
13
© The Author(s) 2019
C. Sadowski and T. Zimmermann (eds.), Rethinking Productivity in Software Engineering,
https://doi.org/10.1007/978-1-4842-4221-6_2

CHAPTER 2

No Single Metric
Captures Productivity
Ciera Jaspan, Google, USA

Caitlin Sadowski, Google, USA

“Measuring software productivity by lines of code is like measuring prog-
ress on an airplane by how much it weighs.”

—Bill Gates

“The purpose of software engineering is to control complexity, not to create it.”

—Pamela Zave

The urge to measure the productivity of developers is not new. Since it is often the

case at organizations that more code needs to be written, many attempts have been

made to measure productivity based on lines of code (LOC). For example, in early

1982, the engineering management of developers working on software for the Apple

Lisa computer decided to start tracking LOC added by each developer. One week, the

main user interface designer, Bill Atkinson, optimized QuickDraw’s region calculation

machinery and removed about 2,000 LOC. The management stopped asking for his

LOC [3].

https://doi.org/10.1007/978-1-4842-4221-6_2

14

Although measuring engineer productivity by LOC is clearly fraught, anecdotes like

this abound on the Internet [7]. Organizations have continued to search for better and

easier ways to measure developer productivity [6]. We argue that there is no metric that

adequately captures the full space of developer productivity and that attempting to find

one is counterproductive. Instead, we encourage the design of a set of metrics tailored

for answering a specific goal.

�What’s Wrong with Measuring Individual
Performers?
Tracking individual performance can create a morale issue, which perversely could

bring down overall productivity. Research has shown that developers do not like having

metrics focused on identifying the productivity of individual engineers [5]; this has also

been our experience at Google. Developers are concerned about privacy issues and

about how any measurement could be misinterpreted, particularly by managers who

do not have technical knowledge about inherent caveats any metric has. If productivity

metrics directly feed into an individual’s performance grading, then they will impact

how developers are compensated and whether they continue to keep their jobs—a

serious consequence for getting it wrong. These high stakes further incentivize gaming

the metrics, for example, by committing unnecessary code just to increase LOC ratings.

Measuring productivity to identify low performers may not even be necessary.

It is our experience that managers (and peers) frequently already know who the low

performers are. In that case, metrics serve only to validate a preexisting conception for

why an individual is a low performer, and so using them to identify people in the first

place is not necessary and serves only to demoralize the higher-performing employees.

�Why Do People Want to Measure Developer
Productivity?
As critiqued earlier, one possible motivation for measuring developer productivity

is identifying high/low-performing individuals and teams. However, there are many

reasons why a company may want to measure the productivity of their engineers. Other

motivations include surfacing global trends across a company, rating the effectiveness of

Chapter 2 No Single Metric Captures Productivity

15

different tools or practices, running comparisons for an intervention meant to improve

productivity, and highlighting inefficiencies where productivity can be improved.

While each of these scenarios has a goal of measuring productivity, the metrics,

aggregations, and reporting are different. For example, identifying high- and low-

performing individuals means aggregating a metric on an individual level, while running

a comparison would mean aggregating across a group of developers. More important,

the type of productivity metric used for these scenarios is different. There are many

different stakeholders who may be interested in measuring productivity with different

goals. If the goal is to identify low performers or to surface global trends, the stakeholders

interested in the metric will be looking for metrics that measure task completion. If the

goal is to run a comparison for a specific intervention or to highlight inefficiencies within

a specific process, the productivity metrics used will be measuring subtasks that address

the goals of the intervention or the process being investigated. What is actionable for an

individual is different than what is actionable for a team.

�What’s Inherently Wrong with a Single Productivity
Metric?
Any single productivity metric is intrinsically problematic. Productivity is too broad of a

concept to be flattened into a single metric, and confounding factors will exacerbate the

challenges with attempting such a flattening.

�Productivity Is Broad
Productivity is a broad concept with many aspects. The problem is that productivity

metrics are poor proxies of the underlying behavior or activity that we want to measure.

As poor proxies, they are ripe for misuse.

