Basis?

	4 Discussion and Conclusion
	References

	The Right Amount of Technical Debt in an Agile Context
	1 Introduction
	2 Related Work
	3 Difficulties in the Combination
	4 How to Solve That
	5 Conclusion
	References

	Stories Vs. User Stories: A Terminological Clarification
	1 Motivation
	2 Understanding the Problem
	3 Proposal
	4 Conclusions
	References

	LD@Taiga: An Embedded Learning Dashboard for Agile Project Management in Student Teams
	1 Introduction
	2 Context
	3 LD@Taiga
	3.1 Architecture and Implementation
	3.2 Preliminary Evaluation

	4 Conclusions and Further Work
	References

	XP 25th Anniversary Workshop and Panel Report
	XP 25th Anniversary Workshop and Panel Report: Innovating Software Solutions – Past, Present, and Future
	1 Workshop Discussion
	1.1 Successes
	1.2 Challenges
	1.3 Plan-Driven Versus Iterative
	1.4 Addressing Today’s Software Product Innovation Challenges

	2 Panel Discussion
	2.1 How to Talk About Agile Principles and Roles Today
	2.2 Education
	2.3 AI and Software Development
	2.4 Panel Wrap-Up

	3 Summary: Innovating Software Solutions – Past, Present, and Future
	References

	Author Index

