
125
© The Author(s) 2019
C. Sadowski and T. Zimmermann (eds.), Rethinking Productivity in Software Engineering,
https://doi.org/10.1007/978-1-4842-4221-6_11

CHAPTER 11

Dark Agile: Perceiving
People As Assets, Not
Humans
Pernille Bjørn, University of Copenhagen, Denmark

�Revisiting the Agile Manifesto
The agile principles for software engineering were developed as a reaction against

structuring software engineering processes in strict stepwise and sequential ways.

The idea that it was possible to create a clearly predefined scope prior to the actual

software engineering activities was questioned—and the agile methodology was an

attempt to rephrase the basic nature of software engineering. The agile understanding of

software engineering is that the fundamental nature of software means that we cannot

predetermine scope, goals, and objectives up front. Instead, goals, scope, and objectives

are transformed throughout the software development process. This setup requires

participants (developers and clients) to balance and negotiate resources and priorities,

and this is what drives agile development. Agile development is not one thing but can

instead be seen as a set of principles that guide the organization of work and can be

implemented in different ways. The main principles provided by the agile manifesto

(http://agilemanifesto.org) are as follows:

•	 Individuals and interaction over processes and tools

•	 Working software over comprehensive documentation

https://doi.org/10.1007/978-1-4842-4221-6_11
http://agilemanifesto.org

126

•	 Customer collaboration over contract negotiation

•	 Responding to change over following a plan

These agile principles are based upon the main idea of providing the power over

software engineering to the people—the software team. Instead of letting software

developers be controlled from the outside, the software teams are to be empowered to

find and prioritize their own work. The software team is to be a self-organized team,

and the client or customer is to be part of the team supporting the prioritizing of tasks

based upon available resources. When we, in computer science departments at Danish

universities, teach computer science students about software engineering, we talk about

the benefits of agile development and the problems with the waterfall model. We explain

how the waterfall model does not take into account the iterative and creative process of

developing software. Furthermore, if you visit any kind of Danish IT company and talk to

the developers and ask them about methods, they will tell you how the waterfall model

does not work and how agile methodologies provide better quality within an appropriate

time frame. Agile is seen as a positive perspective on software engineering in Denmark.

However, the story about agile is quite different when we change perspective from

Scandinavia and turn to India.

�Agile in Global Outsourcing Setups
Based upon a long-term research project called Next-Generation Tools and Processes

for Global Software Development (NexGSD; nexsgsd.org), we have studied how global

software development takes place in different places around the world. Concretely,

we went to observe and interview software developers in the Philippines about their

experiences working with software developers in Denmark [4, 5, 7], and we also went

to India, more concretely Bangalore, Mumbai, and Chennai, to observe and interview

software developers about their experiences collaborating with software teams and

vendors located in Northern Europe and the United States [6, 8, 11, 12]. Throughout all

these empirical studies, we began to notice the consequences of implementing agile

principles such as scrum methodologies in global outsourcing setups. We witnessed a

transformation in the way global software development was organized between 2011,

when we started the project, until 2014, where all the organizations we studied went

from waterfall models toward agile models [1, 2].

Chapter 11 Dark Agile: Perceiving People As Assets, Not Humans

127

So, what does this mean? Let’s take a closer look at the experience of agile

development seen from a software developer working out of India in one of our

empirical case studies between Bangalore, India, and Phoenix, United States [3].

Global software development can at a high level be organized as outsourcing or

off-shoring. Outsourcing is when you move work from one internal location toward an

external partner, who then does the work for you. Differently, global off-shoring is when

work is moved to a different location, but still within the same company—like IBM USA

working with IBM India. In our empirical cases, we are looking at global out-sourcing,

which means that work is moved from either the United States or Denmark to a different

geographical location and a different organizational setting.

In outsourcing setups, it is important to note that the power remains with the client.

This mean the client chooses which company is doing the work, and deciding to move

work to other outsourcing vendors (still in the same region of the world) is always an

option. In one of our cases, the U.S. client put together a global agile team comprised of

experts from different IT vendor companies in India and then one representative from

the client was the project owner. This meant that the team members, even being in the

same team, were simultaneously in competition. The client was able to exchange specific

members with new people if particular individuals were not performing well accordantly

to the client. This multivendor setup created a high-performance team, which despite

being geographically distributed was highly productive. The global agile setup raised the

competition among the team members, and from a productivity perspective, this was

a huge success. But how did the agile principles—concretely manifested in the scrum

methodology—impact the global outsourcing team?

�Tracking Work to Increase Productivity
One of the main processes in scrum is that members of the team specify what they are

currently working on, directly linked to specific numbers of hours. How many hours

specific tasks might take is up to the team members, who negotiate the resources

required during planning. In this way, each team member is tasked with assignments

to be accomplished and finished within detailed time frames. In India, the workday

of software developers is ten hours. In all software projects, some hours will be spent

on other activities than directly on the project. Therefore, the hours that are tracked

are eight hours a day. This means that each day, each team member is committing to

produce software tasks resembling the work of eight hours. Thus, regardless of what

Chapter 11 Dark Agile: Perceiving People As Assets, Not Humans

128

might happen, each team member must produce the task assignment. Even if their child

gets sick and they need to leave the office, they cannot. They have to stay on task and

complete the task as planned or else their client might move the task to a competing

IT-vendor company (still in India). Interestingly, the software developers working in

Bangalore explained to us how they prefer waterfall over agile. Waterfall had less time

pressure since they had a specific target—and longer deadlines, which made it possible

to pick up a sick child if needed, rather than being constantly pushed by short deadlines.

�Daily Stand-Up Meeting to Monitor Productivity
Besides agile allowing clients to constantly track the productivity of each individual

team member, global agile also forced team members to participate in daily stand-up

meetings. While the stand-up meeting alone was not problematic, the time of day for

the meeting was. Because of the time difference between the East Coast in the United

States and India, the time for stand-up meetings were set to late evening (10 p.m.) Indian

time. This was regardless of the day of the week—so all days including Friday, there

were stand-up meetings in the evening. This meant that team members involved in

global agile outsourcing were forced to work out of sync locally to accommodate global

work. Working out of sync locally is problematic in terms of family life or social events,

especially in situations where the software developers had their families in villages far

away. Several developers we spoke with moved to the electronic city of Bangalore during

the week and then traveled back on the weekends. The stand-up meetings made it

difficult to travel home Friday evening. Furthermore, the tenure of the projects changed

from being four- or five-month-long projects to being more than a year. This provided

constant pressure on the software developers; there was no time for breaks or vacations.

The high level of productivity for the extended time led to a stressful environment.

�Stressful Work Environment
Over the three years we conducted interviews, it became apparent that, while the global

agile team had high productivity and was the preferred IT vendor for the customer, the

software developers working in the global agile setting felt “more pressure, more time

pressure, stress” and the experience of agile methodology was that it “is very stressful, at

the tester level.” It is important to note that while it can be expected that people in higher

Chapter 11 Dark Agile: Perceiving People As Assets, Not Humans

129

positions working in global projects be available at odd times and work many hours, the

people working under pressure in this situation were the developers and testers working

in low-level positions. The way global agile was implemented meant that the customer

pressured the team on speed constantly—so even though agile principles stipulate that

the ideal sprint size is two to three weeks, the customer pushed it down to one week.

Analyzing, designing, implementing, and testing workable deliveries within five days of

work is hard, especially for the testers. As a delivery manager explained to us: “Yes, for

the techies, or for the technical department, it is a very stressful, stressful methodology I

would say because the expectation is too high from the customer’s side.”

�Cost of Productivity
There is no doubt that the IT vendor we studied was highly productive in terms of speed

and quality, delivered good quality work on time, and was the customers’ preferred IT

vendor, even in the competitive multivendor setup. As the preferred IT vendor, they

gained more tasks, especially in situations where other vendors were not able to deliver.

Now the question is, what was the cost of this high productivity?

Financially, global agile is more expensive than waterfall methods for the customer:

when talking with the IT vendor, it was clear that they were able to produce the same

kind of products much cheaper under the waterfall methodology. The argument for

global agile as a way to save costs, which are often a fundamental problem in global

software development [10], was not on the agenda. When we asked the IT vendor why

they were using agile principles in the first place, they explained that it was a request

from the customers: the customers wanted the vendor to use scrum. Let’s take a step

back and reflect on this request from the customers. When you, as a company, are

hired to deliver a service or a product, negotiations about the price, timeline, and

collaboration are to be expected. Clients direct requests for how the vendor is to use

specific methods are less obvious. So, why did the client request this? Despite it being a

more expensive methodology for the client, they gained direct access to highly qualified

people, who all had proportionally high salaries (though the IT vendor then had

difficulty including and training new people to work on the projects).