When we create a metric, we are examining a thin slice of a developer’s overall time

and output. Developers engage in a variety of other development tasks beyond just

writing code, including providing guidance and reviewing code for other developers,

designing systems and features, and managing releases and configuration of software

systems. Developers also engage in a variety of social tasks such as mentoring or

coordination that can have a significant impact on overall team or organization output.

Chapter 2 No Single Metric Captures Productivity

16

Even for the narrow case of measuring productivity of developers in terms of code

contributions, quantifying the size of such contributions misses critical aspects of code

such as quality, or maintainability. These aspects are not easy to measure; measuring

code readability, quality, understandability, complexity, or maintainability remain open

research problems [2, 4].

�Flattening/Combining Components of a Single Aspect Is
Challenging
Furthermore, flattening all of these into a single measure along with quantity has limited

applicability and risks, reducing the actionability of a metric. Is a developer with few

code contributions of very high quality more or less productive than a developer with

many contributions but some quality issues? Does it make a difference if the engineer

with some quality issues comes back and fixes the issues later? It is not clear which is

more productive because it depends on the trade-offs of the project in question.

An additional problem with flattening or combining metrics is that flattened metrics

may not make intuitive sense and so may be distrusted or misinterpreted. For example, if

a variety of factors (e.g., cyclomatic complexity, time to complete, test coverage, size) are

compressed into one number representing the productivity impact of a patch, it will not

be immediately clear why one patch scores 24 and another one scores 37. Furthermore,

a single score is not directly actionable since a variety of interrelated factors contribute to

that score.

�Confounding Factors
Even if we are able to tease out a single metric that holistically covers some aspect of

productivity, confounding factors can make the metric meaningless. Take the case

of comparing programming languages. It is difficult to measure the productivity of

languages in particular because of the number of confounding factors. There is the

language itself, the tools, the libraries, the culture, the types of projects, and the types of

developers who are attracted to that language.

As another example, a Google team wanted to show that high test coverage improves

code quality. To do this, they compared the test coverage of different teams with the

number of bugs filed. They found no correlation. Was there really no improvement

in code quality, though? In this case, there may have been a confounding cultural

Chapter 2 No Single Metric Captures Productivity

17

component. Teams that have high test coverage may also file more bug reports. The

projects with low test coverage may have been prototypes or just teams that don’t track

bugs as accurately.

There can also be confounds from intrinsic complexity differences between teams.

For example, two teams may have a difference in their average patch completion time.

One likely explanation is that these teams are working on different projects. There

may be project-specific differences in the size of patches they submit or their overall

complexity.

There can even be externalities that are not captured within a metric. For example,

one team might appear to be submitting fewer lines of code than another team. There

are many possible causes for such a difference that do not mean the team has lower

productivity; perhaps the team is taking more steps to improve quality and therefore has

fewer bugs down the road, or perhaps the team has taken on several new employees and

is ramping them up. Again, confounding factors are at play. We can’t separate those out

because they come from nonmeasurable sources.

�What Do We Do Instead at Google?
Although there is no general-purpose measurement that can be used in any situation

focused on developer productivity, it is still possible to make data-driven improvements

to a software engineering workflow. Given a specific research question, it is possible to

break measurements down into a specific context and know what the caveats are.

At Google, we work with teams to figure out how they can leverage metrics to help

make data-driven decisions. The process starts with clarifying the research questions

and motivation. We then come up with custom metrics targeted toward those specific

questions. This kind of thinking is similar to the Goal–QuestionMetric paradigm [1]. We

validate these metrics against qualitative research (encompassing techniques such as

surveys and interviews) to ensure that the metrics measure the original goal.

For example, a team at Google working on a distributed version control layer wanted

to show that using multiple smaller patches speeds up the review process (perhaps

because they are easier to review). After investigating and rejecting not meaningful

metrics related to the number of changes or LOC committed per week, the team

investigated how long it took developers to commit code scaled by the size of code

changes. They were able to show improvement in the time to commit per LOC changed.

Chapter 2 No Single Metric Captures Productivity

18

We can likewise find improvements for other tools, investigate the current cost

on developers, and then put those into a Return on Investment (ROI) calculation. For

example, we have determined how much time is lost because of waiting for builds (or

because of unnecessary context switching as a result of builds). After contrasting this

with the cost of speeding up builds (through human or machine resources), we have

provided an estimated ROI for different build improvements.

We often see teams that either don’t have a research question that matches their

motivation for coming up with a metric or have a mismatch between the metrics and

the research questions of interest. For example, we talked to one team that wanted to

measure codebase modularity. After some discussion, we determined that they wanted

to see whether developers were faster at developing software after an intervention and

needed to consider ways to measure velocity. Teams also need to carefully consider

the time window and aggregations (for example, team versus individual versus larger

organization) of interest, as well as any selection criteria for individuals being measured.

Qualitative analysis helps understand what a metric is actually measuring, and data

analysis and cross-validation can make sure the results are sensible. For example, by

examining distributions of log events for individual developers, we discovered logs that

show developers making an action on a web page tens of thousands of times – actions

that were actually the result of a Chrome extension. Similarly, we found out during an

interview that developers have good reasons for doing something we had thought was an

anti-pattern.

Our approach works because we explicitly do not attempt to create a single metric to

measure engineering productivity. We instead narrow down the problem into a concrete

research statement and seek metrics that address precisely the question at hand. This

allows us to validate each individual metric against a specific goal, rather than against

the vague concept of productivity. In practice, we find that several of our metrics get

reused from one productivity question to the next. While this approach does not scale

as fast as applying a single productivity metric, it scales well enough while providing

precise, reliable data that we can trust when making investment decisions.

Chapter 2 No Single Metric Captures Productivity

19

�Key Ideas
The following are the key ideas from this chapter:

•	 There is no single productivity metric for software engineers.

•	 Instead, focus on a set of custom metrics targeted to a specific

question.

�References
	 [1]	 Basili, V., Caldiera, G., and H. Dieter Rombach. (1994). The goal

question metric approach. Encyclopedia of Software Engineering

2, 528–532.

	 [2]	 Buse, R. P., & Weimer, W. R. (2010). Learning a metric for code

readability. IEEE Transactions on Software Engineering, 36(4),

546–558.

	 [3]	 Hertzfeld, A. -2000 Lines Of Code. https://www.folklore.org/

StoryView.py?project=Macintosh&story=Negative_2000_

Lines_Of_Code.txt

	 [4]	 Shin, Y., Meneely, A., Williams, L., & Osborne, J. A. (2011).

Evaluating complexity, code churn, and developer activity metrics

as indicators of software vulnerabilities. IEEE Transactions on

Software Engineering, 37(6), 772–787.

	 [5]	 Treude, C., Figueira Filho, F., & Kulesza, U. (2015). Summarizing

and measuring development activity. In Proceedings of

Foundations of Software Engineering (FSE), 625–636. ACM.

	 [6]	 Thompson, B. Impact: a better way to measure codebase change.

https://blog.gitprime.com/impact-a-better-way-to-

measure-codebase-change/

	 [7]	 Y Combinator. Thread on -2000 LOC Story. https://news.

ycombinator.com/item?id=7516671

Chapter 2 No Single Metric Captures Productivity

https://www.folklore.org/StoryView.py?project=Macintosh&story=Negative_2000_Lines_Of_Code.txt
https://www.folklore.org/StoryView.py?project=Macintosh&story=Negative_2000_Lines_Of_Code.txt
https://www.folklore.org/StoryView.py?project=Macintosh&story=Negative_2000_Lines_Of_Code.txt
https://blog.gitprime.com/impact-a-better-way-to-measure-codebase-change/
https://blog.gitprime.com/impact-a-better-way-to-measure-codebase-change/
https://news.ycombinator.com/item?id=7516671
https://news.ycombinator.com/item?id=7516671

20

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 2 No Single Metric Captures Productivity

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 2: No Single Metric Captures Productivity
	What’s Wrong with Measuring Individual Performers?
	Why Do People Want to Measure Developer Productivity?
	What’s Inherently Wrong with a Single Productivity Metric?
	Productivity Is Broad
	Flattening/Combining Components of a Single Aspect Is Challenging
	Confounding Factors

	What Do We Do Instead at Google?
	Key Ideas
	References

