Abstract
This paper addresses the issue of efficient retrieval from image corpora in which only a little proportion is textually indexed. We propose a hybrid approach integrating textual search with content-based retrieval. We show how a preliminary double clustering of image corpus exploited by an adequate retrieval process constitutes an answer to the pursued objective. The retrieval process takes advantage of user-system interaction via relevance feedback mechanism whose results are integrated in a virtual image. Experimental results on the PICAP prototype are reported ed and discussed to demonstrate the effectiveness of this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. Aigrain, H. Zhang, and D. Petkovic. Content-Based Representation and Retrieval of Visual Media: A State-of-the-Art Review. Multimedia Tools and Applications, 3:179–202, 1996.
G. Ciocca and R. Schettini. A relevance feedback mechanism for content-based image retrieval. Information Processing and Management, 35:605–632, 1999.
R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley and Sons, 1973.
M. Dunlop. Multimedia Information Retrieval. PhD thesis, Glasgow University, Scotland, 1991.
A. El-Hamdouchi and P. Willett. Techniques for the measurement of clustering tendency in document retrieval systems. Journal of Information Science, 13:361–365, 1987.
C. Fellbaum, editor. WORDNET: An Electronic Lexical Database. MIT Press, 1998.
V. Govindaraju. Locating human faces in photographs. International Journal of Computer Vision, 19(2):129–146, 1996.
N. Jardine and C.J. van Rijsbergen. The use of hierarchical clustering in information retrieval. Information Storage and Retrieval, 7:217–240, 1971.
T. Kato. Database architecture for content-based image retrieval. In Image Storage and Retrieval Systems, volume 1662, pages 112–123, San Jose, CA, 1992. SPIE.
A. Lakshmi-Ratan, O. Maron, E. Grimson, and T. Lozano-Perez. A Framework for Learning Query Concepts in Image Classification. In IEEE Proc. of Conf. on Computer Vision and Pattern Recognition, volume I, pages 423–429, 1999.
Y. Mori, H. Takahashi, and R. Ohta. Automatic word assignment to images based on image division and vector quantization. In RIAO 2000, volume 1, pages 285–293, Paris, France, April 2000.
C. Nastar, M. Mischke, C. Meilhac, N. Boudjemaa, H. Bernard, and M. Mautref. Retrieving images by content: the surfimage system. In Multimedia Information Systems, Istanbul, 1998.
W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, C. Faloutsos, and G. Taubin. The QBIC project: querying images by content using color, texture and shape. In Wayne Niblack, editor, Storage and Retrieval for Image and Video Databases, pages 173–181, San Jose, CA, 1993. SPIE.
V. E. Ogle and M. Stonebraker. CHABOT: Retrieval from a relational database of images. IEEE Computer, 28(9):40–48, 1995.
R.W. Picard and T.P. Minka. Vision Texture for Annotation. Multimedia Systems, 3:3–14, 1995.
W.K. Pratt. Digital Image Processing. John Wiley & Sons, New York, second edition, 1991.
C.J. van Rijsbergen and W.B. Croft. Document clustering: an evaluation of some experiments with the Cranfield 1400 collection. Information processing and management, 11:171–182, 1974.
G. Salton and M.J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.
S. Satoh, Y. Nakamura, and T. Kanade. Name-It: Naming and detecting faces in news videos. IEEE MultiMedia, 6(1):22–35, January–March 1999.
S. Sclaro., M. La Cascia, S. Sethi, and L. Taycher. Unifying textual and visual cues for content-based image retrieval on the world wide web. Computer Vision and Image Understanding, 75(1–2):86–98, 1999.
A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-Based Image Retrieval at the End of the Early Years. IEEE Transactions on pattern analysis and machine intelligence, 22(12):1349–1379, 2000.
J. R. Smith and S.-F. Chang. Querying by color regions using the VisualSEEk content-based visual query system. In Mark T. Maybury, editor, Intelligent Multimedia Information Retrieval, pages 23–41. AAAI Press, Menlo Park, 1997.
M.J. Swain and D.H. Ballard. Color indexing. International Journal of Computer Vision, 7(1):11–32, 1991.
E. Voorhees. The Effectiveness and Efficiency of Agglomerative Hierarchic Clustering in Document Retrieval. PhD thesis, Cornell University, Ithaca, NY, Etats-Unis, 1985. Rapport Technique TR 85-705.
T. Whalen, E.S. Lee, and F. Safayeni. The Retrieval of Images from Image Databases. Behaviour & Information Technology, 14(1):3–13, 1995.
P. Willett. Recent trends in Hierarchic Document Clustering. Information processing and management, 24(5):577–597, 1988.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Duffing, G., Smaïl, M. (2002). Organising and Searching Partially Indexed Image Databases. In: Crestani, F., Girolami, M., van Rijsbergen, C.J. (eds) Advances in Information Retrieval. ECIR 2002. Lecture Notes in Computer Science, vol 2291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45886-7_2
Download citation
DOI: https://doi.org/10.1007/3-540-45886-7_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43343-9
Online ISBN: 978-3-540-45886-9
eBook Packages: Springer Book Archive