Skip to main content

Computing, Representations, and Definitions of Artificial Intelligence

  • Chapter
  • First Online:
Artificial Intelligence: Principles and Practice
  • 366 Accesses

Abstract

► Chapter 1 presented the philosophical, mathematical, and engineering ideas that led to the creation of the artificial intelligence discipline. ► Chapter 1 also asked whether actions considered truly intelligent could be produced by a machine. Alan Turing’s (1950) test in the journal Mind was proposed as a possible answer to that question. ► Chapter 1 concluded by presenting the proposal for the summer workshop at Dartmouth College in 1956 to address Turing’s project of creating intelligent machines. ► Chapter 2 begins with a discussion of definitions for AI. The chapter then asks how various complex world situations might be represented on a computer. Finally, ► Chapter 2 introduces the primary research and application paradigms of current AI.

We are just an advanced breed of monkeys on a minor planet of a very average star. But we can understand the universe. That makes us something very special.

STEPHEN HAWKING

Our age of anxiety is, in a great part, the result of trying to do today’s jobs with yesterday’s tools…

MARSHALL MCLUHAN

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Bayes, T. 1763. Essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London. London: The Royal Society, pp. 370–418.

    MATH  Google Scholar 

  • Bledsoe, W.W. and Browning, I. 1959. Pattern recognition and reading by machine. Proceedings of the eastern joint computer conference. New York: IEEE Computer Society.

    MATH  Google Scholar 

  • Collins A. and Quillian, M.R. 1969. Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8: 240–247.

    MATH  Google Scholar 

  • Davis, K.H., Biddulph, R., & Balashek, S. 1952. Automatic recognition of spoken digits. Journal of the Acoustical Society of America, 24(6): 637–642.

    ADS  Google Scholar 

  • Dreyfus, H., 1972. What computers can’t do: The limits of artificial intelligence. New York: Harper and Row.

    MATH  Google Scholar 

  • Dreyfus, H., 1992. What computers still can’t do: A critique of artificial reason. Cambridge MA: MIT Press.

    MATH  Google Scholar 

  • Gelernter, H. and Rochester N. 1958. Intelligent behavior in problem-solving machines. IBM Journal of Research and Development, 2(4): 336–345.

    MathSciNet  MATH  Google Scholar 

  • Haugeland, J. 1985. Artificial intelligence: The very idea. Cambridge/Bradford, MA: MIT Press.

    MATH  Google Scholar 

  • Hinton, G.E., & Sejnowski, T.J. 1983. Analyzing cooperative computation. In Proceedings of the 5th Annual Congress of the Cognitive Science Society, Rochester, New York.

    Google Scholar 

  • Hinton, G.E., Osindero, S., Teh, Y.W. 2006. A fast learning algorithm for deep belief nets. Neural Computation 18 (7): 1527–1554.

    MathSciNet  PubMed  MATH  Google Scholar 

  • Holland, J.H. 1975. Adaptation in natural and artificial systems. Michigan, University of Michigan Press.

    MATH  Google Scholar 

  • Jurasky, D., & Martin, J.H. 2020. Speech and language processing, 3rd ed, Upper Saddle River, NJ: Prentice Hall-Pearson.

    MATH  Google Scholar 

  • Luger, G.F. 1986. Introduction to artificial intelligence: Professional materials for four day course, Los Angeles, CA: Learning Tree International.

    MATH  Google Scholar 

  • Luger, G.F. 2009. Artificial intelligence: Structures and strategies for complex problem solving. New York: Addison Wesley-Pearson.

    MATH  Google Scholar 

  • Luger, G.F. 2021. Knowing our world: An artificial intelligence perspective. New York: Springer Nature.

    MATH  Google Scholar 

  • Minsky, M. 1985. The society of mind, New York: Simon and Schuster.

    MATH  Google Scholar 

  • Mosteller, F. and Wallace D.L. 1963. Inference in an Authorship Problem. Journal of the American Statistical Association vol. 58, (302): 275–309.

    MATH  Google Scholar 

  • Newell, A. and Simon, H.A. 1956. The logic theory machine. IRE Transactions of Information Theory, 2: 61–79.

    MATH  Google Scholar 

  • Pearl, J. 1988. Probabilistic reasoning in intelligent systems: Networks of plausible inference. Los Altos, CA: Morgan Kaufmann.

    MATH  Google Scholar 

  • Pearl, J. 2000. Causality. New York: Cambridge University Press.

    MATH  Google Scholar 

  • Perlis, D. 1988. Autocircumscription. Artificial Intelligence 36: 223–236.

    MathSciNet  MATH  Google Scholar 

  • Rosenblatt, F. 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386–408.

    CAS  PubMed  MATH  Google Scholar 

  • Rumelhart, D.E., McClelland, J.L., & The PDP Research Group. 1986a. Parallel distributed processing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rumelhart, D.E., Hinton G.E., and Williams, R.J. 1986b. Learning representations by representing errors. Nature 323: 533–536.

    ADS  MATH  Google Scholar 

  • Samuel, A.L. 1959. Some studies in machine learning using the game of checkers, IBM Journal of R& D, 3: 211–229.

    MathSciNet  MATH  Google Scholar 

  • Smith, B.C. 1985. Prologue to reflection and semantics in a procedural language. In Brachman and Levesque (1985).

    Google Scholar 

  • Turing, A.M. 1950. Computing machinery and intelligence. Mind, 59: 433–460.

    MathSciNet  MATH  Google Scholar 

  • Burks, A.W. 1966. Theory of self reproducing automata. Chicago: Univ. of Illinois Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. Luger .

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luger, G.F. (2025). Computing, Representations, and Definitions of Artificial Intelligence. In: Artificial Intelligence: Principles and Practice. Springer, Cham. https://doi.org/10.1007/978-3-031-57437-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57437-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57436-8

  • Online ISBN: 978-3-031-57437-5

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics