Abstract
Vector-borne diseases carried by mosquitoes, ticks, and other vectors are among the fastest-spreading and most extensive diseases worldwide, mainly active in tropical regions. Also, in the context of the current climate change, these diseases are becoming a hazard for other climatic zones. Hence, drug repurposing methods can identify already approved drugs to treat them efficiently, reducing development costs and time. Knowledge graph embedding techniques can encode biological information in a single structure that allows users to operate relationships, extract information, learn connections, and make predictions to discover potential new relationships between existing drugs and vector-borne diseases. In this article, we compared seven knowledge graph embedding models (TransE, TransR, TransH, UM, DistMult, RESCAL, and ERMLP) applied to Drug Repurposing Knowledge Graph (DRKG), analyzing their predictive performance over seven different vector-borne diseases (dengue, chagas, malaria, yellow fever, leishmaniasis, filariasis, and schistosomiasis), measuring their embedding quality and external performance against a ground-truth. Our analysis found that no single predictive model consistently outperformed all others across all diseases and proposed different strategies to improve predictive performance.
Similar content being viewed by others
References
Abbas, K., et al.: Application of network link prediction in drug discovery. BMC Bioinform.22(1), 1–21 (2021). https://doi.org/10.1186/s12859-021-04082-y
Ali, M., et al.: Bringing light into the dark: a large-scale evaluation of knowledge graph embedding models under a unified framework. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 8825–8845 (2022). https://doi.org/10.1109/tpami.2021.3124805
Ali, M., et al.: PyKEEN 1.0: a python library for training and evaluating knowledge graph embeddings. J. Mach. Learn. Res. (2021)
Ashburner, M., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000). https://doi.org/10.1038/75556
Barrasa, J., Hodler, A.E., Webber, J.: Knowledge Graphs. O’Reilly Media (2021)
Barratt, M.J., Frail, D.: Drug Repositioning: Bringing New Life to Shelved Assets and Existing Drugs. John Wiley & Sons, Hoboken (2012)
Berrendorf, M., Faerman, E., Vermue, L., Tresp, V.: On the ambiguity of rank-based evaluation of entity alignment or link prediction methods (2020)
Bonner, S., et al.: Understanding the performance of knowledge graph embeddings in drug discovery. Artif. Intell. Life Sci. 2, 100036 (2022). https://doi.org/10.1016/j.ailsci.2022.100036
Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2013). https://doi.org/10.1007/s10994-013-5363-6
Cai, H., Zheng, V.W., Chang, K.C.C.: A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications (2018). http://arxiv.org/abs/1709.07604, number: arXiv:1709.07604arXiv:1709.07604 [cs]
Chen, X.: TTD: therapeutic target database. Nucl. Acids Res. 30(1), 412–415 (2002). https://doi.org/10.1093/nar/30.1.412
Chen, Z., Wang, Y., Zhao, B., Cheng, J., Zhao, X., Duan, Z.: Knowledge graph completion: a review. IEEE Access 8, 192435–192456 (2020). https://doi.org/10.1109/access.2020.3030076
Choi, W., Lee, H.: Inference of biomedical relations among chemicals, genes, diseases, and symptoms using knowledge representation learning. IEEE Access. 7, 179373–179384 (2019). https://doi.org/10.1109/ACCESS.2019.2957812, https://ieeexplore.ieee.org/document/8931752/
Cohen, S., et al.: Improved and optimized drug repurposing for the SARS-COV-2 pandemic (2022). https://doi.org/10.1101/2022.03.24.485618
Cotto, K.C., et al.: DGIdb 3.0: a redesign and expansion of the drug–gene interaction database. Nucl. Acids Res. 46(D1), D1068–D1073 (2017). https://doi.org/10.1093/nar/gkx1143, https://doi.org/10.1093/nar/gkx1143
Dai, Y., Wang, S., Xiong, N.N., Guo, W.: A survey on knowledge graph embedding: approaches, applications and benchmarks. Electronics. 9(5), 750 (2020). https://doi.org/10.3390/electronics9050750, https://www.mdpi.com/2079-9292/9/5/750
Doshi, S., Chepuri, S.P.: A computational approach to drug repurposing using graph neural networks. Comput. Biol. Med. 150, 105992 (2022). https://doi.org/10.1016/j.compbiomed.2022.105992
Ratajczak, F., et al.: Task-driven knowledge graph filtering improves prioritizing drugs for repurposing. BMC Bioinform. 23, 84 (2022). https://doi.org/10.1186/s12859-022-04608-y, https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04608-y
Gao, Z., Ding, P., Xu, R.: KG-predict: A knowledge graph computational framework for drug repurposing. J. Biomed. Inform. 132, 104133 (2022). https://doi.org/10.1016/j.jbi.2022.104133
Hamosh, A.: Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucl. Acids Res. 33(Database issue), D514–D517 (2004). https://doi.org/10.1093/nar/gki033
Hermjakob, H.: IntAct: an open source molecular interaction database. Nucl. Acids Res. 32(90001), 452D–455 (2004). https://doi.org/10.1093/nar/gkh052
Hewett, M.: PharmGKB: the pharmacogenetics knowledge base. Nucl. Acids Res. 30(1), 163–165 (2002). https://doi.org/10.1093/nar/30.1.163
Himmelstein, D.S., et al.: Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife 6, e26726 (2017). https://doi.org/10.7554/eLife.26726
Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4), 1–37 (May 2022). https://doi.org/10.1145/3447772
Hwang, S., et al.: HumanNet v2: human gene networks for disease research. Nucl. Acids Res. 47(D1), D573–D580 (2018). https://doi.org/10.1093/nar/gky1126
Ioannidis, V.N., et al.: DRKG - Drug Repurposing Knowledge Graph for Covid-19 (2020)
Islam, M.K., et al.: Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding. Sci. Rep. 13(1), 3643 (2023). https://doi.org/10.1038/s41598-023-30095-z
Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The SIDER database of drugs and side effects. Nucl. Acids Res. 44(D1), D1075–D1079 (2015). https://doi.org/10.1093/nar/gkv1075
Kutmon, M., et al.: WikiPathways: capturing the full diversity of pathway knowledge. Nucl. Acids Res. 44(D1), D488–D494 (2015). https://doi.org/10.1093/nar/gkv1024
Lipscomb, C.E.: Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 88(3), 265–266 (2000)
Ma, C., Liu, H., Zhou, Z., Koslicki, D.: Predicting drug repurposing candidates and their mechanisms from a biomedical knowledge graph. bioRxiv (2022). https://doi.org/10.1101/2022.11.29.518441, https://www.biorxiv.org/content/early/2022/12/02/2022.11.29.518441
Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez gene: gene-centered information at NCBI. Nucl. Acids Res. 39(Database), D52–D57 (2010). https://doi.org/10.1093/nar/gkq1237
Mungall, C.J., Torniai, C., Gkoutos, G.V., Lewis, S.E., Haendel, M.A.: Uberon, an integrative multi-species anatomy ontology. Genome Biol. 13(1), R5 (2012). https://doi.org/10.1186/gb-2012-13-1-r5
Nicholson, D.N., Greene, C.S.: Constructing knowledge graphs and their biomedical applications. Comput. Struct. Biotechnol. J. 18, 1414–1428 (2020). https://doi.org/10.1016/j.csbj.2020.05.017, https://linkinghub.elsevier.com/retrieve/pii/S2001037020302804
What is a Knowledge Graph? | IBM — ibm.com. https://www.ibm.com/topics/knowledge-graph. Accessed 14 Mar 2023
Percha, B., Altman, R.B.: A global network of biomedical relationships derived from text. Bioinformatics 34(15), 2614–2624 (2018). https://doi.org/10.1093/bioinformatics/bty114
Rivas-Barragan, D., Domingo-Fernández, D., Gadiya, Y., Healey, D.: Ensembles of knowledge graph embedding models improve predictions for drug discovery. Brief. Bioinform. 23(6), bbac481 (2022). https://doi.org/10.1093/bib/bbac481
Ryan, S.J., Carlson, C.J., Mordecai, E.A., Johnson, L.R.: Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLOS Negl. Trop. Dis. 13(3), e0007213 (2019). https://doi.org/10.1371/journal.pntd.0007213
Sang, S., et al.: GrEDeL: a knowledge graph embedding based method for drug discovery from biomedical literatures. IEEE Access. 7, 8404–8415 (2019). https://doi.org/10.1109/ACCESS.2018.2886311, https://ieeexplore.ieee.org/document/8574025/
Schriml, L.M., et al.: Disease ontology: a backbone for disease semantic integration. Nucl. Acids Res. 40(D1), D940–D946 (2011). https://doi.org/10.1093/nar/gkr972
Semenza, J.C., Paz, S.: Climate change and infectious disease in Europe: impact, projection and adaptation. The Lancet Reg. Health - Europe. 9, 100230 (2021). https://doi.org/10.1016/j.lanepe.2021.100230, https://linkinghub.elsevier.com/retrieve/pii/S2666776221002167
Song, H.J., Kim, A.Y., Park, S.B.: Learning translation-based knowledge graph embeddings by n-pair translation loss. Appl. Sci. 10(11), 3964 (2020). https://doi.org/10.3390/app10113964, https://www.mdpi.com/2076-3417/10/11/3964
Szklarczyk, D., et al.: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucl. Acids Res. 47(D1), D607–D613 (2018). https://doi.org/10.1093/nar/gky1131
Ursu, O., et al.: DrugCentral: online drug compendium. Nucl. Acids Res. 45(D1), D932–D939 (2016). https://doi.org/10.1093/nar/gkw993
Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucl. Acids Res. 46(D1), D1074–D1082 (2017). https://doi.org/10.1093/nar/gkx1037
Zarin, D.A., Tse, T., Williams, R.J., Califf, R.M., Ide, N.C.: The ClinicalTrials.gov results database — update and key issues. New England J. Med. 364(9), 852–860 (2011). https://doi.org/10.1056/nejmsa1012065
Zeng, X., et al.: repurpose open data to discover therapeutics for COVID-19 using deep learning. J. Prot. Res. 19(11), 4624–4636 (2020). https://doi.org/10.1021/acs.jproteome.0c00316
Zhang, R., Hristovski, D., Schutte, D., Kastrin, A., Fiszman, M., Kilicoglu, H.: Drug repurposing for COVID-19 via knowledge graph completion. J. Biomed. Inform. 115, 103696 (2021). https://doi.org/10.1016/j.jbi.2021.103696, https://www.sciencedirect.com/science/article/pii/S1532046421000253
Zheng, S., et al.: PharmKG: a dedicated knowledge graph benchmark for bomedical data mining. Brief. Bioinform. 22(4), bbaa344 (2020). https://doi.org/10.1093/bib/bbaa344
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
López Yse, D., Torres, D. (2023). Drug Repurposing Using Knowledge Graph Embeddings with a Focus on Vector-Borne Diseases: A Model Comparison. In: Naiouf, M., Rucci, E., Chichizola, F., De Giusti, L. (eds) Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2023. Communications in Computer and Information Science, vol 1828. Springer, Cham. https://doi.org/10.1007/978-3-031-40942-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-40942-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40941-7
Online ISBN: 978-3-031-40942-4
eBook Packages: Computer ScienceComputer Science (R0)