Skip to main content

NBcoded: Network Attack Classifiers Based on Encoder and Naive Bayes Model for Resource Limited Devices

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2021)

Abstract

In the recent years, cybersecurity has gained high relevance, converting the detection of attacks or intrusions into a key task. In fact, a small breach in a system, application, or network, can cause huge damage for the companies. However, when this attack detection encounters the Artificial Intelligence paradigm, it can be addressed using high-quality classifiers which often need high resource demands in terms of computation or memory usage. This situation has a high impact when the attack classifiers need to be used with limited resourced devices or without overloading the performance of the devices, as it happens for example in IoT devices, or in industrial systems. For overcoming this issue, NBcoded, a novel light attack classification tool is proposed in this work. NBcoded works in a pipeline combining the removal of noisy data properties of the encoders with the low resources and timing consuming obtained by the Naive Bayes classifier. This work compares three different NBcoded implementations based on three different Naive Bayes likelihood distribution assumptions (Gaussian, Complement and Bernoulli). Then, the best NBcoded is compared with state of the art classifiers like Multilayer Perceptron and Random Forest. Our implementation shows to be the best model reducing the impact of training time and disk usage, even if it is outperformed by the other two in terms of Accuracy and F1-score (\({\sim }2\)%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/.

  2. 2.

    https://qosient.com/argus/index.shtml.

  3. 3.

    https://zeek.org/.

References

  1. Agrafiotis, I., Nurse, J.R.C., Goldsmith, M., Creese, S., Upton, D.: A taxonomy of cyber-harms: defining the impacts of cyber-attacks and understanding how they propagate. J. Cybersecur. 4, tyy006 (2018)

    Google Scholar 

  2. Ahmed, S., Lee, Y., Hyun, S.H., Koo, I.: Mitigating the impacts of covert cyber attacks in smart grids via reconstruction of measurement data utilizing deep denoising autoencoders. Energies 12(16), 3091 (2019)

    Article  Google Scholar 

  3. Al-Qatf, M., Lasheng, Y., Al-Habib, M., Al-Sabahi, K.: Deep learning approach combining sparse autoencoder with SVM for network intrusion detection. IEEE Access 6, 52843–52856 (2018)

    Article  Google Scholar 

  4. Al-Zewairi, M., Almajali, S., Awajan, A.: Experimental evaluation of a multi-layer feed-forward artificial neural network classifier for network intrusion detection system. In: 2017 International Conference on New Trends in Computing Sciences (ICTCS), pp. 167–172. IEEE (2017)

    Google Scholar 

  5. Bayes, T.: LII. An essay towards solving a problem in the doctrine of chances. By the late rev. Mr. Bayes, FRS communicated by MR. price, in a letter to John Canton, AMFR S. Philos. Trans. R. Soc. Lond. 53(53), 370–418 (1763)

    Google Scholar 

  6. Belouch, M., El Hadaj, S., Idhammad, M.: Performance evaluation of intrusion detection based on machine learning using apache spark. Procedia Comput. Sci. 127, 1–6 (2018)

    Article  Google Scholar 

  7. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 59(4), 291–294 (1988)

    Article  MathSciNet  Google Scholar 

  8. Boyes, H., Hallaq, B., Cunningham, J., Watson, T.: The industrial internet of things (IIoT): an analysis framework. Comput. Ind. 101, 1–12 (2018)

    Article  Google Scholar 

  9. Burnaev, E., Smolyakov, D.: One-class SVM with privileged information and its application to malware detection. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 273–280. IEEE (2016)

    Google Scholar 

  10. Catak, F.O., Mustacoglu, A.F.: Distributed denial of service attack detection using autoencoder and deep neural networks. J. Intell. Fuzzy Syst. 37(3), 3969–3979 (2019)

    Article  Google Scholar 

  11. Chen, J., Wu, D., Zhao, Y., Sharma, N., Blumenstein, M., Yu, S.: Fooling intrusion detection systems using adversarially autoencoder. Digit. Commun. Netw. 7(3), 453–460 (2020)

    Article  Google Scholar 

  12. David, A.O., Joseph, U.J.: A novel immune inspaired concept with neural network for intrusion detection in cybersecurity (2020)

    Google Scholar 

  13. Dixit, P., Silakari, S.: Deep learning algorithms for cybersecurity applications: a technological and status review. Comput. Sci. Rev. 39, 100317 (2021)

    Article  MathSciNet  Google Scholar 

  14. Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B., Herrera, F.: Learning from Imbalanced Data Sets, vol. 11. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98074-4

    Book  Google Scholar 

  15. Jackins, V., Vimal, S., Kaliappan, M., Lee, M.Y.: Ai-based smart prediction of clinical disease using random forest classifier and naive bayes. J. Supercomput. 77(5), 5198–5219 (2021)

    Article  Google Scholar 

  16. Khoo, Y., Lu, J., Ying, L.: Solving parametric PDE problems with artificial neural networks. Eur. J. Appl. Math. 32(3), 421–435 (2021)

    Article  MathSciNet  Google Scholar 

  17. Krishnan, S., et al.: Artificial intelligence in resource-constrained and shared environments. ACM SIGOPS Oper. Syst. Rev. 53(1), 1–6 (2019)

    Article  Google Scholar 

  18. Li, G., Liu, Q., Zhao, S., Qiao, W., Ren, X.: Automatic crack recognition for concrete bridges using a fully convolutional neural network and Naive Bayes data fusion based on a visual detection system. Meas. Sci. Technol. 31(7), 075403 (2020)

    Article  Google Scholar 

  19. Liu, M., Lang, R., Cao, Y.: Number of trees in random forest. Comput. Eng. Appl. 51(5), 126–131 (2015)

    Google Scholar 

  20. Lombardi, M., Pascale, F., Santaniello, D.: Internet of things: a general overview between architectures, protocols and applications. Information 12(2), 87 (2021)

    Article  Google Scholar 

  21. Lyons, J., et al.: Predicting backbone c\(\alpha \) angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J. Comput. Chem. 35(28), 2040–2046 (2014)

    Article  Google Scholar 

  22. McCallum, A., Nigam, K., et al.: A comparison of event models for Naive Bayes text classification. In: AAAI 1998 Workshop on Learning for Text Categorization, vol. 752, pp. 41–48. Citeseer (1998)

    Google Scholar 

  23. Menon, A.P., Varghese, A., Joseph, J.P., Sajan, J., Francis, N.: Performance analysis of different classifiers for earthquake prediction: PACE (2020)

    Google Scholar 

  24. Mienye, I.D., Sun, Y., Wang, Z.: Improved sparse autoencoder based artificial neural network approach for prediction of heart disease. Inform. Med. Unlocked 18, 100307 (2020)

    Article  Google Scholar 

  25. Monshizadeh, M., Khatri, V., Atli, B.G., Kantola, R., Yan, Z.: Performance evaluation of a combined anomaly detection platform. IEEE Access 7, 100964–100978 (2019)

    Article  Google Scholar 

  26. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015 Military Communications and Information Systems Conference (MILCIS), pp. 1–6. IEEE (2015)

    Google Scholar 

  27. Murphy, K.P., et al.: Naive Bayes classifiers. Univ. Br. Columbia 18(60), 1–8 (2006)

    Google Scholar 

  28. Rennie, J.D., Shih, L., Teevan, J., Karger, D.R.: Tackling the poor assumptions of Naive Bayes text classifiers. In: Proceedings of the 20th International Conference on Machine Learning (ICML 2003), pp. 616–623 (2003)

    Google Scholar 

  29. Rukmawan, S., Aszhari, F., Rustam, Z., Pandelaki, J.: Cerebral infarction classification using the k-nearest neighbor and Naive Bayes classifier. In: Journal of Physics: Conference Series, vol. 1752, p. 012045. IOP Publishing (2021)

    Google Scholar 

  30. Saad, O.M., Inoue, K., Shalaby, A., Sarny, L., Sayed, M.S.: Autoencoder based features extraction for automatic classification of earthquakes and explosions. In: ICIS, pp. 445–450 (2018)

    Google Scholar 

  31. Sallinen, M.: Weaponized malware, physical damage, zero casualties-what informal norms are emerging in targeted state sponsored cyber-attacks?: the dynamics beyond causation: an interpretivist-constructivist analysis of the us media discourse regarding offensive cyber operations and cyber weapons between 2010 and 2020 (2021)

    Google Scholar 

  32. Shaukat, K., et al.: Performance comparison and current challenges of using machine learning techniques in cybersecurity. Energies 13(10), 2509 (2020)

    Article  Google Scholar 

  33. Sundararajan, K., et al.: Sleep classification from wrist-worn accelerometer data using random forests. Sci. Rep. 11(1), 1–10 (2021)

    Article  Google Scholar 

  34. Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., Rellermeyer, J.S.: A survey on distributed machine learning. ACM Comput. Surv. (CSUR) 53(2), 1–33 (2020)

    Article  Google Scholar 

  35. Verma, J., Bhandari, A., Singh, G.: Review of existing data sets for network intrusion detection system. Adv. Math. 9(6), 3849–3854 (2020)

    Google Scholar 

  36. Wang, H., Wang, H., Wu, Z., Zhou, Y.: Using multi-factor analysis to predict urban flood depth based on Naive Bayes. Water 13(4), 432 (2021)

    Article  Google Scholar 

  37. Wankhede, S., Kshirsagar, D.: DoS attack detection using machine learning and neural network. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–5. IEEE (2018)

    Google Scholar 

  38. Wirkuttis, N., Klein, H.: Artificial intelligence in cybersecurity. Cyber Intell. Secur. J. 1(1), 21–23 (2017)

    Google Scholar 

  39. Zhang, H., Wu, C.Q., Gao, S., Wang, Z., Xu, Y., Liu, Y.: An effective deep learning based scheme for network intrusion detection. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 682–687. IEEE (2018)

    Google Scholar 

  40. Zhou, J., Chan, K., Chong, V., Krishnan, S.M.: Extraction of brain tumor from MR images using one-class support vector machine. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 6411–6414. IEEE (2006)

    Google Scholar 

  41. Zhou, Y., Han, M., Liu, L., He, J.S., Wang, Y.: Deep learning approach for cyberattack detection. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 262–267. IEEE (2018)

    Google Scholar 

  42. Zoghi, Z., Serpen, G.: UNSW-NB15 computer security dataset: analysis through visualization. arXiv preprint arXiv:2101.05067 (2021)

  43. Zola, F., Segurola, L., Bruse, J.L., Idoate, M.G.: Temporal graph-based approach for behavioural entity classification. arXiv preprint arXiv:2105.04798 (2021)

Download references

Acknowledgements

This work has been partially supported by the Spanish Centre for the Development of Industrial Technology (CDTI) under the project ÉGIDA (EXP 00122721/CER-20191012) - RED DE EXCELENCIA EN TECNOLOGIAS DE SEGURIDAD Y PRIVACIDAD and by the Basque Country Government under the ELKARTEK program, project TRUSTIND (KK-2020/00054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lander Segurola-Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Segurola-Gil, L., Zola, F., Echeberria-Barrio, X., Orduna-Urrutia, R. (2021). NBcoded: Network Attack Classifiers Based on Encoder and Naive Bayes Model for Resource Limited Devices. In: Kamp, M., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and Information Science, vol 1525. Springer, Cham. https://doi.org/10.1007/978-3-030-93733-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93733-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93732-4

  • Online ISBN: 978-3-030-93733-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics