Skip to main content
Log in

High-Performance Digital Image Processing

  • SCIENTIFIC SCHOOLS OF THE FEDERAL RESEARCH CENTER “COMPUTER SCIENCE AND CONTROL” OF THE RUSSIAN ACADEMY OF SCIENCES, MOSCOW, THE RUSSIAN FEDERATION
  • V.L. Arlazarov’s Scientific School
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

The work briefly describes the activities of the Moscow Scientific School of Digital Image Processing, formed on the basis of a team led by Professor V.L. Arlazarov. This school is focused on the development of high-performance image processing methods with the active use of combinatorial optimization methods, as well as the principles of minimizing the required amount of calculations. Examples of fundamental results in various areas of image processing are given, and specific application solutions developed on their basis are demonstrated. Some significant publications and achievements of the scientific school are listed and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. M. A. Aliev, D. P. Nikolaev, and A. A. Saraev, “Construction of rapid computing circuits for adjusting the binarization algorithm of Niblek,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 64 (3), 25–34 (2014).

    Google Scholar 

  2. M. A. Aliev, I. A. Kunina, A. V. Kazbekov, and V. L. Arlazarov, “Algorithm for choosing the best frame in a video stream in the task of identity document recognition,” Comput. Opt. 45, 101–109 (2021). https://doi.org/10.18287/2412-6179-CO-81

    Article  ADS  Google Scholar 

  3. M. A. Aliev, E. I. Ershov, and D. P. Nikolaev, “On the use of FHT, its modification for practical applications and the structure of Hough image,” Proc. SPIE 11041, 1104119 (2019). https://doi.org/10.1117/12.2522803

  4. E. I. Andreeva, T. V. Manzhikov, and O. A. Slavin, “Comparison of digitized pages of business documents by means of recognition,” Sensornye Sist. 32 (1), 35–41 (2018). https://doi.org/10.7868/S0235009218010067

    Article  Google Scholar 

  5. F. Anikeev, G. Raiko, E. Limonova, M. A. Aliev, and D. P. Nikolaev, “Efficient implementation of fast hough transform using CPCA coprocessor,” Program. Comput. Software 47, 335–343 (2021). https://doi.org/10.1134/S0361768821050029

    Article  MathSciNet  Google Scholar 

  6. V. L. Arlazarov, P. A. Kuratov, A. S. Loginov, and O. A. Slavin, “Algorithms for searching boundaries of printed symbols used at optical symbol recognition,” Inf. Tekhnol. Vychisl. Sist., No. 4, 59–70 (2004).

  7. V. L. Arlazarov and O. A. Slavin, “Recognition algorithms and technologies of text input into computer,” Inf. Tekhnol. Vychisl. Sist., No. 1, 48–54 (1996).

  8. V. L. Arlazarov, O. A. Slavin, and V. V. Farsobina, “Algorithms for searching the optimal position of images at their summation,” Iskusstvennyi Intellekt Prinyatie Reshenii, No. 2, 25–34 (2015).

  9. V. L. Arlazarov, O. A. Slavin, V. V. Farsobina, and A. G. Khovanskii, “The search for the optimal position during the comparison of digitized images,” Sci. Tech. Inf. Process. 41, 293–301 (2013). https://doi.org/10.3103/s0147688214050013

    Article  Google Scholar 

  10. V. L. Arlazarov, O. A. Slavin, and A. G. Khovanskii, “Estimation of the distance between images under translation,” Dokl. Math. 83, 272–274 (2011). https://doi.org/10.1134/s106456241102013x

    Article  MathSciNet  Google Scholar 

  11. V. V. Arlazarov, D. P. Nikolaev, S. A. Usilin, and D. L. Sholomov, “Recognition of guilloche elements: Determination of pages of the Russian passport,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 63 (3), 106–110 (2013).

    Google Scholar 

  12. V. V. Arlazarov, V. V. Postnikov, and D. L. Sholomov, “Cognitive forms: A system of mass input of structured documents,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk, No. 1, 35–46 (2002).

  13. D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recognit. 13, 111–122 (1981). https://doi.org/10.1016/0031-3203(81)90009-1

    Article  ADS  Google Scholar 

  14. P. V. Bezmaternykh, S. A. Gladilin, and D. P. Nikolaev, “Generative recognition of bar codes using the apparatus of rapid generalized Hough transforms,” (Inst. Probl. Peredachi Inf. Ross. Akad. Nauk, Moscow, 2010).

    Google Scholar 

  15. P. V. Bezmaternykh, D. P. Nikolaev, and V. V. Postnikov, “Method for identifying a document type by the structure of its image projection on the coordinate axes,” (Inst. Probl. Peredachi Inf. Ross. Akad. Nauk, Moscow, 2008), pp. 498–501.

    Google Scholar 

  16. P. V. Bezmaternykh and D. P. Nikolaev, “A document skew detection method using fast Hough transform,” Proc. SPIE 11433, 114330J (2020). https://doi.org/10.1117/12.2559069

  17. P. V. Bezmaternykh, D. P. Nikolaev, and V. L. Arlazarov, “Textual blocks rectification method based on fast Hough transform analysis in identity documents recognition,” Proc. SPIE 10696, 1069606 (2018). https://doi.org/10.1117/12.2310162

  18. P. V. Bezmaternykh, D. A. Ilin, and D. P. Nikolaev, “U-Net-bin: Hacking the document image binarization contest,” Comput. Opt. 43, 825–832 (2019). https://doi.org/10.18287/2412-6179-2019-43-5-825-832

    Article  ADS  Google Scholar 

  19. N. A. Bocharov, E. E. Limonova, N. B. Paramonov, and S. A. Usilin, “Optimization for computational architecture Elbrus of the modified Viola–Jones method,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 67 (4), 10–21 (2017).

    Google Scholar 

  20. M. L. Brady and W. Yong, “Fast parallel discrete approximation algorithms for the radon transform,” in Proc. Fourth Annu. ACM Symp. on Parallel Algorithms and Architectures (ACM, New York, 1992), pp. 91–99. https://doi.org/10.1145/140901.140911

  21. A. V. Brukhtii and P. A. Kuratov, “Using the gray-scale image in searching for symbol boundaries,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 64 (4), 80–83 (2014).

    Google Scholar 

  22. T. S. Chernov, D. A. Ilin, P. V. Bezmaternykh, I. A. Faradzhev, and S. M. Karpenko, “Research of segmentation methods for images of document textual blocks based on the structural analysis and machine learning,” Vestn. Ross. Fonda Fundam. Issled., No. 4, 55–71 (2016). https://doi.org/10.22204/2410-4639-2016-092-04-55-71

  23. T. S. Chernov, D. P. Nikolaev, and V. M. Klyatskin, “Method for searching periodic background elements on a document’s image,” in Proc. 39th Int. Interdisciplinary School-Conf. Information Technologies and Systems 2015 of the Institute for Information Transmission Problems of the Russian Academy of Sciences (Inst. Probl. Peredachi Inf. im. A.A. Kharkevicha, Moscow, 2015), Vol. 19, pp. 400–412.

  24. T. S. Chernov, N. P. Razumnyi, A. S. Kozharinov, D. P. Nikolaev, and V. L. Arlazarov, “Estimating the quality of input images in systems of video sequence recognition,” Inf. Tekhnol. Vychisl. Sist., No. 4, 71–82 (2017).

  25. E. I. Ershov, A. P. Terekhin, S. M. Karpenko, and D. P. Nikolaev, “On the exact estimation of approximation errors of straight lines in the fast Hough transform algorithm,” in Proc. 39th Int. Interdisciplinary School-Conf. Information Technologies and Systems 2015 of the Institute for Information Transmission Problems of the Russian Academy of Sciences (Inst. Probl. Peredachi Inf. im. A.A. Kharkevich Ross. Akad. Nauk, Moscow, 2015), pp. 858–868.

