Skip to main content

Securing of Identification System Data Transmission Using Deep Autoencoders and Data Hiding

  • Conference paper
  • First Online:
Advanced Informatics for Computing Research (ICAICR 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1575))

  • 282 Accesses

Abstract

The reliability of any identification systems depends on the level of security provided to the storage of sensitive data. These identification systems provide information about people working in any organization which is intended to help the organization keep track and monitor their activity. Databases of such systems need to be fast, reliable and highly secured. Apart from providing authorization layer to the databases the data itself can be encoded and stored in a simple as well as easy form such that the data itself is secure and does not go through lossy transformation. In this paper, the data is encoded with the help of DAE (Deep Autoencoder) models and these encoded data are then merged with the images of respective people using RDH (Reversible Data Hiding) which is then stored as a simple image data. The data is then retrieved when required and decoded using the same autoencoder mode and checked for loss in the data. This helps us to easily store and send the data as a simple image and improves the security of the system. The models perform good on all datasets with simple autoencoders gives the best result with a loss of only 1.5% loss in data as compared to 3% and 7% by deep autoencoder and convolutional autoencoder respectively Keywords: Identification system, authorization, security, Deep Autoencoder, Reversible Data hiding, storage, transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-qershi, O.M., Ee, K.B.: An overview of reversible data hiding schemes based on difference expansion technique (2009)

    Google Scholar 

  2. Nasser, Y., Hassouni, M.E., Brahim, A., Toumi, H., Lespessailles, E., Jennane, R.: Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier. In: 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pp. 1–5 (2017). https://doi.org/10.1109/ATSIP.2017.8075537

  3. Jayesh, S.: Comparative Analysis of LSTM Sequence-Sequence and Auto Encoder for real-time anomaly detection using system call sequences. Int. J. Innov. Res. Comput. Commun. Eng. (2019)

    Google Scholar 

  4. Zavrak, S., I˙skefiyeli, M.: Anomaly-based intrusion detection from network flow features using variational autoencoder. IEEE Access, 8, 108346- 108358 (2020). https://doi.org/10.1109/ACCESS.2020.3001350

  5. Chunyan, H.: An image encryption algorithm based on modified logistic chaotic map. Optik, 181, 779–785 (2019), ISSN 0030–4026

    Google Scholar 

  6. Yu, S.S., Zhou, N.R., Gong, L.H., Nie, Z.: Optical image encryption algorithm based on phase-truncated short-time fractional Fourier transform and hyper- chaotic system. Optics Lasers Eng. 124, 105816 (2020), ISSN 0143–8166

    Google Scholar 

  7. Chen, G., Wang, C., Chen, H.: A novel color image encryption algorithm based on hyperchaotic system and permutation-diffusion architecture. Int. J. Bifurcation Chaos, 29, 09 (2019)

    Google Scholar 

  8. Liang, Y.H., Haoran, F., Li.: An asymmetric and optimized encryption method to protect the confidentiality of 3D mesh models. Adv. Eng. Inform. 42, 100963 (2019). https://doi.org/10.1016/j.aei.2019.100963

    Article  Google Scholar 

  9. Meriwani, O.: Enhancing Deep Neural Network Performance on Small Datasets by using Deep Autoencoder. An Assignment in Data Science CSEE University of Essex (2019)

    Google Scholar 

  10. Malekzadeh, M., Clegg, R.G., Haddadi, H.: Replacement autoencoder: a privacy-preserving algorithm for sensory data analysis. In: 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI) (2018)

    Google Scholar 

  11. Principi, E., Rossetti, D., Squartini, S., Piazza, F.: Unsupervised electric motor fault detection by using deep autoencoders. IEEE/CAA J. Automatica Sinica 6(2), 441–451 (2019). https://doi.org/10.1109/JAS.2019.1911393

    Article  Google Scholar 

  12. Muhammad, K., Ahmad, J., Farman, H., Jan, Z., Sajjad, M., Baik, S.W.: A secure method for color image steganography using gray-level modification and multi-level encryption. KSII Trans. Internet Inf. Syst. 9(5), 1938–1962 (2015). https://doi.org/10.3837/tiis.2015.05.022

    Article  Google Scholar 

  13. Kaur, H.R., Jyoti.: A survey on different techniques of steganography. MATEC Web of Conferences. 57, 02003 (2016). https://doi.org/10.1051/matecconf/20165702003

    Article  Google Scholar 

  14. Juneja, M.S., Parvinder.: An improved LSB based steganography technique for RGB color images. Int. J. Comput. Commun. Eng. 2, 513–517 (2013). https://doi.org/10.7763/IJCCE.2013.V2.238

    Article  Google Scholar 

  15. Alqadi, J., Khisat, Z., Yousif, M.E.: Message Segmentation and Image Blocking to Secure Data Steganography. 75–82 (2020)

    Google Scholar 

  16. Malik, A., Singh, S., Kumar, R.: Recovery based high capacity reversible data hiding scheme using even-odd embedding. Multimedia Tools Appl. 77(12), 15803–15827 (2017). https://doi.org/10.1007/s11042-017-5156-1

    Article  Google Scholar 

  17. Sahu, A.K., Swain, G.: Dual Stegoimaging based reversible data hiding using improved LSB matching. Int. J. Intell. Eng. Syst. 12, 63–74 (2019). https://doi.org/10.22266/ijies2019.1031.07

  18. Aziz, F., Ahmad, T., Malik, A.H., Uddin, M.I., Ahmad, S., Sharaf, M.: Reversible data hiding techniques with high message embedding capacity in images. PLoS ONE 15(5), e0231602 (2020)

    Article  Google Scholar 

  19. Zeng, N.Z., Song, H., Liu, B., Li, W., Abdullah, Y., Dobaie.: Facial expression recognition via learning deep sparse autoencoders. Neurocomputing (2017). https://doi.org/10.1016/j.neucom.2017.08.043

    Article  Google Scholar 

  20. Alanazi, N., Alanizy, A., Baghoza, N., Al Ghamdi, M., Gutub, A.: 3-layer PC text security via combining compression, AES cryp tography 2LSB image steganography. J. Res. Eng. Appl. Sci. 03, 118–124 (2018). https://doi.org/10.46565/jreas.2018.v03i04.001

  21. Murray, M.C.: Database security: what students need to know. J. Inf. Technol. Educ. 9 (2010)

    Google Scholar 

  22. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles, implementations, and applications. ACM Trans. Inf. Syst. Secur. (2009)

    Google Scholar 

  23. Bao, T., Burket, J., Woo, M., Turner, R., Brumley, D.: BYTEWEIGHT: learning to recognize functions in binary code. In: 23rd USENIX Security Symposium (2014)

    Google Scholar 

  24. Bekrar, S., Bekrar, C., Groz, R., Mounier, L.: A taint based approach for smart fuzzing. In: 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation. IEEE (2012)

    Google Scholar 

  25. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using random projections and neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2013)

    Google Scholar 

  26. Dai, Y., Li, H., Qian, Y., Lu, X.: A malware classification method based on memory dump grayscale image. Digit. Investig. (2018)

    Google Scholar 

  27. David, O.E., Netanyahu, N.S.: DeepSign: deep learning for automatic malware signature generation and classification. In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE (2015)

    Google Scholar 

  28. Godefroid, P., Peleg, H., Singh, R.: LearnFuzz: machine learning for input fuzzing. In: 2017 32nd IEEE/ACM International Conference on Automated Soft- ware Engineering (ASE). IEEE (2017)

    Google Scholar 

  29. Phan, A.V., Nguyen, M.L., Bui, L.T.: Convolutional neural networks over control flow graphs for software defect prediction. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE (2017)

    Google Scholar 

  30. Zhang, S., et al.: Syslog processing for switch failure diagnosis and prediction in datacenter networks. In: 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS). IEEE (2017)

    Google Scholar 

  31. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM: a practical concolic execution engine tailored for hybrid fuzzing. In: 27th USENIX Security Symposium (2018)

    Google Scholar 

  32. Yuan, X., Li, C., Li, X.: DeepDefense: identifying DDoS attack via deep learning. In: 2017 IEEE International Conference on Smart Computing (SMARTCOMP). IEEE (2017)

    Google Scholar 

  33. Rosenberg, I., Shabtai, A., Rokach, L., Elovici, Y.: generic black-box end-to-end attack against state-of-the-art api call based malware classifiers. In: Research in Attacks, Intrusions, and Defenses. Springer (2018)

    Google Scholar 

  34. Guo, W., Mu, D., Xu, J., Su, P., Wang, G., Xing, X.: Lemna: explaining deep learning based security applications. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (2018)

    Google Scholar 

  35. Sameer, M.: People Wikipedia Data, Version 1, November 2017, https://www.kaggle.com/sameersmahajan/people-wikipedia-data

  36. Atul, A.J.: lfw-People (Face recognition), Version 3, March 2018, https://www.kaggle.com/atulanandjha/lfwpeople

  37. Wang, Y., Wu, Z., Wei, Q., Wang, Q.: NeuFuzz: efficient fuzzing with deep neural network. IEEE Access 7 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Nayyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, D., Nayyar, A., Nagrath, P. (2022). Securing of Identification System Data Transmission Using Deep Autoencoders and Data Hiding. In: Luhach, A.K., Jat, D.S., Hawari, K.B.G., Gao, XZ., Lingras, P. (eds) Advanced Informatics for Computing Research. ICAICR 2021. Communications in Computer and Information Science, vol 1575. Springer, Cham. https://doi.org/10.1007/978-3-031-09469-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09469-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09468-2

  • Online ISBN: 978-3-031-09469-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics