Skip to main content

Private Computation of Boolean Functions Using Single Qubits

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2024)

Abstract

Secure Multiparty Computation (SMC) facilitates secure collaboration among multiple parties while safeguarding the privacy of their confidential data. This paper introduces a two-party quantum SMC protocol designed for evaluating binary Boolean functions using single qubits. Complexity analyses demonstrate a reduction of \(66.7\%\) in required quantum resources, achieved by utilizing single qubits instead of multi-particle entangled states. However, the quantum communication cost has increased by \(40\%\) due to the amplified exchange of qubits among participants. Furthermore, we bolster security by performing additional quantum operations along the y-axis of the Bloch sphere, effectively hiding the output from potential adversaries. We design the corresponding quantum circuit and implement the proposed protocol on the IBM Qiskit platform, yielding reliable outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barz, S., Dunjko, V., Schlederer, F., Moore, M., Kashefi, E., Walmsley, I.A.: Enhanced delegated computing using coherence. Phys. Rev. A 93(3), 032339 (2016). https://doi.org/10.1103/PhysRevA.93.032339

    Article  Google Scholar 

  2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 1990, pp. 503–513. Association for Computing Machinery, New York (1990). https://doi.org/10.1145/100216.100287

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation, pp. 351–371. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3335741.3335756

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025

    Article  MathSciNet  MATH  Google Scholar 

  5. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5(1), 19–26 (2009). https://doi.org/10.1038/nphys1157

    Article  MATH  Google Scholar 

  6. Burra, S.S., et al.: High-performance multi-party computation for binary circuits based on oblivious transfer. J. Cryptol. 34(3), 1–87 (2021). https://doi.org/10.1007/s00145-021-09403-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49, 2793–2804 (2010). https://doi.org/10.1007/s10773-010-0472-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Clementi, M., Pappa, A., Eckstein, A., Walmsley, I.A., Kashefi, E., Barz, S.: Classical multiparty computation using quantum resources. Phys. Rev. A 96(6), 062317 (2017). https://doi.org/10.1103/PhysRevA.96.062317

    Article  Google Scholar 

  9. van Dam, W.: Implausible consequences of superstrong nonlocality. Nat. Comput. 12(1), 9–12 (2012). https://doi.org/10.1007/s11047-012-9353-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1

    Chapter  Google Scholar 

  11. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  MATH  Google Scholar 

  12. Diffie, W., Hellman, M.E.: New directions in cryptography, 1 edn, pp. 365–390. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3549993.3550007

  13. Ferreira, M.J., Silva, N.A., Pinto, A.N., Muga, N.J.: Statistical validation of a physical prime random number generator based on quantum noise. Appl. Sci. 13(23) (2023). https://doi.org/10.3390/app132312619

  14. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011). https://doi.org/10.1016/j.optcom.2010.09.005

    Article  MATH  Google Scholar 

  15. Keller, M., Orsini, E., Scholl, P.: Mascot: faster malicious arithmetic secure computation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 830–842. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2976749.2978357

  16. Knott, B., Venkataraman, S., Hannun, A., Sengupta, S., Ibrahim, M., van der Maaten, L.: Crypten: secure multi-party computation meets machine learning. In: Proceedings of the 35th International Conference on Neural Information Processing Systems, NIPS 2021. Curran Associates Inc., Red Hook (2024). https://doi.org/10.48550/arXiv.2109.00984

  17. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_28

    Chapter  MATH  Google Scholar 

  18. Lemus, M., et al.: Generation and distribution of quantum oblivious keys for secure multiparty computation. Appl. Sci. 10(12) (2020). https://doi.org/10.3390/app10124080

  19. Liu, W., Zhang, W.: A quantum protocol for secure manhattan distance computation. IEEE Access 8, 16456–16461 (2020). https://doi.org/10.1109/ACCESS.2020.2966800

    Article  MATH  Google Scholar 

  20. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997). https://doi.org/10.1103/PhysRevA.56.1154

    Article  MATH  Google Scholar 

  21. Loukopoulos, K., Browne, D.E.: Secure multiparty computation with a dishonest majority via quantum means. Phys. Rev. A 81(6), 062336 (2010). https://doi.org/10.1103/PhysRevA.81.062336

    Article  MATH  Google Scholar 

  22. Lu, C., Miao, F., Hou, J., Su, Z., Xiong, Y.: Secure multi-party computation with a quantum manner. J. Phys. A: Math. Theor. 54(8), 085301 (2021). https://doi.org/10.1088/1751-8121/ab9aea

    Article  MathSciNet  MATH  Google Scholar 

  23. Nielsen, M.A.: Cluster-state quantum computation. Rep. Math. Phys. 57(1), 147–161 (2006). https://doi.org/10.1016/S0034-4877(06)80014-5

    Article  MathSciNet  MATH  Google Scholar 

  24. Rahmani, Z., Barbosa, L.S., Pinto, A.N.: Quantum privacy-preserving service for secure lane change in vehicular networks. IET Quantum Commun. 4(3), 103–111 (2023). https://doi.org/10.1049/qtc2.12059

    Article  MATH  Google Scholar 

  25. Rahmani, Z., Pinto, A.H.M.N., Barbosa, L.M.D.C.S.: Secure two-party computation via measurement-based quantum computing. Quantum Inf. Process. 23(6), 221 (2024). https://doi.org/10.1007/s11128-024-04433-7

  26. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2), 022312 (2003). https://doi.org/10.1103/PhysRevA.68.022312

    Article  MATH  Google Scholar 

  27. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.org/10.1145/359340.359342

    Article  MathSciNet  MATH  Google Scholar 

  28. Santos, M.B., Gomes, A.C., Pinto, A.N., Mateus, P.: Quantum secure multiparty computation of phylogenetic trees of sars-cov-2 genome. In: 2021 Telecoms Conference (ConfTELE), pp. 1–5 (2021). https://doi.org/10.1109/ConfTELE50222.2021.9435479

  29. Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comput. 44(170), 483–494 (1985). https://doi.org/10.2307/2007968

    Article  MathSciNet  MATH  Google Scholar 

  30. Shi, R.H.: Quantum multiparty privacy set intersection cardinality. IEEE Trans. Circuits Syst. II Express Briefs 68(4), 1203–1207 (2021). https://doi.org/10.1109/TCSII.2020.3032550

    Article  MATH  Google Scholar 

  31. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982). https://doi.org/10.1109/SFCS.1982.38

Download references

Acknowledgments

This work is funded by Fundação para a Ciência e a Tecnologia (FCT)/MCTES through national funds and when applicable co-funded EU funds. The work of Zeinab Rahmani was supported by the FCT through Fundo Social Europeu and through national funds, by the European Regional Development Fund (FEDER), through the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the Portugal 2020 framework under the International Iberian Nanotechnology Laboratory (INL) Quantum Portugal Initiative Ph.D. Grant with Ref. SFRH/BD/151111/2021. The work of Armando N. Pinto, was supported by QuantaGenomics project funded within the QuantERA II Programme that has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 101017733, and with funding organisations, The Foundation for Science and Technology - FCT (QuantERA/0001/2021), Agence Nationale de la Recherche - ANR, and State Research Agency - AEI. The work of Luis S. Barbosa, was supported by IBEX project which was funded by National Funds through FCT and I.P. (Portuguese Foundation for Science and Technology) with reference 10.54499/PTDC/CCI-COM/4280/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Rahmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahmani, Z., Pinto, A.N., Barbosa, L.S. (2025). Private Computation of Boolean Functions Using Single Qubits. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2024. Lecture Notes in Computer Science, vol 15580. Springer, Cham. https://doi.org/10.1007/978-3-031-85700-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-85700-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-85699-0

  • Online ISBN: 978-3-031-85700-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics