Abstract
Deep Belief Net (DBN) was applied to the field of time series forecasting in our early works. In this paper, we propose to adopt Adaptive Moment Estimation (Adam) optimization method to the fine-tuning process of DBN instead of the conventional Error Back-Propagation (BP) method. Meta parameters, such as the number of layers of Restricted Boltzmann Machine (RBM), the number of units in each layer, the learning rate, are optimized by Random Search (RS) or Particle Swarm Optimization (PSO). Comparison experiments showed the priority of the proposed method in both cases of a benchmark dataset CATS which is an artificial time series data used in competitions for long-term forecasting, and Lorenz chaos for short-term forecasting in the sense not only prediction precision but also learning performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4), 987–1007 (1982)
Kuremoto, T., Obayashi, M., Kobayashi, K.: Neural forecasting systems. In: Weber, C., Elshaw, M., Mayer, N.M. (eds.) Reinforcement Learning, Theory and Applications, Chapter 1, pp. 1–20, INTECH (2008)
Kuremoto, T., Kimura, S., Kobayashi, K., Obayashi, M.: Time series forecasting using restricted Boltzmann machine. In: Huang, D.-S., Gupta, P., Zhang, X., Premaratne, P. (eds.) ICIC 2012. CCIS, vol. 304, pp. 17–22. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31837-5_3
Kuremoto, T., Kimura, S., Kobayashi, K., Obayashi, M.: Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 137(5), 47–56 (2014)
Kuremoto, T., Obayashi, M., Kobayashi, K., Hirata, T., Mabu, S.: Forecast chaotic time series data by DBNs. In: Proceedings of the 7th International Congress on Image and Signal Processing (CISP 2014), pp. 1304–1309 (2014)
Hirata, T., Kuremoto, T., Obayashi, M., Mabu, S., Kobayashi, K.: Forecasting real time series data using deep belief net and reinforcement learning. J. Robotics Netw. Artif. Life 4(4), 260–264 (2018)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hirata, T., Kuremoto, T., Obayashi, M., Mabu, S., Kobayashi, K.: Time series prediction using DBN and ARIMA. In: International Conference on Computer Application Technologies (CCATS 2015), pp. 24–29. Matsue, Japan (2015)
Hirata, T., Kuremoto, T., Obayashi, M., Mabu, S., Kobayashi, K.: A novel approach to time series forecasting using deep learning and linear model. IEEJ Trans. Electron. Inf. Syst. 136(3), 348–356 (2016)
Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lendasse, A., Oja, E., Simula, O., Verleysen, M.: Time series prediction competition: the CATS benchmark. In: Proceedings of International Joint Conference on Neural Networks (IJCNN 2004), pp. 1615–1620 (2004)
Lendasse, A., Oja, E., Simula, O., Verleysen, M.: Time series prediction competition: the CATS benchmark. Neurocomputing 70(13–15), 2325–2329 (2007)
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2), 281–305 (2012)
Kuremoto, T., Hirata, T., Obayashi, M., Kobayashi, K., Mabu, S.: Search heuristics for the optimization of DBN for time series forecasting. In: Iba, H., Noman, N. (eds.) Deep Neural Evolution. NCS, pp. 131–152. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3685-4_5
Acknowledgement
This work was supported by JSPS KAKENHI Grant No. 22H03709, and No. 22K12152.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Kuremoto, T., Furuya, M., Mabu, S., Kobayashi, K. (2023). A Time Series Forecasting Method Using DBN and Adam Optimization. In: Kambayashi, Y., Nguyen, N.T., Chen, SH., Dini, P., Takimoto, M. (eds) Artificial Intelligence for Communications and Networks. AICON 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 477. Springer, Cham. https://doi.org/10.1007/978-3-031-29126-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-29126-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29125-8
Online ISBN: 978-3-031-29126-5
eBook Packages: Computer ScienceComputer Science (R0)