Skip to main content

Drug Repurposing Using Knowledge Graph Embeddings with a Focus on Vector-Borne Diseases: A Model Comparison

  • Conference paper
  • First Online:
Cloud Computing, Big Data & Emerging Topics (JCC-BD&ET 2023)

Abstract

Vector-borne diseases carried by mosquitoes, ticks, and other vectors are among the fastest-spreading and most extensive diseases worldwide, mainly active in tropical regions. Also, in the context of the current climate change, these diseases are becoming a hazard for other climatic zones. Hence, drug repurposing methods can identify already approved drugs to treat them efficiently, reducing development costs and time. Knowledge graph embedding techniques can encode biological information in a single structure that allows users to operate relationships, extract information, learn connections, and make predictions to discover potential new relationships between existing drugs and vector-borne diseases. In this article, we compared seven knowledge graph embedding models (TransE, TransR, TransH, UM, DistMult, RESCAL, and ERMLP) applied to Drug Repurposing Knowledge Graph (DRKG), analyzing their predictive performance over seven different vector-borne diseases (dengue, chagas, malaria, yellow fever, leishmaniasis, filariasis, and schistosomiasis), measuring their embedding quality and external performance against a ground-truth. Our analysis found that no single predictive model consistently outperformed all others across all diseases and proposed different strategies to improve predictive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, K., et al.: Application of network link prediction in drug discovery. BMC Bioinform.22(1), 1–21 (2021). https://doi.org/10.1186/s12859-021-04082-y

  2. Ali, M., et al.: Bringing light into the dark: a large-scale evaluation of knowledge graph embedding models under a unified framework. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 8825–8845 (2022). https://doi.org/10.1109/tpami.2021.3124805

  3. Ali, M., et al.: PyKEEN 1.0: a python library for training and evaluating knowledge graph embeddings. J. Mach. Learn. Res. (2021)

    Google Scholar 

  4. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000). https://doi.org/10.1038/75556

  5. Barrasa, J., Hodler, A.E., Webber, J.: Knowledge Graphs. O’Reilly Media (2021)

    Google Scholar 

  6. Barratt, M.J., Frail, D.: Drug Repositioning: Bringing New Life to Shelved Assets and Existing Drugs. John Wiley & Sons, Hoboken (2012)

    Google Scholar 

  7. Berrendorf, M., Faerman, E., Vermue, L., Tresp, V.: On the ambiguity of rank-based evaluation of entity alignment or link prediction methods (2020)

    Google Scholar 

  8. Bonner, S., et al.: Understanding the performance of knowledge graph embeddings in drug discovery. Artif. Intell. Life Sci. 2, 100036 (2022). https://doi.org/10.1016/j.ailsci.2022.100036

  9. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2013). https://doi.org/10.1007/s10994-013-5363-6

  10. Cai, H., Zheng, V.W., Chang, K.C.C.: A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications (2018). http://arxiv.org/abs/1709.07604, number: arXiv:1709.07604arXiv:1709.07604 [cs]

  11. Chen, X.: TTD: therapeutic target database. Nucl. Acids Res. 30(1), 412–415 (2002). https://doi.org/10.1093/nar/30.1.412

  12. Chen, Z., Wang, Y., Zhao, B., Cheng, J., Zhao, X., Duan, Z.: Knowledge graph completion: a review. IEEE Access 8, 192435–192456 (2020). https://doi.org/10.1109/access.2020.3030076

  13. Choi, W., Lee, H.: Inference of biomedical relations among chemicals, genes, diseases, and symptoms using knowledge representation learning. IEEE Access. 7, 179373–179384 (2019). https://doi.org/10.1109/ACCESS.2019.2957812, https://ieeexplore.ieee.org/document/8931752/

  14. Cohen, S., et al.: Improved and optimized drug repurposing for the SARS-COV-2 pandemic (2022). https://doi.org/10.1101/2022.03.24.485618

  15. Cotto, K.C., et al.: DGIdb 3.0: a redesign and expansion of the drug–gene interaction database. Nucl. Acids Res. 46(D1), D1068–D1073 (2017). https://doi.org/10.1093/nar/gkx1143, https://doi.org/10.1093/nar/gkx1143

  16. Dai, Y., Wang, S., Xiong, N.N., Guo, W.: A survey on knowledge graph embedding: approaches, applications and benchmarks. Electronics. 9(5), 750 (2020). https://doi.org/10.3390/electronics9050750, https://www.mdpi.com/2079-9292/9/5/750

  17. Doshi, S., Chepuri, S.P.: A computational approach to drug repurposing using graph neural networks. Comput. Biol. Med. 150, 105992 (2022). https://doi.org/10.1016/j.compbiomed.2022.105992

  18. Ratajczak, F., et al.: Task-driven knowledge graph filtering improves prioritizing drugs for repurposing. BMC Bioinform. 23, 84 (2022). https://doi.org/10.1186/s12859-022-04608-y, https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04608-y

  19. Gao, Z., Ding, P., Xu, R.: KG-predict: A knowledge graph computational framework for drug repurposing. J. Biomed. Inform. 132, 104133 (2022). https://doi.org/10.1016/j.jbi.2022.104133

  20. Hamosh, A.: Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucl. Acids Res. 33(Database issue), D514–D517 (2004). https://doi.org/10.1093/nar/gki033

  21. Hermjakob, H.: IntAct: an open source molecular interaction database. Nucl. Acids Res. 32(90001), 452D–455 (2004). https://doi.org/10.1093/nar/gkh052

  22. Hewett, M.: PharmGKB: the pharmacogenetics knowledge base. Nucl. Acids Res. 30(1), 163–165 (2002). https://doi.org/10.1093/nar/30.1.163

  23. Himmelstein, D.S., et al.: Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife 6, e26726 (2017). https://doi.org/10.7554/eLife.26726

  24. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4), 1–37 (May 2022). https://doi.org/10.1145/3447772

  25. Hwang, S., et al.: HumanNet v2: human gene networks for disease research. Nucl. Acids Res. 47(D1), D573–D580 (2018). https://doi.org/10.1093/nar/gky1126

  26. Ioannidis, V.N., et al.: DRKG - Drug Repurposing Knowledge Graph for Covid-19 (2020)

    Google Scholar 

  27. Islam, M.K., et al.: Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding. Sci. Rep. 13(1), 3643 (2023). https://doi.org/10.1038/s41598-023-30095-z

  28. Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The SIDER database of drugs and side effects. Nucl. Acids Res. 44(D1), D1075–D1079 (2015). https://doi.org/10.1093/nar/gkv1075

  29. Kutmon, M., et al.: WikiPathways: capturing the full diversity of pathway knowledge. Nucl. Acids Res. 44(D1), D488–D494 (2015). https://doi.org/10.1093/nar/gkv1024

  30. Lipscomb, C.E.: Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 88(3), 265–266 (2000)

    Google Scholar 

  31. Ma, C., Liu, H., Zhou, Z., Koslicki, D.: Predicting drug repurposing candidates and their mechanisms from a biomedical knowledge graph. bioRxiv (2022). https://doi.org/10.1101/2022.11.29.518441, https://www.biorxiv.org/content/early/2022/12/02/2022.11.29.518441

  32. Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez gene: gene-centered information at NCBI. Nucl. Acids Res. 39(Database), D52–D57 (2010). https://doi.org/10.1093/nar/gkq1237

  33. Mungall, C.J., Torniai, C., Gkoutos, G.V., Lewis, S.E., Haendel, M.A.: Uberon, an integrative multi-species anatomy ontology. Genome Biol. 13(1), R5 (2012). https://doi.org/10.1186/gb-2012-13-1-r5

  34. Nicholson, D.N., Greene, C.S.: Constructing knowledge graphs and their biomedical applications. Comput. Struct. Biotechnol. J. 18, 1414–1428 (2020). https://doi.org/10.1016/j.csbj.2020.05.017, https://linkinghub.elsevier.com/retrieve/pii/S2001037020302804

  35. What is a Knowledge Graph? | IBM — ibm.com. https://www.ibm.com/topics/knowledge-graph. Accessed 14 Mar 2023

  36. Percha, B., Altman, R.B.: A global network of biomedical relationships derived from text. Bioinformatics 34(15), 2614–2624 (2018). https://doi.org/10.1093/bioinformatics/bty114

  37. Rivas-Barragan, D., Domingo-Fernández, D., Gadiya, Y., Healey, D.: Ensembles of knowledge graph embedding models improve predictions for drug discovery. Brief. Bioinform. 23(6), bbac481 (2022). https://doi.org/10.1093/bib/bbac481

  38. Ryan, S.J., Carlson, C.J., Mordecai, E.A., Johnson, L.R.: Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLOS Negl. Trop. Dis. 13(3), e0007213 (2019). https://doi.org/10.1371/journal.pntd.0007213

  39. Sang, S., et al.: GrEDeL: a knowledge graph embedding based method for drug discovery from biomedical literatures. IEEE Access. 7, 8404–8415 (2019). https://doi.org/10.1109/ACCESS.2018.2886311, https://ieeexplore.ieee.org/document/8574025/

  40. Schriml, L.M., et al.: Disease ontology: a backbone for disease semantic integration. Nucl. Acids Res. 40(D1), D940–D946 (2011). https://doi.org/10.1093/nar/gkr972

  41. Semenza, J.C., Paz, S.: Climate change and infectious disease in Europe: impact, projection and adaptation. The Lancet Reg. Health - Europe. 9, 100230 (2021). https://doi.org/10.1016/j.lanepe.2021.100230, https://linkinghub.elsevier.com/retrieve/pii/S2666776221002167

  42. Song, H.J., Kim, A.Y., Park, S.B.: Learning translation-based knowledge graph embeddings by n-pair translation loss. Appl. Sci. 10(11), 3964 (2020). https://doi.org/10.3390/app10113964, https://www.mdpi.com/2076-3417/10/11/3964

  43. Szklarczyk, D., et al.: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucl. Acids Res. 47(D1), D607–D613 (2018). https://doi.org/10.1093/nar/gky1131

  44. Ursu, O., et al.: DrugCentral: online drug compendium. Nucl. Acids Res. 45(D1), D932–D939 (2016). https://doi.org/10.1093/nar/gkw993

  45. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucl. Acids Res. 46(D1), D1074–D1082 (2017). https://doi.org/10.1093/nar/gkx1037

  46. Zarin, D.A., Tse, T., Williams, R.J., Califf, R.M., Ide, N.C.: The ClinicalTrials.gov results database — update and key issues. New England J. Med. 364(9), 852–860 (2011). https://doi.org/10.1056/nejmsa1012065

  47. Zeng, X., et al.: repurpose open data to discover therapeutics for COVID-19 using deep learning. J. Prot. Res. 19(11), 4624–4636 (2020). https://doi.org/10.1021/acs.jproteome.0c00316

  48. Zhang, R., Hristovski, D., Schutte, D., Kastrin, A., Fiszman, M., Kilicoglu, H.: Drug repurposing for COVID-19 via knowledge graph completion. J. Biomed. Inform. 115, 103696 (2021). https://doi.org/10.1016/j.jbi.2021.103696, https://www.sciencedirect.com/science/article/pii/S1532046421000253

  49. Zheng, S., et al.: PharmKG: a dedicated knowledge graph benchmark for bomedical data mining. Brief. Bioinform. 22(4), bbaa344 (2020). https://doi.org/10.1093/bib/bbaa344

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego López Yse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López Yse, D., Torres, D. (2023). Drug Repurposing Using Knowledge Graph Embeddings with a Focus on Vector-Borne Diseases: A Model Comparison. In: Naiouf, M., Rucci, E., Chichizola, F., De Giusti, L. (eds) Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2023. Communications in Computer and Information Science, vol 1828. Springer, Cham. https://doi.org/10.1007/978-3-031-40942-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40942-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40941-7

  • Online ISBN: 978-3-031-40942-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics