Abstract
Multi-standard RF front-end is a critical part of legacy and future emerging mobile architectures, where the size, the efficiency, and the integration of the elements in the RF front-end will affect the network key performance indicators (KPIs). This chapter discusses power amplifier design for both handset and base station applications for 5G and beyond. Also, this chapter deals with filter-antenna design for 5G applications that include a synthesis-based approach, differentially driven reconfigurable planar filter-antenna, and an insensitive phased array antenna with air-filled slot-loop resonators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahl, I., & Blass, B. (2003). Microwave solid state circuit design. John Wiley & Sons.
Sechi, F., & Bujatti, M. (2009). Solid-state microwave high-power amplifiers. Artech House Inc.
Robertson, I., Somjit, N., & Chong, M. (2016). Microwave and millimeter-wave design for wireless communication. Wiley.
Haigh, D., Soin, G., & Wood, R. S. (2001). RF IC and MMIC design and technology, IET circuits, devices and system. Institution of Electrical Engineers.
Marsh, S. (2006). Practical MMIC design. Artech House Inc.
Walker, J. (2012). Handbook of RF and microwave power amplifiers. Cambridge University Press.
Sajedin, M. et al. (2020). A Doherty power amplifier based on the harmonic generating mechanism. In 14th European conference on antennas and propagation (EuCAP), Copenhagen, Denmark, 1–5, https://doi.org/10.23919/EuCAP48036.2020.9135416.
Tsai, J., & Huang, T. (May 2007). A 38–46 GHz MMIC doherty power amplifier using post-distortion linearization. IEEE Microwave and Wireless Components Letters, 17(5), 388–390. https://doi.org/10.1109/LMWC.2007.895726
Das, N., & Bertoni, H. (1999). Directions for the next generation of MMIC devices and systems. Plenum Press.
Sajedin, M. et al. (2020). Design of a broadband frequency response class-J power amplifier. International Multi-Disciplinary Conference Theme, Sustainable Development and Smart Planning.
Grebennikov, A., Kumar, N., Binboga, S., & Yarman, S. (2016). Broadband RF and microwave amplifiers. Taylor & Francis Group, LLC.
Carey, E., & Lidholm, S. (2005). Millimeter-wave integrated circuits. Springer.
Giannini, F., & Leuzzi, G. (2004). Nonlinear microwave circuit design. Wiley.
Sajedin, M., Elfergani, I., Rodriguez, J., Abd-Alhameed, R., & Barciela, M. (2019). A survey on RF and microwave Doherty power amplifier for mobile handset applications. Electronics, 8(717), 1–15.
Kang, D., Kim, D., Moon, J., & Kim, B. (December 2010). Broadband HBT Doherty power amplifiers for handset applications. IEEE Transactions on Microwave Theory and Techniques, 58(12), 4031–4039. https://doi.org/10.1109/TMTT.2010.2086070
Refai, W. Y., & Davis, W. A. (2015). A linear, highly-efficient, class-J handset power amplifier utilizing GaAs HBT technology. In 2015 IEEE 16th annual wireless and microwave technology conference (WAMICON), Cocoa Beach, FL (pp. 1–4). https://doi.org/10.1109/WAMICON.2015.7120353
Cripps, S. (2006). RF power amplifiers for wireless communications. Artech House.
Sajedin, M., et al. (2020). A Doherty power amplifier based on the harmonic generating mechanism. In 2020 14th European conference on antennas and propagation (EuCAP), Copenhagen, Denmark (pp. 1–5). https://doi.org/10.23919/EuCAP48036.2020.9135416
Kim, J., et al. (February 2008). Analysis of a fully matched saturated Doherty amplifier with excellent efficiency. IEEE Transactions on Microwave Theory and Techniques, 56(2), 328–338. https://doi.org/10.1109/TMTT.2007.914361
Cho, Y., Kang, D., Moon, K., Jeong, D., & Kim, B. (September-October 2017). A handy dandy Doherty PA: A linear Doherty power amplifier for mobile handset application. IEEE Microwave Magazine, 18(6), 110–124. https://doi.org/10.1109/MMM.2017.2712040
Cho, Y., Moon, K., Park, B., Kim, J., Jin, H., & Kim, B. (2015). Compact design of linear Doherty power amplifier with harmonic control for handset applications. In 2015 10th European microwave integrated circuits conference (EuMIC), Paris (pp. 37–40). https://doi.org/10.1109/EuMIC.2015.7345062
Nguyen, D. P., Pham, B. L., & Pham, A. (2017). A compact 29% PAE at 6 dB power back-off E-mode GaAs pHEMT MMIC Doherty power amplifier at Ka-band. In 2017 IEEE MTT-S international microwave symposium (IMS), Honololu, HI (pp. 1683–1686). https://doi.org/10.1109/MWSYM.2017.8058964
Cripps, S. C., Tasker, P. J., Clarke, A. L., Lees, J., & Benedikt, J. (October 2009). On the continuity of high efficiency modes in linear RF power amplifiers. IEEE Microwave and Wireless Components Letters, 19(10), 665–667. https://doi.org/10.1109/LMWC.2009.2029754
Chen, W., Lv, G., Liu, X., Wang, D., & Ghannouchi, F. M. (May 2020). Doherty PAs for 5G massive MIMO: Energy-efficient integrated DPA MMICs for sub-6-GHz and mm-wave 5G massive MIMO systems. IEEE Microwave Magazine, 21(5), 78–93. https://doi.org/10.1109/MMM.2020.2971183
Pedro, J. C., Carvalho, N., Fager, C., & Garcia, J. (2004). Linearity versus efficiency in mobile handset power amplifiers: A battle without a loser. In Microwave engineering Europe, EENEWS EUROPE (pp. 19–26).
Alizadeh, A., & Medi, A. (August 2017). Investigation of a class-J mode power amplifier in presence of a second-harmonic voltage at the gate node of the transistor. IEEE Transactions on Microwave Theory and Techniques, 65(8), 3024–3033. https://doi.org/10.1109/TMTT.2017.2666145
Alizadeh, A., Hassanzadehyamchi, S., Medi, A., & Kiaei, S. (October 2020). An X-band class-J power amplifier with active load modulation to boost drain efficiency. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(10), 3364–3377. https://doi.org/10.1109/TCSI.2020.2991184
Pereira, A., Parker, A., Heimlich, M., Weste, N., Quay, R., & Carrubba, V. (2014). X-band high-efficiency GaAs MMIC PA. In Proceedings of WAMICON (pp. 1–4).
Lv, G., Chen, W., & Feng, Z. (2018). A compact and broadband Ka-band asymmetrical GaAs Doherty power amplifier MMIC for 5G communications. In 2018 IEEE/MTT-S international microwave symposium – IMS, Philadelphia, PA (pp. 808–811). https://doi.org/10.1109/MWSYM.2018.8439219
Nguyen, D. P., Pham, B. L., & Pham, A. (January 2019). A compact Ka-band integrated Doherty amplifier with reconfigurable input network. IEEE Transactions on Microwave Theory and Techniques, 67(1), 205–215. https://doi.org/10.1109/TMTT.2018.2874249
Nguyen, D. P., Pham, T., & Pham, A. (2017). A Ka-band asymmetrical stacked-FET MMIC Doherty power amplifier. In 2017 IEEE radio frequency integrated circuits symposium (RFIC), Honolulu, HI (pp. 398–401). https://doi.org/10.1109/RFIC.2017.7969102
Quaglia, R., Camarchia, V., Jiang, T., Pirola, M., Donati Guerrieri, S., & Loran, B. (November 2014). K-band GaAs MMIC Doherty power amplifier for microwave radio with optimized driver. IEEE Transactions on Microwave Theory and Techniques, 62(11), 2518–2525. https://doi.org/10.1109/TMTT.2014.2360395
Hu, S., Wang, F., & Wang, H. (2017). 2.1 A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications. In 2017 IEEE international solid-state circuits conference (ISSCC), San Francisco, CA (pp. 32–33). https://doi.org/10.1109/ISSCC.2017.7870246
Chen, Y., Lin, Y., Lin, J., & Wang, H. (December 2018). A Ka-band transformer-based Doherty power amplifier for multi-Gb/s application in 90-nm CMOS. IEEE Microwave and Wireless Components Letters, 28(12), 1134–1136. https://doi.org/10.1109/LMWC.2018.2878133
Wang, F., & Wang, H. (2020). 24.1 A 24-to-30GHz watt-level broadband linear Doherty power amplifier with multi-primary distributed-active-transformer power-combining supporting 5G NR FR2 64-QAM with >19dBm average pout and >19% average PAE. In 2020 IEEE international solid- state circuits conference – (ISSCC), San Francisco, CA, USA (pp. 362–364). https://doi.org/10.1109/ISSCC19947.2020.9063146
Hu, S., Wang, F., & Wang, H. (June 2019). A 28-/37-/39-GHz linear Doherty power amplifier in silicon for 5G applications. IEEE Journal of Solid-State Circuits, 54(6), 1586–1599. https://doi.org/10.1109/JSSC.2019.2902307
Abdulkhaleq, A. M., et al. (2020). Load-modulation technique without using quarter-wavelength transmission line. IET Microwaves, Antennas and Propagation, 14, 1209. https://doi.org/10.1049/iet-map.2019.0957
Abdulkhaleq, A. M., et al. (2019). Recent developments of dual-band Doherty power amplifiers for upcoming mobile communications systems. Electronics, 8(6), 638. https://doi.org/10.3390/electronics8060638
Abdulkhaleq, A. M., et al. (2019). A 70-W asymmetrical Doherty power amplifier for 5G base stations. In V. Sucasas, G. Mantas, & S. Althunibat (Eds.), Broadband communications, networks, and systems (pp. 446–454). Springer International Publishing.
Abdulkhaleq, A. M. et al. (2020). A compact load-modulation amplifier for improved efficiency next generation mobile. Presented at the 50th The European Microwave Conference (EuMC), The Jaarbeurs, The Netherlands.
Abdulkhaleq, A. M., et al. (2020). Mutual coupling effect on three-way Doherty amplifier for green compact mobile communications. Presented at the EuCAP 2020, 15–20-March-2020.
Al-Yasir, Y. I. A., et al. (2020). A differential-fed dual-polarized high-gain filtering antenna based on SIW technology for 5G applications. In 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, IEEE (pp. 1–5).
Al-Yasir, Y. I. A., Ojaroudi Parchin, N., Abdulkhaleq, A., Hameed, K., Al-Sadoon, M., & Abd-Alhameed, R. (2019). Design, simulation and implementation of very compact dual-band microstrip bandpass filter for 4G and 5G applications. In 2019 16th international conference on synthesis, modeling, analysis and simulation methods and applications to circuit design (SMACD), Lausanne, Switzerland. IEEE.
Feng, W., Che, W., & Xue, Q. (June 2015). The proper balance: Overview of microstrip wideband balance circuits with wideband common mode suppression. IEEE Microwave Magazine, 16(5), 55–68.
Al-Yasir, Y. I. A., Ojaroudi Parchin, N., Abdulkhaleq, A. M., Bakr, M. S., & Abd-Alhameed, R. A. (2020). A survey of differential-fed microstrip bandpass filters: Recent techniques and challenges. Sensors, 20(8), 2356.
Jin, H., Chin, K., Che, W., Chang, C., Li, H., & Xue, Q. (2014). Differential-fed patch antenna arrays with low cross polarization and wide bandwidths. IEEE Antennas and Wireless Propagation Letters, 13, 1069–1072.
Chin, C. K., Xue, Q., & Wong, H. (September 2007). Broadband patch antenna with a folded plate pair as a differential feeding scheme. IEEE Transactions on Antennas and Propagation, 55(9), 2461–2467.
Chin, C. h. k., Xue, Q., Wong, H., & Zhang, X. y. (February 2007). Broadband patch antenna with low cross-polarisation. Electronics Letters, 43(3), 137–138.
Luo, Y., & Chu, Q. (November 2015). Oriental crown-shaped differentially fed dual-polarized multidipole antenna. IEEE Transactions on Antennas and Propagation, 63(11), 4678–4685.
White, C. R., & Rebeiz, G. M. (November 2010). A differential dual-polarized cavity-backed microstrip patch antenna with independent frequency tuning. IEEE Transactions on Antennas and Propagation, 58(11), 3490–3498.
Cui, J., Zhang, A., & Yan, S. (2020, February). Co-design of a filtering antenna based on multilayer structure. International Journal of RF and Microwave Computer-Aided Engineering, 30(2), 1–6.
Hua, C., Liu, M., & Lu, Y. (February 2019). Planar integrated substrate integrated waveguide circularly polarized filtering antenna. International Journal of RF and Microwave Computer-Aided Engineering, 29(2), e21517.
Al-Yasir, Y. I. A., et al. (2020). A new and compact wide-band microstrip filter-antenna design for 2.4 GHz ISM band and 4G applications. Electronics, 9(7), 1084.
Majid, H. A., Rahim, M. K. A., Hamid, M. R., & Ismail, M. F. (2012). A compact frequency-reconfigurable narrowband microstrip slot antenna. IEEE Antennas and Wireless Propagation Letters, 11, 616–619.
Yassin, M. E., Mohamed, H. A., Abdallah, E. A. F., & El-Hennawy, H. S. (2019). Circularly polarized wideband-to-narrowband switchable antenna. IEEE Access, 7, 36010–36018.
Tu, Y., Al-Yasir, Y., Ojaroudi Parchin, N., Abdulkhaleq, A., & Abd-Alhameed, R. (2020, June). A survey on reconfigurable microstrip filter–antenna integration: Recent developments and challenges. Electronics, 9(8), 1–21.
Caicedo, S., Oldoni, M., & Moscato, S. (2021). Challenges of using phased array antennas in a commercial backhaul equipment at 26 GHz. In Internet of things, infrastructures and Mobile applications. IMCL 2019 (Advances in intelligent systems and computing, vol 1192). Springer.
Mejillones, S. C., Oldoni, M., Moscato, S., Fonte, A., & D’Amico, M. (2020). Power consumption and radiation trade-offs in phased arrays for 5G wireless transport. In 2020 43rd international conference on telecommunications and signal processing (TSP), Milan, Italy (pp. 112–116). https://doi.org/10.1109/TSP49548.2020.9163445
SIAE Microelettronica. ALFOplus2: Wireless backhaul/fronthaul equipment. https://www.siaemic.com/index.php/products-services/telecommunication-systems/microwave-product-portfolio/alfo-plus2. Accessed 12 Dic 2020.
Mailloux, R. J. (2017). Phased array antenna handbook (3rd ed.). Artech House, Inc.
Shome, P. P., Khan, T., Koul, S., & Antar, Y. (2020). Filtenna designs for radio-frequency front-end systems: A structural-oriented review. IEEE Antennas and Propagation Magazine. https://doi.org/10.1109/MAP.2020.2988518
Lee, J., Kidera, N., Pinel, S., Laskar, J., & Tentzeris, M. M. (2007). Fully integrated passive front-end solutions for a V-band LTCC wireless system. IEEE Antennas and Wireless Propagation Letters, 6, 285–288. https://doi.org/10.1109/LAWP.2007.891964
Li, R., & Gao, P. (January 2016). Design of a UWB filtering antenna with defected ground structure. Progress in Electromagnetics Research Letters, 63, 65–70.
Mishra, S., Sheeja, K., & Pathak, N. (December 2017). Split ring resonator inspired microstrip Filtenna for KU-band application. Journal Europeen des Systemes Automatises, 50, 391–403.
Hu, K., Tang, M., Li, M., & Ziolkowski, R. W. (August 2018). Compact, low-profile, bandwidth-enhanced substrate integrated waveguide filtenna. IEEE Antennas and Wireless Propagation Letters, 17(8), 1552–1556. https://doi.org/10.1109/LAWP.2018.2854898
Escobar, A. H., Tirado, J. A. V., Gomez, J. C. C., Mateu, J., Cantenys, E. R., & Gonzalez, J. L. (March 2014). Filtenna integration achieving ideal Chebyshev return losses. Radioengineering, 23, 362–368.
Cameron, R. J. (January 2003). Advanced coupling matrix synthesis techniques for microwave filters. IEEE Transactions on Microwave Theory and Techniques, 51(1), 1–10. https://doi.org/10.1109/TMTT.2002.806937
Li, T., & Gong, X. (June 2018). Vertical integration of high-Q filter with circularly polarized patch antenna with enhanced impedance-axial ratio bandwidth. IEEE Transactions on Microwave Theory and Techniques, 66(6), 3119–3128. https://doi.org/10.1109/TMTT.2018.2832073
Yusuf, Y., Cheng, H., & Gong, X. (November 2011). A seamless integration of 3-D vertical filters with highly efficient slot antennas. IEEE Transactions on Antennas and Propagation, 59(11), 4016–4022. https://doi.org/10.1109/TAP.2011.2164186
Cassivi, Y., Perregrini, L., Arcioni, P., Bressan, M., Wu, K., & Conciauro, G. (September 2002). Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microwave and Wireless Components Letters, 12(9), 333–335. https://doi.org/10.1109/LMWC.2002.803188
Jia-Sheng, & Lancaster, M. J. (2011). Microstrip filters for RF/microwave applications. Wiley.
Selvaraju, R., Jamaluddin, M. h., Kamarudin, M., Nasir, J., & Dahri, M. (January 2018). Complementary split ring resonator for isolation enhancement in 5g communication antenna array. Progress in Electromagnetics Research C, 83, 217.
Oldoni, M., Macchiarella, G., Gentili, G. G., & Ernst, C. (May 2010). A new approach to the synthesis of microwave lossy filters. IEEE Transactions on Microwave Theory and Techniques, 58(5), 1222–1229. https://doi.org/10.1109/TMTT.2010.2045534
Cameron, R. J. (April 1999). General coupling matrix synthesis methods for Chebyshev filtering functions. IEEE Transactions on Microwave Theory and Techniques, 47(4), 433–442. https://doi.org/10.1109/22.754877
Bigelli, F., et al. (February 2016). Design and fabrication of a dielectricless substrate-integrated waveguide. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(2), 256–261. https://doi.org/10.1109/TCPMT.2015.2513077
Osseiran, A., et al. (May 2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.
Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.
Rodriguez, J., et al. (2017). SECRET — Secure network coding for reduced energy next generation mobile small cells: A European training network in wireless communications and networking for 5G. In 2017 internet technologies and applications (ITA), Wrexham, IEEE (pp. 329–333).
Parchin, N. O., Shen, M., & Pedersen, G. F. (2016). UWB MM-wave antenna array with quasi omnidirectional beams for 5G handheld devices. In 2016 IEEE international conference on ubiquitous wireless broadband (ICUWB), Nanjing, IEEE (pp. 1–4).
Ojaroudiparchin, N., Shen, M., & Pedersen, G. F. (2016). 8×8 planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations. In 2016 10th European conference on antennas and propagation (EuCAP), Davos, IEEE (pp. 1–5).
HMC933LP4E. Analog phase shifter. Hittite Microwave Company. http://www.hittite.com
Hong, W., Baek, K., Lee, Y., & Kim, Y. G. (2014). Design and analysis of a low-profile 28 GHz beam steering antenna solution for future 5G cellular applications. In 2014 IEEE MTT-S international microwave symposium (IMS2014), Tampa, FL, IEEE (pp. 1–4).
Parchin, N. O., et al. (2019). MM-wave phased array quasi-yagi antenna for the upcoming 5G cellular communications. Applied Sciences, 9, 1–14.
Parchin, N. O., et al. (2019). Frequency reconfigurable antenna array for mm-wave 5G mobile handsets. In Broadband communications, networks, and systems, Faro, Portugal, 19–20 September 2018. Springer.
Tang, M., Ziolkowski, R. W., & Xiao, S. (June 2014). Compact hyper-band printed slot antenna with stable radiation properties. IEEE Transactions on Antennas and Propagation, 62(6), 2962–2969.
Ojaroudi, N., & Ghadimi, N. (2014). Dual-band CPW-fed slot antenna for LTE and WiBro applications. Microwave and Optical Technology Letters, 56, 1013–1015.
Parchin, N. O., et al. (2019). Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications. IEEE Access, 7, 15612–15622.
Salman, J., et al. (2006). Effects of the loss tangent, dielectric substrate permittivity and thickness on the performance of circular microstrip antennas. Journal of Engineering and Development, 10, 1–13.
Rajagopal, S., Abu-Surra, S., Pi, Z., & Khan, F. (2011). Antenna array design for multi-Gbps mmWave mobile broadband communication. In 2011 IEEE global telecommunications conference – GLOBECOM 2011, Houston, TX, USA, IEEE (pp. 1–6).
Ilvonen, J., Kivekas, O., Holopainen, J., Valkonen, R., Rasilainen, K., & Vainikainen, P. (2011). Mobile terminal antenna performance with the user’s hand: Effect of antenna dimensioning and location. IEEE Antennas and Wireless Propagation Letters, 10, 772–775.
Acknowledgments
This research work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement Nos. 722424 (SECRET) and 722429 (5GSTEPFWD).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Abdulkhaleq, A. et al. (2022). Energy-Efficient RF for UDNs. In: Rodriguez, J., Verikoukis, C., Vardakas, J.S., Passas, N. (eds) Enabling 6G Mobile Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-74648-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-74648-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-74647-6
Online ISBN: 978-3-030-74648-3
eBook Packages: EngineeringEngineering (R0)