Abstract
Mean shift is a popular and powerful clustering method. While techniques exist that improve its absolute runtime, no method has been able to effectively improve its quadratic time complexity with regard to dataset size. To enable development of an alternative, faster method that leads to the same results, we first contribute the formal cluster definition, which mean shift implicitly follows. Based on this definition we derive and contribute Gauss shift – a method that has linear time complexity. We quantify the characteristics of Gauss shift using synthetic datasets with known topologies. We further qualify Gauss shift using real-life data from active neuroscience research, which is the most comprehensive description of any subcellular organelle to date.
Supplementary material: www.daml.in.tum.de/gauss-shift.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Branch, M.A., Coleman, T.F., Li, Y.: A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. 21(1), 1–23 (1999)
Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14
Carreira-Perpiñán, M.Á.: Acceleration strategies for Gaussian mean-shift image segmentation. In: IEEE CVPR 2006, vol. 1, pp. 1160–1167 (2006)
Carreira-Perpiñán, M.Á.: A review of mean-shift algorithms for clustering (2015)
DeMenthon, D., Megret, R.: Spatio-temporal segmentation of video by hierarchical mean shift analysis. Center for Automation Research, University of Maryland, College Park (2002)
van der Ende, D., Thiery, J.M., Eisemann, E.: Accelerated mean shift for static and streaming environments. In: The 4th International Conference on Data Analytics (2015)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2nd International Conference on Knowledge Discovery and Data Mining (KDD) (1996)
Gionis, A., et al.: Comparison of enhanced DBSCAN algorithms: a review. In: ICIATE, vol. 5 (2017)
Hartigan, J.A.: Clustering Algorithms. JWS, Hoboken (1975)
Hinneburg, A., Gabriel, H.-H.: DENCLUE 2.0: fast clustering based on kernel density estimation. In: R. Berthold, M., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 70–80. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74825-0_7
Hinneburg, A., Keim, D.A.: An efficient approach to clustering in large multimedia databased with noise. In: Proceedings of the 4th KDD, pp. 58–65 (1998)
Khan, K., Rehman, S.U., Aziz, K., Fong, S., Sarasvady, S.: DBSCAN: past, present and future. In: 5th ICADIWT, pp. 232–238 (2014)
Kraft, D.: A software package for sequential quadratic programming. Technical report, DFVLR-FB 88–28, DLR German Aerospace Center - Institute for Flight Mechanics, Cologne, Germany (1988)
Lee, D., Moore, A.W., Gray, A.G.: Dual-tree fast Gauss transforms. In: NIPS vol. 18, pp. 747–754 (2006)
Leibrandt, R., Günnemann, S.: Making kernel density estimation robust towards missing values in highly incomplete multivariate data without imputation. In: Proceedings of the SIAM SDM 2018 (2018)
Leung, Y., et al.: Clustering by scale-space filtering. IEEE TPAMI 22(12), 1396–1410 (2000)
Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan, M.I. (eds.) Learning in Graphical Models. NATO ASI Series (Series D: Behavioural and Social Sciences), vol. 89, pp. 355–368. Springer, Dordrecht (998). https://doi.org/10.1007/978-94-011-5014-9_12
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2000)
Richter, K., et al.: Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy. EMBO J. 37(1), 139–159 (2018)
Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)
Shapira, L., Avidan, S., Shamir, A.: Mode-detection via median-shift. In: IEEE 12th International Conference on Computer Vision, pp. 1909–1916 (2009)
Sheikh, Y.A., Khan, E.A., Kanade, T.: Mode-seeking by Medoidshifts. In: IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)
Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_52
Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020)
Voglis, C., Lagaris, I.E.: A rectangular trust region dogleg approach for unconstrained and bound constrained nonlinear optimization. In: 6th WSEAS AMATH (2004)
Wang, Y., Huang, X., Wu, L.: Clustering via geometric median shift over Riemannian manifolds. Inf. Sci. 220, 292–305 (2013)
Wilhelm, B., et al.: Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344(6187), 1023–1028 (2014)
Yang, C., Duraiswami, R., Gumerov, N.A., Davis, L.: Improved fast Gauss transform and efficient kernel density estimation. In: IEEE 9th International Conference on Computer Vision, vol. 1, pp. 664–671 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Leibrandt, R., Günnemann, S. (2021). Gauss Shift: Density Attractor Clustering Faster Than Mean Shift. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12457. Springer, Cham. https://doi.org/10.1007/978-3-030-67658-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-67658-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67657-5
Online ISBN: 978-3-030-67658-2
eBook Packages: Computer ScienceComputer Science (R0)