Skip to main content

Ant Colony Optimisation-Based Classification Using Two-Dimensional Polygons

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9882))

Included in the following conference series:

Abstract

The application of Ant Colony Optimization to the field of classification has mostly been limited to hybrid approaches which attempt at boosting the performance of existing classifiers (such as Decision Trees and Support Vector Machines (SVM)) — often through guided feature reductions or parameter optimizations.

In this paper we introduce PolyACO: A novel Ant Colony based classifier operating in two dimensional space that utilizes ray casting. To the best of our knowledge, our work is the first reported Ant Colony based classifier which is non-hybrid, in the sense, that it does not build on any legacy classifiers. The essence of the scheme is to create a separator in the feature space by imposing ant-guided random walks in a grid system. The walks are self-enclosing so that the ants return back to the starting node forming a closed classification path yielding a many edged polygon. Experimental results on both synthetic and real-life data show that our scheme is able to perfectly separate both simple and complex patterns, without utilizing “kernel tricks” and outperforming existing classifiers, such as polynomial and linear SVM. The results are impressive given the simplicity of PolyACO compared to other approaches such as SVM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The hyperplane is a line in a two-dimensional space.

  2. 2.

    Note that s is one of the possible polygons with the shortest circumference that is able to perfectly separate the data. The reason for this is explained in Sect. 3.3.

  3. 3.

    Many more data sets where tested, but due to the limited space in the paper only the most interesting results are included.

  4. 4.

    http://archive.ics.uci.edu/ml/.

References

  1. Asmar, D., Elshamli, A., Areibi, S.: A comparative assessment of ACO algorithms within a TSP environment. Dyn. Continous Discrete Impulsive Syst.-Ser. B-Appl. Algorithms 1, 462–467 (2005)

    Google Scholar 

  2. Chan, A., Freitas, A.A.: A new classification-rule pruning procedure for an ant colony algorithm. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 25–36. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Daly, R., Shen, Q.: Learning Bayesian Network Equivalence Classes with Ant Colony Optimization (2014). arXiv preprint arXiv:1401.3464

  4. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  5. Gutjahr, W.J.: ACO algorithms with guaranteed convergence to the optimal solution. Inf. Process. Lett. 82(3), 145–153 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hota, S., Satapathy, P., Jagadev, A.K.: Modified ant colony optimization algorithm (MAnt-Miner) for classification rule mining. In: Jain, L.C., Patnaik, S., Ichalkaranje, N. (eds.) Intelligent Computing, Communication and Devices, pp. 267–275. Springer, New Delhi (2015)

    Chapter  Google Scholar 

  7. Junior, I.C.: Data mining with ant colony algorithms. In: Huang, D.-S., Jo, K.-H., Zhou, Y.-Q., Han, K. (eds.) ICIC 2013. LNCS, vol. 7996, pp. 30–38. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Karaboga, D., Ozturk, C.: A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. 11(1), 652–657 (2011)

    Article  Google Scholar 

  9. Lian, T.A., Llave, M.R., Goodwin, M., Bouhmala, N.: Towards multilevel ant colony optimisation for the Euclidean symmetric traveling salesman problem. In: Ali, M., Kwon, Y.S., Lee, C.-H., Kim, J., Kim, Y. (eds.) IEA/AIE 2015. LNCS, vol. 9101, pp. 222–231. Springer, Heidelberg (2015)

    Google Scholar 

  10. Liu, B., Abbas, H., McKay, B.: Classification rule discovery with ant colony optimization. In: IEEE/WIC International Conference on Intelligent Agent Technology, IAT 2003, pp. 83–88. IEEE (2003)

    Google Scholar 

  11. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)

    Article  Google Scholar 

  12. Martens, D., De Backer, M., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.: Classification with ant colony optimization. IEEE Trans. Evol. Comput. 11(5), 651–665 (2007)

    Article  Google Scholar 

  13. Neumann, F., Sudholt, D., Witt, C.: Analysis of different MMAS ACO algorithms on unimodal functions and plateaus. Swarm Intell. 3(1), 35–68 (2009)

    Article  Google Scholar 

  14. Parpinelli, R.S., Lopes, H.S., Freitas, A., et al.: Data mining with an ant colony optimization algorithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)

    Article  MATH  Google Scholar 

  15. Roth, S.D.: Ray casting for modeling solids. Comput. Graph. Image Process. 18(2), 109–144 (1982)

    Article  Google Scholar 

  16. Salama, K.M., Abdelbar, A.M.: Learning neural network structures with ant colony algorithms. Swarm Intell. 1–37, 229–265 (2015)

    Article  Google Scholar 

  17. Salama, K.M., Freitas, A.A.: Ant colony algorithms for constructing Bayesian multi-net classifiers. Intell. Data Anal. 19(2), 233–257 (2015)

    Google Scholar 

  18. Stützle, T., Hoos, H.: MAX-MIN Ant System and local search for the traveling salesman problem. In: IEEE International Conference on Evolutionary Computation, 1997, pp. 309–314. IEEE (1997)

    Google Scholar 

  19. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)

    Article  MATH  Google Scholar 

  20. Stützle, T., López-Ibáñez, M., Dorigo, M.: A concise overview of applications of ant colony optimization. Wiley Encycl. Oper. Res. Manage. Sci. 26(2), 25–27 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Morten Goodwin or Anis Yazidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Goodwin, M., Yazidi, A. (2016). Ant Colony Optimisation-Based Classification Using Two-Dimensional Polygons. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2016. Lecture Notes in Computer Science(), vol 9882. Springer, Cham. https://doi.org/10.1007/978-3-319-44427-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44427-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44426-0

  • Online ISBN: 978-3-319-44427-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics