Skip to main content

Identification of Elliptic Gaussian Random Processes

  • Conference paper
Fractals in Engineering

Abstract

We consider the identification of the relevant parameters of the symbol of the pseudo-differential operator defining an Elliptic Gaussian Random Process. This identification is done by using the observation of the discretization of one sample path of the process. Constructive estimators based on generalization of quadratic variations are given. Almost sure convergence of these estimators is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benassi, A., Jaffard, S., Roux, D. (1994a): Gaussian processes and Pseudodif-ferential Elliptic operators. To appear in Revista Mathematica Iberoamericana.

    Google Scholar 

  2. Benassi, A., Cohen, S., Jaffard, S. (1994b): Identification de processus gaussiens elliptiques. Cr. Acad. Sc. Paris, Série I. 319, 877–880.

    MathSciNet  MATH  Google Scholar 

  3. Benassi, A., Cohen, S., Istas, J., Jaffard, S. (Preprint 1996): Identification of Filtered White Noises.

    Google Scholar 

  4. Ezzine, A. (1996): Méthodes d’ondelettes pour la résolution numérique d’equations intégrales (Thèse de l’Ecole Nationale des Ponts et Chaussées). To appear.

    Google Scholar 

  5. Istas, J. (1996): Estimating the singularity function of a Gaussian process with applications. Scand. J. Statist. Vol. 23, 5, 1996, 581–596.

    MathSciNet  Google Scholar 

  6. Istas, J., Lang, G. (1997): Quadratic variations and estimation of the local Holder index of a Gaussian process. Ann. Inst. H. Poincaré. To appear.

    Google Scholar 

  7. Mandelbrot, B., Van Ness, J. (1968): Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review. 10, 422–437.

    MATH  Google Scholar 

  8. Meyer, Y. (1990): Ondelettes et Opérateurs. volume 1. Hermann, Paris.

    Google Scholar 

  9. Meyer, Y. (1990): Ondelettes et Opérateurs. volume 2. Hermann, Paris.

    Google Scholar 

  10. Pentland, A. (1984): Fractal-based description of natural scenes. IEEE Trans., PAMI, 6, 661–674.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London Limited

About this paper

Cite this paper

Benassi, A., Cohen, S., Istas, J., Jaffard, S. (1997). Identification of Elliptic Gaussian Random Processes. In: Lévy Véhel, J., Lutton, E., Tricot, C. (eds) Fractals in Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-0995-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0995-2_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1253-2

  • Online ISBN: 978-1-4471-0995-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics