Skip to main content

LiFT: A Surprisingly Simple Lightweight Feature Transform for Dense ViT Descriptors

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15065))

Included in the following conference series:

  • 461 Accesses

Abstract

We present a simple self-supervised method to enhance the performance of ViT features for dense downstream tasks. Our Lightweight Feature Transform (LiFT) is a straightforward and compact postprocessing network that can be applied to enhance the features of any pre-trained ViT backbone. LiFT is fast and easy to train with a self-supervised objective, and it boosts the density of ViT features for minimal extra inference cost. Furthermore, we demonstrate that LiFT can be applied with approaches that use additional task-specific downstream modules, as we integrate LiFT with ViTDet for COCO detection and segmentation. Despite the simplicity of LiFT, we find that it is not simply learning a more complex version of bilinear interpolation. Instead, our LiFT training protocol leads to several desirable emergent properties that benefit ViT features in dense downstream tasks. This includes greater scale invariance for features, and better object boundary maps. By simply training LiFT for a few epochs, we show improved performance on keypoint correspondence, detection, segmentation, and object discovery tasks. Overall, LiFT provides an easy way to unlock the benefits of denser feature arrays for a fraction of the computational cost. For more details, refer to our project page.

S. Suri and M. Walmer—Equal contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, A., et al.: Xcit: cross-covariance image transformers. Adv. Neural. Inf. Process. Syst. 34, 20014–20027 (2021)

    Google Scholar 

  2. Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep ViT features as dense visual descriptors. arXiv preprint arXiv:2112.05814 (2021)

  3. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6836–6846 (2021)

    Google Scholar 

  4. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML, vol. 2, pp. 4 (2021)

    Google Scholar 

  5. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  6. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  7. Chen, H., Pei, Y., Zhao, H., Huang, Y.: Super-resolution guided knowledge distillation for low-resolution image classification. Pattern Recogn. Lett. 155, 62–68 (2022)

    Article  Google Scholar 

  8. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  9. Chen*, X., Xie*, S., He, K.: An empirical study of training self-supervised vision transformers. arXiv preprint arXiv:2104.02057 (2021)

  10. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9640–9649 (2021)

    Google Scholar 

  11. Chen, Z., et al.: Vision transformer adapter for dense predictions. In: The Eleventh International Conference on Learning Representations (2022)

    Google Scholar 

  12. Cho, M., Kwak, S., Schmid, C., Ponce, J.: Unsupervised object discovery and localization in the wild: part-based matching with bottom-up region proposals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1201–1210 (2015)

    Google Scholar 

  13. Cortes, C., Mohri, M., Rostamizadeh, A.: Algorithms for learning kernels based on centered alignment. ArXiv abs/1203.0550 (2012), https://api.semanticscholar.org/CorpusID:9137763

  14. Cortes, C., Mohri, M., Rostamizadeh, A.: Algorithms for learning kernels based on centered alignment. J. Mach. Learn. Res. 13(1), 795–828 (2012)

    MathSciNet  Google Scholar 

  15. Dai, Y., Lu, H., Shen, C.: Learning affinity-aware upsampling for deep image matting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6841–6850 (2021)

    Google Scholar 

  16. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  17. Deselaers, T., Alexe, B., Ferrari, V.: Localizing objects while learning their appearance. In: Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV 1, pp. 452–466. Springer (2010). https://doi.org/10.1007/978-3-642-15561-1_33

  18. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. ICLR (2021)

    Google Scholar 

  19. d’Ascoli, S., Touvron, H., Leavitt, M.L., Morcos, A.S., Biroli, G., Sagun, L.: ConViT: improving vision transformers with soft convolutional inductive biases. In: International Conference on Machine Learning, pp. 2286–2296. PMLR (2021)

    Google Scholar 

  20. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html

  21. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  22. Fan, H., et al.: Multiscale vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6824–6835 (2021)

    Google Scholar 

  23. Fu, S., Hamilton, M., Brandt, L.E., Feldmann, A., Zhang, Z., Freeman, W.T.: FeatUp: a model-agnostic framework for features at any resolution. In: The Twelfth International Conference on Learning Representations

    Google Scholar 

  24. Gao, S., Li, Z.Y., Yang, M.H., Cheng, M.M., Han, J., Torr, P.: Large-scale unsupervised semantic segmentation (2022)

    Google Scholar 

  25. Ghiasi, A., et al.: What do vision transformers learn? a visual exploration. arXiv preprint arXiv:2212.06727 (2022)

  26. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 349–356. IEEE (2009)

    Google Scholar 

  27. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  28. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition, pp. 9729–9738 (2020)

    Google Scholar 

  29. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  30. Jabri, A., Owens, A., Efros, A.: Space-time correspondence as a contrastive random walk. Adv. Neural. Inf. Process. Syst. 33, 19545–19560 (2020)

    Google Scholar 

  31. Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graph. (ToG) 26(3), 96–es (2007)

    Google Scholar 

  32. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network representations revisited. In: International Conference on Machine Learning, pp. 3519–3529. PMLR (2019)

    Google Scholar 

  33. Li, Y., Mao, H., Girshick, R., He, K.: Exploring plain vision transformer backbones for object detection. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part IX, pp. 280–296. Springer (2022). https://doi.org/10.1007/978-3-031-20077-9_17

