Skip to main content

Prediction of Temperature-Dependent Processes in Multicomponent Fluid Flow Through Porous Media

  • Conference paper
  • First Online:
Mesh Methods for Boundary-Value Problems and Applications

Abstract

The research deals with the development of efficient tools for the simulation of thermal processes in porous media when flows of multiphase multicomponent slightly compressible fluids are considered. Such flows occur in the subsurface during the hydrocarbon recovery or during remediation of contaminated soils, fluid filtration also takes place in various industrial installations. For an adequate description of non-isothermal processes the transfer of mass and energy between phases should be reproduced, therefore the multicomponent composition of fluids cannot be neglected. The classic model is modified to be implemented by explicit difference schemes with sufficient accuracy and mild stability conditions. The experience of constructing the hyperbolic quasi-gas dynamic system of equations was transferred to flows in porous media. Conservation laws are formulated for the components in terms of the mass concentrations of components in phases. The mass balance equation for each component contains the second time derivative and a dissipative term with small parameters having the sense of minimum reference sizes in time and in space. Constants of phase equilibrium are used to close the system of equations. To verify the developed approach test calculations of two- and three-phase flows were performed, physically correct results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publ., London (1979)

    Google Scholar 

  2. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface - A Contribution to the Modelling of Hydrosystems. Springer, Berlin (1997)

    Google Scholar 

  3. Chen, Z.: Reservoir Simulation: Mathematical Techniques in Oil Recovery. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  4. Pinder, G.F., Gray, W.G.: Essentials of Multiphase Flow and Transport in Porous Media. John Wiley & Sons, Hoboken, NJ (2008)

    Book  Google Scholar 

  5. Chetverushkin, B.N.: Kinetic Schemes and Quasi-Gas Dynamic System of Equations. CIMNE, Barcelona (2008)

    Google Scholar 

  6. Davydov, A.A., Chetverushkin, B.N., Shil′nikov, E.V.: Simulating flows of incompressible and weakly compressible fluids on multicore hybrid computer systems. Comp. Math. Math. Phys. 50(12), 2157–2165 (2010) doi: 10.1134/S096554251012016X

    Google Scholar 

  7. Chetverushkin, B., D’Ascenzo, N, Ishanov, S, Saveliev, V.: Hyperbolic type explicit kinetic scheme of magneto gas dynamics for high performance computing systems. Rus. J. Num. Anal. Math. Model. 30(1), 27–36 (2015) doi: 10.1515/rnam-2015-0003

    Google Scholar 

  8. Trapeznikova, M.A., Belocerkovskaja, M.S., Chetverushkin, B.N.: Analog kineticheski-soglasovannyh shem dlja modelirovanija zadachi fil’tracii (Analog of kinetically consistent schemes for simulation of a filtration problem). Matematicheskoe modelirovanie (Math modeling) 14(10), 69–76 (2002). (In Russian)

    Google Scholar 

  9. Chetverushkin, B.N., Morozov, D.N., Trapeznikova, M.A., Churbanova, N.G., Shil′nikov, E.V.: An explicit scheme for the solution of the filtration problems. Math. Mod. and Comp. Sim. 2(6), 669–677 (2010) doi: 10.1134/S2070048210060013

    Google Scholar 

  10. Chetverushkin, B., Churbanova, N., Kuleshov, A., Lyupa, A., Trapeznikova, M.: Application of kinetic approach to porous medium flow simulation in environmental hydrology problems on high-performance computing systems. Rus. J. Numer. Anal. Math. Modelling 31(4), 187–196 (2016) doi: 10.1515/rnam-2016-0019

    Google Scholar 

  11. Trapeznikova, M., Churbanova, N., Lyupa, A.: CMMSE 2019: An explicit algorithm for the simulation of non-isothermal multiphase multicomponent flow in a porous medium. J. Math. Chem. 58, 595–611 (2020) doi: 10.1007/s10910-019-01088-z

    Google Scholar 

  12. Trapeznikova, M., Churbanova, N., Lyupa, A.: Non-isothermal compositional model for simulation of multiphase porous media flows. In: A. Nadykto et al. (eds.) EPJ Web of Conferences 224, IV International Conference Modeling of Nonlinear Processes and Systems, Article No. 02010 (2019) https://doi.org/10.1051/epjconf/201922402010

  13. Class, H., Helmig, R., Bastian, P.: Numerical simulation of non-isothermal multiphase multicomponent processes in porous media. 1. An efficient solution technique. Advances in Water Resources 25, 533–550 (2002)

    Article  Google Scholar 

  14. Lake, L.W.: Enhanced Oil Recovery. Prentice Hall, New Jersey (1989)

    Google Scholar 

  15. Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking, Kolditz O. et al. (Eds.), Springer (2016)

    Google Scholar 

  16. Amooie, M.A., Moortgat, J.: Higher-order black-oil and compositional modeling of multiphase compressible flow in porous media. Int. J. of Multiphase Flow 105, 45–59 (2018)

    Article  MathSciNet  Google Scholar 

  17. Chen H., Kou J., Sun S., Zhang, T.: Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media. Computer Methods in Applied Mechanics and Engineering 350, 641–663 (2019)

    Article  MathSciNet  Google Scholar 

  18. Fedorenko, R.P.: Introduction to Computational Physics: Study Guide for Universities. Moscow Inst. Phys. Tech. Publ., Moscow (1994). (In Russian)

    Google Scholar 

  19. Balashov, V., Savenkov, E.B.: Direct Numerical Simulation of Single and Two-Phase Flows at Pore-Scale. In: Karev V., Klimov D., Pokazeev K. (eds.) Physical and Mathematical Modeling of Earth and Environment Processes. Springer Proceedings in Earth and Environmental Sciences, pp. 374–379. Springer, Cham (2018) https://doi.org/10.1007/978-3-030-11533-3_37

    Google Scholar 

  20. Myshetskaya, E.E., Tishkin, V.F.: On the Solution of Evolution Equations Based on Multigrid and Explicit Iterative Methods. Comp. Math. Math. Phys. 55(8), 1270–1275 (2015) doi: 10.1134/S0965542515080138

    Google Scholar 

  21. Wang, K., Liu, H., Chen, Z.: A scalable parallel black oil simulator on distributed memory parallel computers. J. of Computational Physics 301, 19–34 (2015)

    Article  MathSciNet  Google Scholar 

  22. Buesing, H.: Efficient Solution Techniques for Multi-phase Flow in Porous Media. In: Lirkov, I., Margenov, S. (eds.) Large-Scale Scientific Computing. LSSC 2017. LNCS 10665, pp. 572–579. Springer, Cham (2018)

    Google Scholar 

  23. Teja-Juarez, V.L., de la Cruz, L.M.: A GPU based implementation of an incompressible two-phase flow model in porous media. Geofisica Internacional 57(3), 205–222 (2018)

    Article  Google Scholar 

  24. Chen, M., Mao, S., Zhang, Y, Leung, V.C.M.: Big Data. Related Technologies, Challenges and Future Prospects. In: Springer Briefs in Computer Science. Spinger (2014) doi: 10.1007/978-3-319-06245-7

    Google Scholar 

  25. TOP 500. The List. https://www.top500.org/

  26. TOP 50. http://top50.supercomputers.ru/list

  27. Software for Exascale Computing - SPPEXA 2016–2019, In: Bungartz, H.-J. et al. (eds.) LNCSE 136. Springer (2020) https://doi.org/10.1007/978-3-030-47956-5

  28. Elizarova, T.G., Shilnikov, E.V.: Capabilities of a quasi-gasdynamic algorithm as applied to inviscid gas flow simulation. Comp. Math. Math. Phys. 49(3), 549–566 (2009) doi: 10.1134/S0965542509030142

    Google Scholar 

  29. Chetverushkin, B.N.: Resolution limits of continuous media mode and their mathematical formulations. Math. Mod. and Comp. Sim. 5(3), 266–279 (2013)

    Google Scholar 

  30. Morozov, D.N., Trapeznikova, M.A., Chetverushkin, B.N., Churbanova, N.G.: Application of explicit schemes for the simulation of the two-phase filtration process. Math. Mod. and Comp. Sim. 4(1), 62–67 (2012) doi: 10.1134/S2070048212010085

    Google Scholar 

  31. Lyupa, A.A., Morozov, D.N., Trapeznikova, M.A., Chetverushkin, B.N., Churbanova, N.G.: Three-phase filtration modeling by explicit methods on hybrid computer systems. Math. Mod. and Comp. Sim. 6(6), 551–559 (2014) doi: 10.1134/S2070048214060088

    Google Scholar 

  32. Trapeznikova, M.A., Churbanova, N.G., Lyupa, A.A., Morozov, D.N.: Simulation of Multiphase Flows in the Subsurface on GPU-based Supercomputers. In: M. Bader et al. (eds.) Parallel Computing: Accelerating Computational Science and Engineering (CSE), Advances in Parallel Computing 25, pp. 324–333. IOS Press, Amsterdam (2014) doi: 10.3233/978-1-61499-381-0-324

    Chapter  Google Scholar 

  33. Wilson, G.M.,: A modified Redlich-Kwong EOS. Application to General Physical Data Calculations. Paper No. 15C presented at the 1969 AlChE Natl.Meeting, Cleveland, Ohio.

    Google Scholar 

  34. Aziz, K., Ramesh, A.B., Woo, P.T.: Fourth SPE comparative solution project: comparison of steam injection simulators. J. Pet. Technol. 39(12), 1576–1584 (1987)

    Article  Google Scholar 

  35. Parker, J.C., Lenhard, R.J., Kuppusami, T.: A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research 23(4), 618–624 (1987)

    Article  Google Scholar 

  36. Brusilovsky, A.I.: Fazovye prevrashhenija pri razrabotke mestorozhdenij nefti i gaza (Phase Transitions in the Development of Oil and Gas Fields). Graal Publ., Moscow (2002). (In Russian)

    Google Scholar 

  37. De Vahl Davis, G.: Natural convection of air in a square cavity: A bench mark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

    Article  Google Scholar 

  38. Misra, D., Sarkar, A.: A comparative study of porous media models in a differentially heated square cavity using a finite element method, Int. J. of Numerical Methods for Heat & Fluid Flow 5(8), 735–752 (1995) https://doi.org/10.1108/EUM0000000004124

    Article  Google Scholar 

  39. KIAM – The official site of Keldysh Institute of Applied Mathematics. https://www.kiam.ru/MVS/resourses/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina A. Trapeznikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trapeznikova, M.A., Churbanova, N.G., Chechina, A.A. (2022). Prediction of Temperature-Dependent Processes in Multicomponent Fluid Flow Through Porous Media. In: Badriev, I.B., Banderov, V., Lapin, S.A. (eds) Mesh Methods for Boundary-Value Problems and Applications. Lecture Notes in Computational Science and Engineering, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-030-87809-2_39

Download citation

Publish with us

Policies and ethics