Skip to main content

Nuclear Power Plants

  • Chapter
  • First Online:
Thermodynamics in Nuclear Power Plant Systems

Abstract

Currently, about half of all nuclear power plants are located in the United States. There are many different kinds of nuclear power plants, and we will discuss a few important designs in this text. A nuclear power plant harnesses the energy inside atoms themselves and converts this to electricity. All of us use this electricity. In Sect. 18.1 of this chapter, we show you the idea of the fission process and how it works. A nuclear power plant uses controlled nuclear fission. In this chapter, we will explore how a nuclear power plant operates and the manner in which nuclear reactions are controlled. There are several different designs for nuclear reactors. Most of them have the same basic function, but one’s implementation of this function separates it from another. There are several classification systems used to distinguish between reactor types. Below is a list of common reactor types and classification systems found throughout the world, and they are briefly explained down below according to three types of classification either (1) classified by moderator material, (2) classified by coolant material, or (3) classified by reaction type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. F. Settle web Site http://www.chemcases.com/nuclear/index.html

  2. B.L. Cohen, Breeder reactors: A renewable energy source. Am. J. Phys. 51, 1 (1983)

    Google Scholar 

  3. A. Weinberg, The Second Fifty Years of Nuclear Fission, in Proc. Special Symposium: 50 Years of Nuclear Fission in Review, Ontario, Canada, June 5, 1989, Canadian Nuclear Society

    Google Scholar 

  4. N. Seko, Aquaculture of uranium in seawater by a fabric-adsorbent submerged system. Nucl. Technol. 144, 274 (2003)

    Article  Google Scholar 

  5. Some Physics of Uranium. Available on the Internet at http://www.worldnuclear.org/education/phys.html (December 2005)

  6. W.H. Hannum, The Technology of the Integral Fast Reactor and its Associated Fuel Cycle. Prog. Nucl. Energy 31, 1 (1997)

    Article  Google Scholar 

  7. TUDelft. http://www.iri.tudelft.nl/~rooijen/spectra_en.html

  8. http://setis.ec.europa.eu/newsroom-items-folder/nuclear-fission-power-generation

  9. World Nuclear Association website. http://www.world-nuclear.org/

  10. IAEA Power Reactor Information System website. http://www.iaea.org/programmes/a2/

  11. http://www.ne.doe.gov/geniv/neGenIV1.html

  12. Sustainable Nuclear Energy Technology Platform, Strategic Research Agenda, May 2009, www.SNETP.eu

  13. Nuclear Energy Outlook 2008, OECD/NEA Report No. 6348, 2008, Nuclear Energy Agency, Paris

    Google Scholar 

  14. 2009 Update of the MIT 2003 Future of Nuclear Power, An Interdisciplinary MIT Study, 2003, Massachusetts Institute of Technology, Cambridge USA, May 2009. http://web.mit.edu/nuclearpower/pdf/nuclearpower-update2009.pdf

  15. Projected Costs of Generating Electricity, 2005 Update, NEA/OECD, 2005

    Google Scholar 

  16. The Future of Nuclear Power – The Role of Nuclear Power in a Low Carbon UK Economy, Consultation Document, 2007, DTI, UK. http://www.berr.gov.uk/files/file39197.pdf

  17. Uranium 2007: Resources, production and demand. OECD nuclear energy agency and the International Atomic Energy Agency, OECD 2008 NEA N 6345

    Google Scholar 

  18. Strategic and Policy Issues Raised by the Transition from Thermal to Fast Nuclear Systems, 2009, OECD/NEA report no. 6352

    Google Scholar 

  19. A Technology Roadmap for Generation IV Nuclear Energy Systems, 2002, GIF-002 - 00, Issued by the US DoE and the Generation IV International Forum. http://www.gen-4.org/PDFs/GenIVRoadmap.pdf

  20. Proposal for a COUNCIL DIRECTIVE (EURATOM) setting up a Community framework for nuclear safety COM(2008) 790/3, November 2008

    Google Scholar 

  21. COUNCIL OF THE EUROPEAN UNION Legislative Acts and Other Instruments 10667/09, June 2009

    Google Scholar 

  22. http://www.ne.doe.gov/pdfFiles/NGNP_reporttoCongress.pdf

  23. Updated Emissions Projections, July 2006, DTI. http://www.dti.gov.uk/files/file31861.pdf

  24. DTI: Energy White Paper, Meeting the Energy Challenge. http://www.dti.gov.uk/energy/whitepaper

  25. DTI Analysis. http://www.dti.gov.uk/energy/whitepaper/consultations/nuclearpower2007

  26. http://www.ne.doe.gov/geniv/documents/gen_iv_roadmap.pdf

  27. http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/fasbre.html

  28. A.K. Raja, Amit Prakash Srivastava, Manish Dwivedi, “Power Plant Engineering”, New Age International (P) Limited, Publishers, 2006

    Google Scholar 

  29. L. Mathieu, D. Heuer, E. Merle-Lucotte, et al., Possible configurations for the thorium molten salt reactor and advantages of the fast non-moderated version. Nucl Sci Eng 161, 78–89 (2009)

    Article  Google Scholar 

  30. C.W. Forsberg et al., in Liquid Salt Applications and Molten Salt Reactors, Revue Générale du Nucléaire N° 4/2007, 63 (2007)

    Google Scholar 

  31. E. Merle-Lucotte, D. Heuer et al., Introduction of the Physics of Molten Salt Reactor, Materials Issues for Generation IV Systems, NATO Science for Peace and Security Series B, Editions Springer, 501–521 (2008)

    Google Scholar 

  32. E. Merle-Lucotte, D. Heuer et al., Minimizing the Fissile Inventory of the Molten Salt Fast Reactor, in Proceedings of the Advances in Nuclear Fuel Management IV (ANFM 2009), Hilton head Island, USA (2009)

    Google Scholar 

  33. C. Renault, M. Hron, R. Konings, D.E. Holcomb, The molten salt reactor (MSR) in generation IV: Overview and perspectives, in GIF Symposium Proceeding, (Paris, France, 2009)

    Google Scholar 

  34. V. Ignatiev et al., Characteristics of molten salt actinide recycler and transmuter system, in Proceedings of International Conference on Emerging Nuclear Energy Systems, Brussels, Belgium, 21–26 August: paper ICQ064 (2005)

    Google Scholar 

  35. ISTC# 1606 final report, International scientific technical centre, Moscow, July, 2007

    Google Scholar 

  36. C.W. Forsberg, P.F. Peterson and R.A. Kochendarfer, Design options for the advanced high-temperature reactor?, in Proc. 2008 International Congress on Advances in Nuclear Power Plants (ICAPP?08), Anaheim, CA USA, June 8–12, 2008

    Google Scholar 

  37. Ph. Bardet et al., Design, Analysis and Development of the Modular PB-AHTR, in Proc. 2008 International Congress on Advances in Nuclear Power Plants (ICAPP?08), Anaheim, CA USA, June 8–12, 2008

    Google Scholar 

  38. V. Ignatiev, A. Surenkov, Material performance in molten salts. Compr Nucl Mater 5, 221–250 (2012)

    Article  Google Scholar 

  39. O. Bene, R.J.M. Konings, Molten salt reactor fuel and coolant. Compr Nucl Mater 3, 359–389 (2012)

    Article  Google Scholar 

  40. E. Merle-Lucotte, D. Heuer, M. Allibert, M. Brovchenko, N. Capellan, and V. Ghetta, Launching the thorium fuel cycle with the molten salt fast reactor, Contribution 11190, International Congress on Advances in Nuclear Power Plants (ICAPP), Nice, France (2011)

    Google Scholar 

  41. E. Merle-Lucotte, D. Heuer, M. Allibert, X. Doligez, V. Ghetta, Optimizing the Burning Efficiency and the Deployment Capacities of the Molten Salt Fast Reactor?, Contribution 9149, Global 2009, The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives, Paris, France (2009)

    Google Scholar 

  42. Doligez et al., Numerical tools for Molten Salt Reactors simulations, in Proceedings of the International Conference Global 2009 – The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives, Paris, France (2009)

    Google Scholar 

  43. E. Merle-Lucotte, D. Heuer, M. Allibert, X. Doligez, V. Ghetta, Simulation Tools and New Developments of the Molten Salt Fast Reactor, Contribution A0115, European Nuclear Conference ENC2010, Barcelone, Espagne (2010)

    Google Scholar 

  44. M. Brovchenko, D. Heuer, E. Merle-Lucotte, M. Allibert, N. Capellan, V. Ghetta, A. Laureau, Preliminary safety calculations to improve the design of Molten Salt Fast Reactor, PHYSOR 2012 Advances in Reactor Physics Linking Research, Industry, and Education, Knoxville, Tennessee, USA, April 15–20, 2012, on CD-ROM

    Google Scholar 

  45. S. Delpech, E. Merle-Lucotte, T. Augé, D. Heuer, MSFR: Material issued and the effect of chemistry control, Generation IV International Forum Symposium, Paris, France (2009)

    Google Scholar 

  46. M. Beilmann, O. Bene, R.J.M. Konings, T. Fanghänel, Thermodynamic assessment of the (LiF + UF3) and (NaF + UF3) systems. J. Chem. Thermodyn. 57, 22–31 (2013)

    Article  Google Scholar 

  47. O. Bene, M. Beilmann, R.J.M. Konings, Thermodynamic assessment of the LiF-NaF-ThF4-UF4. J. Nucl. Mater. 405(2), 186–198 (2010)

    Article  Google Scholar 

  48. S. Delpech, E. Merle-Lucotte, D. Heuer, M. Allibert, V. Ghetta, C. Le-Brun, L. Mathieu, G. Picard, Reactor physics and reprocessing scheme for innovative molten salt reactor system. J Fluor Chem 130(1), 11–17 (2009)

    Article  Google Scholar 

  49. S. Jaskierowicz, S. Delpech, P. Fichet, C. Colin, C. Slim and G. Picard, Pyrochemical Reprocessing of Thorium-Based Fuel, in Proceeding of ICAPP2011, Nice, France (2011)

    Google Scholar 

  50. V. Ignatiev et al., Molten salt reactor: new possibilities, problems and solutions. At Energ 112(3), 135 (2012)

    Article  Google Scholar 

  51. V. Ignatiev, et al, Progress in Development of MOSART Concept with Th Support, ICAPP?12, Chicago, USA, June 24–28, 2012, Paper No. 12394

    Google Scholar 

  52. V. Afonichkin, A. Bovet, V. Shishkin, Salts purification and voltammetric study of the electro reduction of U(IV) to U(III) in molten LiF–ThF4. J. Nucl. Mater. 419(1–3), 347 (2011)

    Article  Google Scholar 

  53. F. Baque, K. Paumel, G. Cornloup, M.A. Ploix and J.M. Augem, Non-destructive Examination of Immersed Structures within Liquid Sodium, ANIMMA 2011, Ghent, June 6–9 (2011)

    Google Scholar 

  54. Y.S. Joo, C.G. Park, J.B. Kim, S.H. Lim, Development of ultrasonic waveguide sensor for under-sodium inspection in a sodium-cooled fast reactor. NDT&E Int 44, 239–246 (2011)

    Article  Google Scholar 

  55. J. Floyd, N. Alpy, D. Haubensack, G. Avakian, G. Rodriguez, On-design efficiency reference charts for the supercritical CO2 Brayton cycle coupled to a SFR, in Proc. ICAPP2011, Nice, France, 2–5 May, 2011, Paper 11054

    Google Scholar 

  56. A. Moisseytsev, J.J. Sienicki, Dynamic simulation and control of the S-CO2 cycle: From full power to decay heat removal, in Proc. ATH ?12, Embedded Topical Meeting of ANS 2012 Winter Meeting, San Diego, CA, USA, 11–15 November, 2012, Paper 6461

    Google Scholar 

  57. J.J. Sienicki. et. al., Synthesis of results obtained on sodium components and technology through the generation IV international forum SFR component design and balance-of-plant project, in Proc. FR13, Paris, France, 4–7, March, 2013

    Google Scholar 

  58. F. Delage et al., Status of advanced fuel candidates for Sodium Fast Reactor within the Generation IV International Forum, J. of Nuclear Materials, NUMA46668 (to be published), 2013

    Google Scholar 

  59. Y. Oka, S. Koshizuka, Y. Ishiwatari, A. Yamaji, Super Light Water Reactors and Super Fast Reactors (Springer, New York, 2010)

    Google Scholar 

  60. K. Yamada, S. Sakurai, Y. Asanuma, R. Hamazaki, Y. Ishiwatari, K. Kitoh, Overview of the Japanese SCWR concept developed under the GIF collaboration, in Proc. ISSCWR-5, Vancouver, Canada, March 13–16, 2011

    Google Scholar 

  61. T. Schulenberg, J. Starflinger, High Performance Light Water Reactor ? Design and Analyses (KIT Scientific Publishing, New York, 2012)

    Google Scholar 

  62. M. Yetisir, W. Diamond, L.K.H. Leung, D. Martin, R. Duffey, Conceptual Mechanical Design for A Pressure-Tube Type Supercritical Water-Cooled Reactor, in Proc. 5th International Symposium on Supercritical Water-cooled Reactors, Vancouver, Canada, March 13–17, 2011

    Google Scholar 

  63. S.B. Ryzhov, V.A. Mokhov, M.P. Nikitenko, A.K. Podshibyakin, I.G. Schekin, A.N. Churkin, Advanced designs of VVER reactor plant, The 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8), October 10–14, 2010, Shanghai, China, Paper N8P0184

    Google Scholar 

  64. S.B. Ryzhov, P.L. Kirillov, et al., Concept of a single-circuit RP with vessel type supercritical water-cooled reactor, in Proc. ISSCWR-5, Vancouver, Canada, March 13–16, 2011

    Google Scholar 

  65. I.L. Pioro, R.B. Duffey, Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications (ASME Press, New York, 2007)

    Google Scholar 

  66. J. Kaneda, S. Kasahara, F. Kano, N. Saito, T. Shikama, H. Matsui, Material development for supercritical water-cooled reactor, in Proc. ISSCWR-5, Vancouver, Canada, March 13–16, 2011

    Google Scholar 

  67. D. Guzonas, F. Brosseau, P. Tremaine, J. Meesungnoen, J.-P. Jay-Gerin, Water chemistry in a supercritical water? Cooled pressure tube reactor. Nucl. Technol. 179, 205–219 (2012)

    Article  Google Scholar 

  68. http://www.iket.fzk.de/hplwr/

  69. http://www.nserc-crsng.gc.ca/Professors-Professeurs/RPP-PP/GENIV0809Priorities-GENIV0809Priorites_eng.asp

  70. R. Stainsby, J.C Garnier, P. Guedeney, K. Mikityuk, T. Mizuno, C. Poette, M. Pouchon, M. Rini, J. Somers, E. Touron,The Generation IV Gas-cooled Fast Reactor. Paper 11321, Proc. ICAPP 2011 Nice, France, 2–5 May 2011

    Google Scholar 

  71. Z. Perkó, J.L. Kloosterman, S. Fehér, Minor actinide transmutation in GFR600. Nucl. Technol. 177, 83–97 (2012)

    Article  Google Scholar 

  72. R. Stainsby, K. Peers, C. Mitchell, C. Poette, K. Mikityuk, J. Somers, Gas cooled fast reactor research in Europe? Nucl. Eng. Des. 241, 3481–3489 (2011)

    Article  Google Scholar 

  73. A. Epiney, N. Alpy, K. Mikityuk, R. Chawla, A standalone decay heat removal device for the gas-cooled fast reactor for intermediate to atmospheric pressure conditions. Nucl. Eng. Des. 242, 267–284 (2012)

    Article  Google Scholar 

  74. R.R. Smith, D.W. Cissei, Fast Reactor Operation in the United States, in International Symposium on Design, Construction, and Operating Experience of Demonstration LMFBRs, Bologna, Italy, April 10–14, 1978

    Google Scholar 

  75. U.S. Nuclear energy research advisory committee (NERAC) and the generation IV international forum (GIF), Generation IV technology roadmap, Report GIF-002-00, December 2002

    Google Scholar 

  76. A.E. Waltar, D.R. Todd, P.V. Tsvetkov, Fast Spectrum Reactors (Springer, New York, 2012)

    Book  Google Scholar 

  77. Didier De Bruyn, Dirk Maes, Luigi Mansani, Benoit Giraud, From MYRRHA to XT-ADS: the design evolution of an experimental ADS system, AccApp’07, Pocatello, Idaho, July 29–August 2, 2007

    Google Scholar 

  78. L. Cinotti, G. Locatelli, H. Aït Abderrahim, S. Monti, G. Benamati, K. Tucek, D. Struwe, A. Orden, G. Corsini, D. Le Carpentier, The ELSY Project, Paper 377, in Proceedings of the International Conference on the Physics of Reactors (PHYSOR), Interlaken, Switzerland, 14–19 September, 2008

    Google Scholar 

  79. Alemberti et al., The European Lead Fast Reactor: Design, Safety Approach and Safety Characteristics, IAEA Technical Meeting on Impact of Fukushima Event on Current and Future FR Designs, Dresden, Germany, 2012

    Google Scholar 

  80. Alemberti et al., The Lead Fast Reactor? Demonstrator (ALFRED) and ELFR Design, in International Conference on Fast Reactor and Nuclear Fuel Cycle (FR13), Paris, France, 2013

    Google Scholar 

  81. M. Takahashi, LFR Development in Japan, 11th LFR Prov. SSC Meeting, Pisa, Italy, 16 April 2012

    Google Scholar 

  82. M. Takahashi et al., Pb-Bi-cooled direct contact boiling water small reactor. Prog Nucl Energy 47, 190–201 (2005)

    Article  Google Scholar 

  83. H. Sekimoto, A. Nagata, Fuel cycle for ?CANDLE? Reactors, in Proc. of Workshop on Advanced Reactors with Innovative Fuels ARWIF-2008, Tsuruga/Fukui, 20–22 February 2008

    Google Scholar 

  84. W.J. Kim et al., Supercritical Carbon Dioxide Brayton Power Conversion Cycle Design for Optimized Battery-Type Integral Reactor System, Paper 6142, ICAPP-06, Reno, NV, USA, June 4–8, 2006

    Google Scholar 

  85. I.S. Hwang, A sustainable regional waste transmutation system: PEACER, plenary invited paper, ICAPP-06, Reno, NV, U.S.A., June 4–6, 2006

    Google Scholar 

  86. C. Smith, W. Halsey, N. Brown, J. Sienicki, A. Moisseytsev, D. Wade, SSTAR: The US lead-cooled fast reactor (LFR). J. Nucl. Mater. 376(3), 255–259 (2008)

    Article  Google Scholar 

  87. M.P. Short, R.G. Ballinger, Design of a Functionally Graded Composite for Service in High Temperature Lead and Lead-Bismuth Cooled Nuclear Reactors, MIT-ANP-TR-131 (2010)

    Google Scholar 

  88. GIF-LFR Provisional System Steering Committee (PSSC), Draft System Research Plan for the Lead-cooled Fast Reactor (LFR) (2008)

    Google Scholar 

  89. G.I. Toshinsky, O.G. Komlev, I.V. Tormyshev, et al. Effect of Potential Energy Stored in Reactor Facility Coolant on NPP Safety and Economic Parameters, in Proceedings of ICAPP 2011, Nice, France, May 2–5, 2011, Paper 11465

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zohuri, B., McDaniel, P. (2019). Nuclear Power Plants. In: Thermodynamics in Nuclear Power Plant Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-93919-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93919-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93918-6

  • Online ISBN: 978-3-319-93919-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics