Abstract
Secure Multiparty Computation (SMC) facilitates secure collaboration among multiple parties while safeguarding the privacy of their confidential data. This paper introduces a two-party quantum SMC protocol designed for evaluating binary Boolean functions using single qubits. Complexity analyses demonstrate a reduction of \(66.7\%\) in required quantum resources, achieved by utilizing single qubits instead of multi-particle entangled states. However, the quantum communication cost has increased by \(40\%\) due to the amplified exchange of qubits among participants. Furthermore, we bolster security by performing additional quantum operations along the y-axis of the Bloch sphere, effectively hiding the output from potential adversaries. We design the corresponding quantum circuit and implement the proposed protocol on the IBM Qiskit platform, yielding reliable outcomes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Barz, S., Dunjko, V., Schlederer, F., Moore, M., Kashefi, E., Walmsley, I.A.: Enhanced delegated computing using coherence. Phys. Rev. A 93(3), 032339 (2016). https://doi.org/10.1103/PhysRevA.93.032339
Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 1990, pp. 503–513. Association for Computing Machinery, New York (1990). https://doi.org/10.1145/100216.100287
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation, pp. 351–371. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3335741.3335756
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025
Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5(1), 19–26 (2009). https://doi.org/10.1038/nphys1157
Burra, S.S., et al.: High-performance multi-party computation for binary circuits based on oblivious transfer. J. Cryptol. 34(3), 1–87 (2021). https://doi.org/10.1007/s00145-021-09403-1
Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49, 2793–2804 (2010). https://doi.org/10.1007/s10773-010-0472-5
Clementi, M., Pappa, A., Eckstein, A., Walmsley, I.A., Kashefi, E., Barz, S.: Classical multiparty computation using quantum resources. Phys. Rev. A 96(6), 062317 (2017). https://doi.org/10.1103/PhysRevA.96.062317
van Dam, W.: Implausible consequences of superstrong nonlocality. Nat. Comput. 12(1), 9–12 (2012). https://doi.org/10.1007/s11047-012-9353-6
Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Diffie, W., Hellman, M.E.: New directions in cryptography, 1 edn, pp. 365–390. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3549993.3550007
Ferreira, M.J., Silva, N.A., Pinto, A.N., Muga, N.J.: Statistical validation of a physical prime random number generator based on quantum noise. Appl. Sci. 13(23) (2023). https://doi.org/10.3390/app132312619
Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011). https://doi.org/10.1016/j.optcom.2010.09.005
Keller, M., Orsini, E., Scholl, P.: Mascot: faster malicious arithmetic secure computation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 830–842. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2976749.2978357
Knott, B., Venkataraman, S., Hannun, A., Sengupta, S., Ibrahim, M., van der Maaten, L.: Crypten: secure multi-party computation meets machine learning. In: Proceedings of the 35th International Conference on Neural Information Processing Systems, NIPS 2021. Curran Associates Inc., Red Hook (2024). https://doi.org/10.48550/arXiv.2109.00984
Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_28
Lemus, M., et al.: Generation and distribution of quantum oblivious keys for secure multiparty computation. Appl. Sci. 10(12) (2020). https://doi.org/10.3390/app10124080
Liu, W., Zhang, W.: A quantum protocol for secure manhattan distance computation. IEEE Access 8, 16456–16461 (2020). https://doi.org/10.1109/ACCESS.2020.2966800
Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997). https://doi.org/10.1103/PhysRevA.56.1154
Loukopoulos, K., Browne, D.E.: Secure multiparty computation with a dishonest majority via quantum means. Phys. Rev. A 81(6), 062336 (2010). https://doi.org/10.1103/PhysRevA.81.062336
Lu, C., Miao, F., Hou, J., Su, Z., Xiong, Y.: Secure multi-party computation with a quantum manner. J. Phys. A: Math. Theor. 54(8), 085301 (2021). https://doi.org/10.1088/1751-8121/ab9aea
Nielsen, M.A.: Cluster-state quantum computation. Rep. Math. Phys. 57(1), 147–161 (2006). https://doi.org/10.1016/S0034-4877(06)80014-5
Rahmani, Z., Barbosa, L.S., Pinto, A.N.: Quantum privacy-preserving service for secure lane change in vehicular networks. IET Quantum Commun. 4(3), 103–111 (2023). https://doi.org/10.1049/qtc2.12059
Rahmani, Z., Pinto, A.H.M.N., Barbosa, L.M.D.C.S.: Secure two-party computation via measurement-based quantum computing. Quantum Inf. Process. 23(6), 221 (2024). https://doi.org/10.1007/s11128-024-04433-7
Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2), 022312 (2003). https://doi.org/10.1103/PhysRevA.68.022312
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.org/10.1145/359340.359342
Santos, M.B., Gomes, A.C., Pinto, A.N., Mateus, P.: Quantum secure multiparty computation of phylogenetic trees of sars-cov-2 genome. In: 2021 Telecoms Conference (ConfTELE), pp. 1–5 (2021). https://doi.org/10.1109/ConfTELE50222.2021.9435479
Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comput. 44(170), 483–494 (1985). https://doi.org/10.2307/2007968
Shi, R.H.: Quantum multiparty privacy set intersection cardinality. IEEE Trans. Circuits Syst. II Express Briefs 68(4), 1203–1207 (2021). https://doi.org/10.1109/TCSII.2020.3032550
Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982). https://doi.org/10.1109/SFCS.1982.38
Acknowledgments
This work is funded by Fundação para a Ciência e a Tecnologia (FCT)/MCTES through national funds and when applicable co-funded EU funds. The work of Zeinab Rahmani was supported by the FCT through Fundo Social Europeu and through national funds, by the European Regional Development Fund (FEDER), through the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the Portugal 2020 framework under the International Iberian Nanotechnology Laboratory (INL) Quantum Portugal Initiative Ph.D. Grant with Ref. SFRH/BD/151111/2021. The work of Armando N. Pinto, was supported by QuantaGenomics project funded within the QuantERA II Programme that has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 101017733, and with funding organisations, The Foundation for Science and Technology - FCT (QuantERA/0001/2021), Agence Nationale de la Recherche - ANR, and State Research Agency - AEI. The work of Luis S. Barbosa, was supported by IBEX project which was funded by National Funds through FCT and I.P. (Portuguese Foundation for Science and Technology) with reference 10.54499/PTDC/CCI-COM/4280/2021.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rahmani, Z., Pinto, A.N., Barbosa, L.S. (2025). Private Computation of Boolean Functions Using Single Qubits. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2024. Lecture Notes in Computer Science, vol 15580. Springer, Cham. https://doi.org/10.1007/978-3-031-85700-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-85700-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-85699-0
Online ISBN: 978-3-031-85700-3
eBook Packages: Computer ScienceComputer Science (R0)