Abstract
Caricature recognition is a novel, interesting, yet challenging problem. Due to the exaggeration and distortion, there is a large cross-modal gap between photographs and caricatures, making it nontrivial to match the features of photographs and caricatures. To address the problem, a joint local and global metric learning method (LGDML) is proposed. First, joint local and global feature representation is learnt with convolutional neural networks to find both discriminant features of local facial parts and global distinctive features of the whole face. Next, in order to fuse the local and global similarities of features, a unified feature representation and similarity measure learning framework is proposed. Various methods are evaluated on the caricature recognition task. We have verified that both local and global features are crucial for caricature recognition. Moreover, experimental results show that, compared with the state-of-the-art methods, LGDML can obtain superior performance in terms of Rank-1 and Rank-10.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abaci, B., Akgul, T.: Matching caricatures to photographs. SIVP 9(1), 295–303 (2015)
Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: CVPR, pp. 3908–3916 (2015)
Akleman, E.: Making caricatures with morphing. In: SIGGRAPH, p. 145 (1997)
Akleman, E., Reisch, J.: Modeling expressive 3D caricatures. In: SIGGRAPH, p. 61 (2004)
Brennan, S.E.: Caricature generator: the dynamic exaggeration of faces by computer. Leonardo 40(4), 392–400 (2007)
Chechik, G., Sharma, V., Shalit, U., Bengio, S.: Large scale online learning of image similarity through ranking. JMLR 11, 1109–1135 (2010)
Cui, Y., Zhou, F., Lin, Y., Belongie, S.: Fine-grained categorization and dataset bootstrapping using deep metric learning with humans in the loop. In: CVPR, pp. 1153–1162 (2016)
Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: ICML, pp. 209–216 (2007)
Duan, Y., Lu, J., Feng, J., Zhou, J.: Deep localized metric learning. TCSVT 28, 2644–2656 (2017)
Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-84858-7
Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: MatchNet: unifying feature and metric learning for patch-based matching. In: CVPR, pp. 3279–3286 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Hu, J., Lu, J., Tan, Y.P.: Discriminative deep metric learning for face verification in the wild. In: CVPR, pp. 1875–1882 (2014)
Hu, J., Lu, J., Tan, Y.P.: Deep metric learning for visual tracking. TCSVT 26(11), 2056–2068 (2016)
Huang, C., Loy, C.C., Tang, X.: Local similarity-aware deep feature embedding. In: NIPS, pp. 1262–1270 (2016)
Huo, J., Gao, Y., Shi, Y., Yin, H.: Variation robust cross-modal metric learning for caricature recognition. In: ACMMM Workshop, pp. 340–348. ACM (2017)
Huo, J., Li, W., Shi, Y., Gao, Y., Yin, H.: WebCaricature: a benchmark for caricature face recognition. In: BMVC (2018)
Jain, P., Kulis, B., Dhillon, I.S., Grauman, K.: Online metric learning and fast similarity search. In: NIPS, pp. 761–768 (2009)
Klare, B.F., Bucak, S.S., Jain, A.K., Akgul, T.: Towards automated caricature recognition. In: ICB, pp. 139–146 (2012)
Koestinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric learning from equivalence constraints. In: CVPR, pp. 2288–2295 (2012)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)
Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: ICCV, pp. 365–372 (2009)
Li, W., Gao, Y., Wang, L., Zhou, L., Huo, J., Shi, Y.: OPML: a one-pass closed-form solution for online metric learning. Pattern Recogn. 75, 302–314 (2018)
Li, W., Huo, J., Shi, Y., Gao, Y., Wang, L., Luo, J.: Online deep metric learning. arXiv:1805.05510 (2018)
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9(Nov), 2579–2605 (2008)
Mauro, R., Kubovy, M.: Caricature and face recognition. Mem. Cogn. 20(4), 433–440 (1992)
Mignon, A., Jurie, F.: PCCA: a new approach for distance learning from sparse pairwise constraints. In: CVPR, pp. 2666–2672 (2012)
Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: CVPR, pp. 4004–4012 (2016)
Ouyang, S., Hospedales, T., Song, Y.-Z., Li, X.: Cross-modal face matching: beyond viewed sketches. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 210–225. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16808-1_15
Reale, C., Nasrabadi, N.M., Kwon, H., Chellappa, R.: Seeing the forest from the trees: a holistic approach to near-infrared heterogeneous face recognition. In: CVPR Workshop, pp. 54–62 (2016)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR, pp. 815–823 (2015)
Shi, Y., Li, W., Gao, Y., Cao, L., Shen, D.: Beyond IID: learning to combine non-IID metrics for vision tasks. In: AAAI, pp. 1524–1531 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)
Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)
Tanaka, J.W., Farah, M.J.: Parts and wholes in face recognition. Q. J. Exp. Psychol. 46(2), 225–245 (1993)
Tseng, C.C., Lien, J.J.J., Member, I.: Colored exaggerative caricature creation using inter-and intra-correlations of feature shapes and positions. IVC 30(1), 15–25 (2012)
Vedaldi, A., Lenc, K.: MatConvNet: convolutional neural networks for MATLAB. In: ACMMM, pp. 689–692 (2015)
Wang, J., et al.: Learning fine-grained image similarity with deep ranking. In: CVPR, pp. 1386–1393 (2014)
Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. In: NIPS, pp. 1473–1480 (2005)
Yang, W., Toyoura, M., Xu, J., Ohnuma, F., Mao, X.: Example-based caricature generation with exaggeration control. TVC 32(3), 383–392 (2016)
Yi, D., Lei, Z., Liao, S., Li, S.Z.: Deep metric learning for person re-identification. In: ICPR, pp. 34–39 (2014)
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: NIPS, pp. 3320–3328 (2014)
Acknowledgements
This work is supported by the National NSF of China (Nos. 61432008, 61673203, 61806092, U1435214), Primary R&D Plan of Jiangsu Province, China (Nos. BE2015213), Jiangsu Natural Science Foundation (Nos. BK20180326), CCF-Tencent RAGR (Nos. 20180114) and the Collaborative Innovation Center of Novel Software Technology and Industrialization.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, W., Huo, J., Shi, Y., Gao, Y., Wang, L., Luo, J. (2019). A Joint Local and Global Deep Metric Learning Method for Caricature Recognition. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-20870-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20869-1
Online ISBN: 978-3-030-20870-7
eBook Packages: Computer ScienceComputer Science (R0)