What about the human costs of this high productivity? What happens to people

when agile goes global? If we return to the principles in the agile manifesto, we find that

the principles of “working software over comprehensive documentation,” “customer

collaboration over contract negotiation,” and “responding to change over following a plan”

Chapter 11 Dark Agile: Perceiving People As Assets, Not Humans

130

are all very pertinent in the global agile outsourcing setting as well. In our case, there was

close collaboration with the customer, the scope and objectives were a moveable target,

and there was a constant focus on working software deliveries. However, if we look at the

first principle of “individuals and interaction over processes and tools,” we see a shift. The

processes and tools created to structure the agile delivery were used to micromanage the

software developers’ work in all the small details. We can view the global agile principles

in our case as an algorithmic machine, with specific input and output features. The input

measures are the numbers, the hours, and the deliverables deadlines, which are then used

to push people to maximize their efforts. Given the tools and processes of agile, the remote

client is able to monitor and control every little aspect of the work done by the software

developers. Sure, global agile is very productive. If the only criteria for success is high-

quality work done fast, global agile is attractive.

Nevertheless, there is a dark side to global agile, since in the case of scrum comes

tools and processes that can be used to micromanage software developers. Focusing

only on productivity, we risk losing sight of individuals and the “mushy stuff” that is at

the core of the agile ideals. According to Jim Highsmith for the Agile Alliance, “At the

core, I believe agile methodologists are really about the ‘mushy’ stuff about delivering

good products to customers by operating in an environment that does more than talk

about ‘people as our most important asset’ but actually ‘acts’ as if people were the most

important and lose the word ‘asset’“ (http://agilemanifesto.org/history.html).

I that we must consider the conditions for work created by the constant focus on

productivity introduced and controlled by agile tools and processes. This risk of the

“global agile algorithmic machine” is that it turns people into assets, resources, and

numbers—and we lose sight of individual developers. While waterfall methodologies

have been criticized for heavily regulating work and introducing micromanagement, our

empirical observations point to how the global agile methodology can also be used for

micromanagement and strong regulation of software developers.

Global agile provides good conditions for high productivity in software engineering

but also these risks:

•	 Perceiving people as assets, not human beings

•	 Creating stressful work environments in continuous work cycles

•	 Supporting clients in micromanagement from afar

•	 Making developers and testers work out of sync with their local time

zones

Chapter 11 Dark Agile: Perceiving People As Assets, Not Humans

http://agilemanifesto.org/history.html

131

What we risk losing is the focus on the software developers and the self-organization

and empowerment that are supposed to be introduced with agile methodologies.

Software engineering organized by global agile methodologies in highly competitive

multivendor settings risks resembling the assembly line in factory work. Is this really

what we want the future of software engineering to look like?

�Open Questions for Productivity in Software
Engineering
I am not arguing that global agile is problematic per se. Clearly, in all the NexGSD

empirical studies, closely coupled collaboration was essential to get that collaboration

to function across sites, and the agile principles enable and stipulate closely coupled

collaboration. However, I am arguing that “being a software developer involved in global

outsourcing” means different things depending on where you physically are located in

the world. Software developers at low-level positions working in Bangalore, India, have

different conditions for work than software developers working in Ballerup, Denmark

[9]. This means that they will experience the implementation of global agile in different

ways. Software engineers located in Denmark have a privileged position in the global

setup. For software engineers located in India, the way global agile techniques, tools,

and processes shapes work do not provide the same conditions for self-organization

and empowerment. Moreover, it means that when we are designing software tools

and processes to support global work, we should take into consideration the different

conditions and not just focus on productivity. Fast delivery and high-quality code should

not be our main measurements; instead, we should start to develop measurements that

are more nuanced and take into consideration work conditions. We must think about

how artifacts such as “burndown charts” reflect only partial aspects of productivity [10],

and we should ask, what is not represented in such artifacts? What are artifacts and

tools neglecting to make visible? Finally, we need to consider how to ensure that we do

not lose our human values when we think about how we design tools and processes

and create good work conditions for all, no matter where in the world they are placed.

People work more and more in the global setting; and as life and work starts to blend due

to us bringing home our laptops and continuing checking e-mail in the evenings and

on weekends, we need to prepare long-term strategies for dealing with the pressure of

productivity—even for low-level software developers and testers working in India.

Chapter 11 Dark Agile: Perceiving People As Assets, Not Humans

132

When software developers complain that they have to attend a meeting at 10 p.m.

and are not able to leave work to pick up sick children, they are not complaining about

agile development per se. Instead, they are complaining about the lack of power and

decision-making within the organizational setup. Agile development works well for

software developers in Scandinavia, Northern Europe, and United States because the

software teams are powerful and privileged. When clients demand agile development

from software developers elsewhere, those developers are not empowered. Instead, the

power to choose and organize their work is taken away from them. The following are

important questions we must ask:

•	 What kind of productivity and values do we want software

engineering to reflect?

•	 How do we ensure that these values are manifested in our

productivity measurements shaping software engineering processes

and tools?

•	 How can we design software engineering practices and technologies

to support productivity without losing human values?

�Key Ideas
The following are the key ideas from this chapter:

•	 Global agile software development has several risks: perceiving

people as assets, not humans; creating a stressful work environment;

micromanagement; and making engineers work out of sync with

local time zones.

•	 Productivity measurement should be about more than speed and

quality.

�Acknowledgments
This chapter is based upon the academic research paper co-authored by Pernille

Bjørn, Anne-Marie Søderberg, and S. Krishna titled “Translocality in Global Software

Development: The Dark Side of Global Agile“ and published in the journal of Human-

Computer Interaction [3]. Further, the work referred to is part of several subprojects

Chapter 11 Dark Agile: Perceiving People As Assets, Not Humans

133

in the NexGSD research project (nexgsd.org), which was financially supported by the

National Council for Strategic Research, Ministry of Science, Innovation, and Higher

Education in Denmark.

�References

	 [1]	 Bjørn, P. (2016). “New fundamentals for CSCW research: From

distance to politics.” Interactions (ACM SIGCHI) 23(3): 50–53.

	 [2]	 Bjørn, P., M. Esbensen, R. E. Jensen and S. Matthiesen (2014).

“Does distance still matter? Revisiting the CSCW fundamentals on

distributed collaboration.” ACM Transaction Computer Human

Interaction (ToChi) 21(5): 1–27.

	 [3]	 Bjørn, P., A.-M. Søderberg and S. Krishna (2017). “Translocality

in Global Software Development: The Dark Side of Global Agile.”

Human-Computer Interaction 10.1080/07370024.2017.1398092.

	 [4]	 Christensen, L. and P. Bjørn (2014). Documentscape:

Intertextuallity, sequentiality and autonomy at work. ACM CHI

Conference on Human Factors in Computing Systems Toronto,

ON, Canada, ACM.

	 [5]	 Christensen, L. R., R. E. Jensen and P. Bjørn (2014). Relation

work in collocated and distributed collaboration. COOP: 11th

International Conference on Design of Cooperative Systems. Nice,

France, Springer.

	 [6]	 Esbensen, M. and P. Bjørn (2014). Routine and standardization

in Global software development. GROUP. Sanible Island, Florida,

USA, ACM.

	 [7]	 Jensen, R. E. and B. Nardi (2014). The rhetoric of culture as an act

of closure in cross- national software development department.

European Conference of Information System (ECIS). Tel Aviv, AIS.

	 [8]	 Matthiesen, S. and P. Bjørn (2015). Why replacing legacy systems

is so hard in global software development: An information

infrastructure perspective. CSCW. Vancouver, Canada, ACM.

Chapter 11 Dark Agile: Perceiving People As Assets, Not Humans

134

	 [9]	 Matthiesen, S. and P. Bjørn (2016). Let’s look outside the office:

Analytical lens unpacking collaborative relationships in global

work. COOP2016. Trento, Italy, Springer.

	[10]	 Matthiesen, S. and P. Bjørn (2017). “When distribution of tasks and

skills are fundamentally problematic: A failure story from global

software outsourcing.” PACM on Human-Computer Interaction:

Online first 2018 ACM Conference on Computer-supported

Cooperative Woek and Social Computing 1(2, Article 74): 16.

	[11]	 Matthiesen, S., P. Bjørn and L. M. Petersen (2014). “Figure Out

How to Code with the Hands of Others”: Recognizing Cultural

Blind Spots in Global Software Development. Computer

Supported Cooperative Work (CSCW). Baltimore, USA, ACM.

	[12]	 Søderberg, A.-M., S. Krishna and P. Bjørn (2013). “Global Software

Development: Commitment, Trust and Cultural Sensitivity in

Strategic Partnerships.” Journal of International Management

19(4): 347–361.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 11 Dark Agile: Perceiving People As Assets, Not Humans

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 11: Dark Agile: Perceiving People As Assets, Not Humans
	Revisiting the Agile Manifesto
	Agile in Global Outsourcing Setups
	Tracking Work to Increase Productivity
	Daily Stand-Up Meeting to Monitor Productivity
	Stressful Work Environment
	Cost of Productivity
	Open Questions for Productivity in Software Engineering
	Key Ideas
	Acknowledgments
	References

