Abstract
In the regression setting, the standard linear model \( Y = \beta_{0} + \beta_{1}X_{1} + \cdots + \beta_{p}X_{p} + \epsilon \) is commonly used to describe the relationship between a response Y and a set of variables X1, X2,…,Xp.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2021 Springer Science+Business Media, LLC, part of Springer Nature
About this chapter
Cite this chapter
James, G., Witten, D., Hastie, T., Tibshirani, R. (2021). Linear Model Selection and Regularization. In: An Introduction to Statistical Learning. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1418-1_6
Download citation
DOI: https://doi.org/10.1007/978-1-0716-1418-1_6
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-0716-1417-4
Online ISBN: 978-1-0716-1418-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)