  34. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755. Springer (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  35. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: European Conference on Computer Vision (2014). https://api.semanticscholar.org/CorpusID:14113767

  36. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  37. Lu, H., Dai, Y., Shen, C., Xu, S.: Index networks. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 242–255 (2020)

    Article  Google Scholar 

  38. Lu, H., Liu, W., Fu, H., Cao, Z.: FADE: fusing the assets of decoder and encoder for task-agnostic upsampling. In: European Conference on Computer Vision, pp. 231–247. Springer (2022). https://doi.org/10.1007/978-3-031-19812-0_14

  39. Lu, H., Liu, W., Ye, Z., Fu, H., Liu, Y., Cao, Z.: Sapa: similarity-aware point affiliation for feature upsampling. Adv. Neural. Inf. Process. Syst. 35, 20889–20901 (2022)

    Google Scholar 

  40. Min, J., Lee, J., Ponce, J., Cho, M.: SPair-71k: a large-scale benchmark for semantic correspondence. arXiv preprint arXiv:1908.10543 (2019)

  41. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1(10), e3 (2016)

    Article  Google Scholar 

  42. Pont-Tuset, J., et al.: The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)

  43. Rambhatla, S.S., Chellappa, R., Shrivastava, A.: The pursuit of knowledge: Discovering and localizing novel categories using dual memory. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9153–9163 (2021)

    Google Scholar 

  44. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12179–12188 (2021)

    Google Scholar 

  45. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241. Springer (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  46. Shekhar, S., Bordes, F., Vincent, P., Morcos, A.: Objectives matter: understanding the impact of self-supervised objectives on vision transformer representations. arXiv preprint arXiv:2304.13089 (2023)

  47. Shocher, A., Cohen, N., Irani, M.: “Zero-shot” super-resolution using deep internal learning. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2018)

    Google Scholar 

  48. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: Transformer for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7262–7272 (2021)

    Google Scholar 

  49. Subramanian, A.: Torch cka. https://github.com/AntixK/PyTorch-Model-Compare Github (2021)

  50. Tan, W., Yan, B., Bare, B.: Feature super-resolution: make machine see more clearly. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3994–4002 (2018)

    Google Scholar 

  51. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  52. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst.30 (2017)

    Google Scholar 

  53. Vo, V.H., Sizikova, E., Schmid, C., Pérez, P., Ponce, J.: Large-scale unsupervised object discovery. Adv. Neural. Inf. Process. Syst. 34, 16764–16778 (2021)

    Google Scholar 

  54. Walmer, M., Suri, S., Gupta, K., Shrivastava, A.: Teaching matters: investigating the role of supervision in vision transformers. arXiv preprint arXiv:2212.03862 (2022)

  55. Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., Lin, D.: Carafe: content-aware reassembly of features. In: Proceedings of the IEEE/Cvf International Conference on Computer Vision, pp. 3007–3016 (2019)

    Google Scholar 

  56. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 568–578 (2021)

    Google Scholar 

  57. Wang, Y., et al.: Tokencut: Segmenting objects in images and videos with self-supervised transformer and normalized cut. IEEE Trans. Pattern Anal. Mach. Intell. (2023)

    Google Scholar 

  58. Wei, X.S., Zhang, C.L., Wu, J., Shen, C., Zhou, Z.H.: Unsupervised object discovery and co-localization by deep descriptor transformation. Pattern Recogn. 88, 113–126 (2019)

    Article  Google Scholar 

  59. Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., Zhang, L.: Cvt: introducing convolutions to vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22–31 (2021)

    Google Scholar 

  60. Xu, Y., Zhang, J., Zhang, Q., Tao, D.: ViTpose: simple vision transformer baselines for human pose estimation. Adv. Neural. Inf. Process. Syst. 35, 38571–38584 (2022)

    Google Scholar 

  61. Yun, S., Lee, H., Kim, J., Shin, J.: Patch-level representation learning for self-supervised vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8354–8363 (June 2022)

    Google Scholar 

  62. Zhu, M., Han, K., Zhang, C., Lin, J., Wang, Y.: Low-resolution visual recognition via deep feature distillation. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3762–3766. IEEE (2019)

    Google Scholar 

  63. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

  64. Ziegler, A., Asano, Y.M.: Self-supervised learning of object parts for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14502–14511 (2022)

    Google Scholar 

  65. Zontak, M., Irani, M.: Internal statistics of a single natural image. In: CVPR 2011, pp. 977–984. IEEE (2011)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF CAREER Award (#2238769) to AS, and the NSF and NIST Institute for Trustworthy AI in Law and Society (TRAILS) (#2229885). The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. The authors acknowledge UMD’s supercomputing resources made available for conducting this research. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of NSF, NIST, or the U.S. Government. We would also like to thank our colleagues Matthew Gwilliam and Pravin Nagar for their feedback on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saksham Suri .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2611 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suri, S., Walmer, M., Gupta, K., Shrivastava, A. (2025). LiFT: A Surprisingly Simple Lightweight Feature Transform for Dense ViT Descriptors. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15065. Springer, Cham. https://doi.org/10.1007/978-3-031-72667-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72667-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72666-8

  • Online ISBN: 978-3-031-72667-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics