
137
© The Author(s) 2019
C. Sadowski and T. Zimmermann (eds.), Rethinking Productivity in Software Engineering,
https://doi.org/10.1007/978-1-4842-4221-6_12

CHAPTER 12

Developers’ Diverging
Perceptions of Productivity
André N. Meyer, University of Zurich, Switzerland

Gail C. Murphy, University of British Columbia, Canada

Thomas Fritz, University of Zurich, Switzerland

Thomas Zimmermann, Microsoft Research, USA

�Quantifying Productivity: Measuring vs. Perceptions
To overcome the ever-growing demand for software, software development

organizations strive to enhance the productivity of their developers. But what does

productivity mean in the context of software development? A substantial amount of work

on developer productivity has been undertaken over the past four decades. The majority

of this work considered productivity from a top-down perspective (the manager view)

in terms of the artifacts and code created per unit of time. Common examples of such

productivity measures are the lines of source code modified per hour, the resolution

time for modification requests, or function points created per month. These productivity

measures focus on a single, output-oriented factor for quantifying productivity and do

not take into account developers’ individual work roles, practices, and other factors

that might affect their productivity, such as work fragmentation, the tools used, or the

work/office environment. For example, a lead developer who spends a big part of work

supporting co-workers with their inquiries might develop less code in the process

https://doi.org/10.1007/978-1-4842-4221-6_12

138

and would thus be considered less productive when using traditional, top-down

measurements compared to developers who focus solely on coding.

Another approach to quantify productivity is bottom-up, starting at the

productivity of individual software developers to then also learn more about

quantifying productivity more broadly. By investigating developers’ individual

productivity, it is possible to better understand individual work habits and patterns,

how they relate to productivity perceptions, and also which factors are most relevant

for a developer’s productivity.

�Studying Software Developers’ Productivity
Perceptions
There are various ways to investigate productivity from the bottom up. In this

chapter, we describe three studies that we conducted using a variety of methods,

from very detailed observations to two-week field studies using a monitoring

application.

•	 First, to gather insights into what developers’ considered productive

and unproductive work, we conducted an online survey with 389

professional software developers, followed by observations and

follow-up interviews with 11 developers to corroborate some of the

findings of the survey [1].

•	 To better understand activities developers pursue at work, the

fragmentation of their work, and how these activities relate to self-

reported productivity, we conducted a two-week field study with

20 professional software developers. For this study, we deployed a

monitoring application that logged developers’ computer interaction

and collected self-reports on their productivity every 90 minutes [2].

•	 To analyze and compare the situations when developers feel

productive, we conducted a further online survey with 413

professional software developers [3].

The remainder of this chapter highlights the most prominent findings. Detailed

descriptions of the studies and findings can be found in the corresponding papers.

Chapter 12 Developers’ Diverging Perceptions of Productivity

139

�The Cost of Context Switching
Developers reported that they usually feel most productive when they make progress

on tasks and when they have only a few context switches and interruptions. However,

observing developers’ workdays revealed that they constantly switch contexts, often

multiple times an hour. For example, developers switched tasks on average 13 times

an hour and spent just about 6 minutes on a task before switching to another one. An

example of a task switch is a developer who is switching from implementing a feature to

answering e-mails that are unrelated to the previous task. Similarly, when we looked at

how much time developers spend on activities–actions they usually pursue at work (e.g.,

writing code, running tests, or writing an e-mail)–we found out that they usually remain

in an activity only between 20 seconds and 2 minutes before switching to another one.

This high number of task and activity switches and the high variety of activities and tasks

developers pursue each day illustrate the high fragmentation of a developer’s work.

Surprisingly, many developers still felt productive despite the high number of

context switches. The follow-up interviews with the developers revealed that the cost

of context switches varies. The cost or “harm” of a context switch depends on several

factors: the duration of the switch, the reason for the switch, and the focus on the current

task that is interrupted. A short switch from the IDE to respond to a Slack message is

usually less costly than being interrupted from a task by a co-worker and discussing

a topic unrelated to the main task for half an hour. Also, short context switches, such

as writing a quick e-mail while waiting for a build to complete, do not usually harm

productivity, as self-reported by our participants.

Interruptions from co-workers are one of the most often mentioned reasons for

costly context switches, especially when they happen at an inopportune moment,

such as when a developer is focused on a challenging problem. Chapter 23 presents

one possible solution of how developers and other knowledge workers can reduce the

number of costly interruptions by visualizing their current focus to the team.

�A Productive Workday in a Developer’s Life
Investigating how developers organize their time at work and what activities they pursue

revealed notable differences. During an average workday of 8.4 hours, developers spend

about half of their time, on average 4.3 hours, actively working on their computer.

Surprisingly, they spend only about one-fourth of their total work time with coding-

related activities and another fourth of their time with collaborative activities such

Chapter 12 Developers’ Diverging Perceptions of Productivity

https://doi.org/10.1007/978-1-4842-4221-6_23

140

as meetings, e-mails, and instant messaging. There are also big differences across

companies, for example how much time their developers spend reading or writing

e-mails. At one of the observed companies, developers spent less than one minute with

e-mail each workday, compared to developers at another company where they spent

more than an hour.

Relating the activities developers pursue at work with how productive they feel

during these activities revealed that productivity is highly individual and differs greatly

across developers. The majority of developers reported coding as the most productive

activity, as coding allows them to make progress on the tasks that are most important to

them. With most other activities, there was no clear consensus about whether an activity

is generally productive or not. Meetings were the most controversial activity: more than

half of the developers considered meetings as unproductive, especially when they lack

goals, have no outcome, or there are too many attendees; the other half of developers

considered meetings to be productive. E-mails are considered to be a less productive

activity by many developers. However, no single activity is considered exclusively

productive or unproductive by all developers. Coding, for instance, was not always

considered to be a productive activity, for example when the developer was blocked on a

task. This suggests that measures or models that attempt to quantify productivity should

take individual differences, such as the context of a developer’s workday, into account,

and attempt to capture a developer’s work more holistically rather than reducing them to

a single activity and one outcome measure.

�Developers Expect Different Measures
for Quantifying Productivity
When we asked developers about how they would like to quantify their productivity, the

majority wanted to assess their productivity based on the number of completed tasks but

also combine it with other measures. These additional measures include output-related

measures, such as the lines of code, number of commits, number of bugs found or fixed,

and e-mails sent, but they also include higher-level measures, such as how focused they

were during their work, if they were working “in the flow” (or “the zone”), and if they felt

they had made any significant progress. Across all measures that developers were asked

about, there was no single measure or combination of multiple measures that were

consistently rated higher by most developers. This result indicates that there are a variety

of aspects that impact the productivity of developers and their feeling of productivity

Chapter 12 Developers’ Diverging Perceptions of Productivity

141

differently. For example, on days when a developer spends a lot of time working on

development task, a measure of the number of work items completed or check-ins

made may be appropriate. However, the same measure on days a developer spends

most of the time in meetings or helping co-workers would result in a low productivity

and high frustration for the developer. Furthermore, the findings suggest that it is

difficult to broadly measure productivity without defining specific objectives. We will

have to find ways to do measure productivity more holistically, by not only leveraging

output measures, but also considering developers’ individual abilities, work habits,

contributions to the team, and more. Chapters 2 and 3 discuss this further and argue that

productivity should be considered not only from the perspective of individuals but also

for teams and organizations.

�Characterizing Software Developers by Perceptions
of Productivity
The differences in how developers feel about productivity makes it also more challenging

to determine meaningful actions that could help increase productivity on a team or

organizational level. One way to better understand differences and commonalities in

developers’ perceptions of productivity is to investigate if we can find patterns or group

developers with similar perceptions. Analyzing productivity ratings from hourly self-

reports during three workweeks, we found that developers can roughly be categorized

into three groups that are similar to the circadian rhythm: morning person, afternoon

person, and low-at-lunch person, as visualized in Figure 12-1. The curved regression

line in the three figures shows the overall pattern of what part of the day an individual

developer typically felt more or less productive with the shaded area showing the

confidence range. Morning people were rare in our sample, with only 20 percent of all

participants. The biggest group were afternoon people (40 percent), who may be those

who are industrious later in the day or who feel more productive as a result of having

the majority of their workday behind them. These results suggest that while developers

have diverse perceived productivity patterns, individuals do appear to follow their own

habitual patterns each day.

Chapter 12 Developers’ Diverging Perceptions of Productivity

https://doi.org/10.1007/978-1-4842-4221-6_2
https://doi.org/10.1007/978-1-4842-4221-6_3

142

In another effort to group developers with similar perceptions of productivity

together, we asked participants to describe productive and unproductive workdays,

rate their agreement with a list of factors that might affect productivity, and rate the

interestingness of a list of productivity measures at work. We found that developers can

be clustered into six groups: social, lone, focused, balanced, leading, and goal-oriented.

•	 The social developers feel productive when helping co-workers,

collaborating, and doing code reviews. To get things done, they come

early to work or work late and try to focus on a single task.

•	 The lone developers avoid disruptions such as noise, e-mail, meetings,

and code reviews. They feel most productive when they have little to

no social interactions and when they can work on solving problems,

fixing bugs, or coding features in quiet and without interruptions.

To reflect about work, they are mostly interested in knowing the

frequency and duration of interruptions they encountered. Note that

this group of developers is almost the opposite of the first group (the

social developer) in how productive they feel when encountering

social interactions.

•	 The focused developers feel most productive when they are working

efficiently and concentrated on a single task at a time. They feel

unproductive when they are wasting time and spend too much time

on a task because they are stuck or working slowly. They are interested

in knowing the number of interruptions and length of focused time.

Figure 12-1.  Three types of developers and their perceptions of productivity over
the course of a workday

Chapter 12 Developers’ Diverging Perceptions of Productivity

143

•	 The balanced developers are less affected by disruptions. They feel

unproductive when tasks are unclear or irrelevant, when they are

unfamiliar with a task, or when tasks are causing overhead.

•	 The leading developers are more comfortable with meetings and

e-mails and feel less productive with coding activities than other

developers. They feel more productive when they can write and

design things, such as specifications. They do not like broken builds

and blocking tasks, preventing them (or the team) from doing

productive work.

•	 The goal-oriented developers feel productive when they complete

or make progress on tasks. They feel less productive when they

multitask, are goal-less, or are stuck. They are more open to meetings

and e-mails compared to the other groups if they help them

achieve their goals. In contrast to focused developers, goal-oriented

developers care more about actually getting stuff done (i.e., crossing

items off the task-list), while focused developers care more about

working efficiently.

Each developer can belong to one or more of these groups. The six groups and their

characteristics highlight differences in developers’ productivity perceptions and show

that their ideal workdays, tasks, and work environments often look differently. We can

further use these findings to tailor process improvements and tools to the different types

of developers, as discussed in the next section.

�Opportunities for Improving Developer Productivity
Developers and development teams might benefit from these findings in various ways.

On the individual level, we could build self-monitoring tools that allow developers

to increase their awareness about productive and unproductive behaviors and use

the insights they gain to set well-founded goals for self-improvements at work (see

Chapter 22).

Chapter 12 Developers’ Diverging Perceptions of Productivity

https://doi.org/10.1007/978-1-4842-4221-6_22

144

These approaches should provide a variety of measures and support developers

in getting insights into individual aspects of their work, such as identifying productive

or unproductive work habits or identifying external or internal factors that have the

biggest impact on their productivity. In addition to self-monitoring that has been

shown to motivate positive behavior changes in other fields (e.g., physical activity and

health), supporting developers with setting goals to improve themselves at work through

actionable insights might be a next step toward fostering productivity. Maybe one day,

we can further build virtual assistants, such as Alexa for Developers, that recommend

(or automatically take) actions, depending on the goals of developers or based on the

productivity patterns/roles/clusters of developers. For example, such a virtual assistant

could block out notifications from e-mail, Slack, and Skype during coding sessions to

avoid disruptions for the “lone developer” but allow them for the “social developer.” Or

they could recommend the “focused developer” to come to work early to have a few

hours of uninterrupted work time or suggest the “balanced developer” to take a break to

avoid boredom and tiredness.

By knowing the trends of developers’ perceived productivity and the activities they

consider as particularly productive/unproductive, it might be possible to schedule the

tasks and activities developers must perform in a way that best fits their work patterns.

For example, if a developer is a morning person and considers coding particularly

productive and meetings as impeding productivity, blocking calendar time in the

morning for coding tasks and automatically assigning afternoon hours for meeting

requests may allow the developer to best employ their capabilities over the whole day.

Or, it could remind developers to reserve slots for unplanned work or interruptions at

times where they usually happen.

Our studies also revealed that interruptions, one specific type of a context switch,

are one of the biggest impediments to productive work. Productivity could potentially be

improved on the team level by enhancing the coordination and communication between

co-workers, depending on their preferences, availabilities, and current focus. For example,

on the team level, quiet, less interruption-prone offices could be provided to the “lone

developers” and “focused developers,” and “social developers” who feel more comfortable

with discussions every now and then could be seated in open space offices. Alternatively,

interruptions at inopportune moments could be reduced by visualizing the developer’s

current focus and concentration to other developers using an external cue. Hence,

at times when the developer is “in the flow” or is usually most productive, expensive

interruptions could be postponed to a more opportune moment (see Chapter 23).

Chapter 12 Developers’ Diverging Perceptions of Productivity

https://doi.org/10.1007/978-1-4842-4221-6_23

145

�Key Ideas
The following are the key ideas from this chapter:

•	 Different software developers experience productivity differently,

which is why they do not agree on how to measure productivity.

•	 Most developers follow their own habitual patterns each day and are

most productive either in the morning, during the day (and not at

lunch), or in the afternoon.

•	 Measuring developer productivity should not only include output

measures but also include measures inherent to developers’ abilities,

workdays, work environments, and more.

�References

	 [1]	 André N Meyer, Thomas Fritz, Gail C Murphy, and Thomas

Zimmermann. 2014. Software Developers’ Perceptions of

Productivity. In Proceedings of the 22Nd ACM SIGSOFT

International Symposium on Foundations of Software

Engineering, 19–29.

	 [2]	 André N Meyer, Laura E Barton, Gail C Murphy, Thomas

Zimmermann, and Thomas Fritz. 2017. The Work Life of

Developers: Activities, Switches and Perceived Productivity.

Transactions of Software Engineering (2017), 1–15.

	 [3]	 André N Meyer, Thomas Zimmermann, and Thomas Fritz.

2017. Characterizing Software Developers by Perceptions of

Productivity. In Empirical Software Engineering and Measurement

(ESEM), 2017 International Symposium on.

Chapter 12 Developers’ Diverging Perceptions of Productivity

146

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 12 Developers’ Diverging Perceptions of Productivity

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 12: Developers’ Diverging Perceptions of Productivity
	Quantifying Productivity: Measuring vs. Perceptions
	Studying Software Developers’ Productivity Perceptions
	The Cost of Context Switching
	A Productive Workday in a Developer’s Life
	Developers Expect Different Measures for Quantifying Productivity
	Characterizing Software Developers by Perceptions of Productivity
	Opportunities for Improving Developer Productivity
	Key Ideas
	References