  26. E. I. Ershov, S. A. Korchagin, V. V. Kokhan, and P. V. Bezmaternykh, “A generalization of Otsu method for linear separation of two unbalanced classes in document image binarization,” Comput. Opt. 45 (1), 66–76 (2021). https://doi.org/10.18287/2412-6179-co-752

    Article  ADS  Google Scholar 

  27. E. I. Ershov, A. P. Terekhin, S. M. Karpenko, D. P. Nikolaev, and V. V. Postnikov, “Fast 3D Hough transform computation,” in Eur. Conf. for Modeling and Simulation 2016 Proc., Ed. by T. Claus, F. Herrmann, M. Manitz, and O. Rose (Eur. Council for Modeling and Simulation, 2016), pp. 227–230. https://doi.org/10.7148/2016-0227

  28. E. I. Ershov, E. A. Shvets, T. M. Khanipov, and D. P. Nikolaev, “Generation algorithms of fast generalized Hough transform,” in Eur. Conf. for Modeling and Simulation 2017 Proc., Ed. by Z. Z. Paprika, P. Horák, K. Váradi, P. T. Zwierczyk, A. Vidovics-Dancs, and J. P. Rádics (Eur. Council for Modeling and Simulation, 2017), pp. 534–538. https://doi.org/10.7148/2017-0534

  29. I. A. Faradzhev, Mathematical Methods of Discrete Optimization (Mosk. Inst. Stali i Splavov, Moscow, 1990).

    Google Scholar 

  30. A. V. Gayer, D. M. Ershova, and V. V. Arlazarov, “Fast and accurate deep learning model for stamps detection for embedded devices,” Pattern Recognit. Image Anal. 32, 772–779 (2022). https://doi.org/10.1134/s1054661822040046

    Article  Google Scholar 

  31. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson Prentice Hall, Upper Saddle River, N.J., 2008).

    Google Scholar 

  32. W. A. Götz and H. J. Druckmüller, “A fast digital radon transform—An efficient means for evaluating the hough transform,” Pattern Recognit. 29, 711–718 (1996). https://doi.org/10.1016/0031-3203(96)00015-5

    Article  ADS  Google Scholar 

  33. S. A. Ilyuhin, A. V. Sheshkus, V. Arlazarov, and D. P. Nikolaev, “MRZ-Encoder: Machine-Readable Zone detection for embedded devices,” J. Imaging, 1–16 (2022).

  34. S. M. Karpenko, D. P. Nikolaev, P. P. Nikolaev, and V. V. Postnikov, “Fast Hough transform with controlled robustness,” in IEEE AIS’04, CAD-2004 (IEEE, Moscow, 2004), pp. 303–309.

    Google Scholar 

  35. S. M. Karpenko, D. P. Nikolaev, P. P. Nikolaev, and V. V. Postnikov, “General method for contructing fast generalized Hough transforms,” in IEEE AIS’05, CAD-2005 (IEEE, Moscow, 2005), pp. 313–318.

    Google Scholar 

  36. S. M. Karpenko, V. V. Sokolov, and D. P. Nikolaev, “Shear and semi-shear Hough transform: Generation of rapid computing systems,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 58, 238–247 (2010).

    Google Scholar 

  37. T. M. Khanipov and D. P. Nikolaev, “Studying the method of region merging in the problem of color segmentation,” in Information Technologies and Systems ITIS’10 (Inst. Probl. Peredachi Inf. Ross. Akad. Nauk, Moscow, 2010), pp. 151–155.

    Google Scholar 

  38. T. M. Khanipov, “Ensemble computation approach to the Hough transform” (2018). https://doi.org/10.48550/arXiv.1802.06619

  39. T. M. Khanipov, “Computational complexity lower bounds of certain discrete Radon transform approximations,” (2018). https://doi.org/10.48550/arXiv.1801.01054

  40. S. I. Kolmakov, N. S. Skoryukina, and V. V. Arlazarov, “Machine-readable zones detection in images captured by mobile devices’ cameras,” Pattern Recognit. Image Anal. 30, 489–495 (2020). https://doi.org/10.1134/s105466182003013x

    Article  Google Scholar 

  41. I. A. Konovalenko, “Mean-squared residue of coordinates as a criterion of image normalization accuracy at optical document recognition,” Inf. Protsessy 20, 215–230 (2020).

    Google Scholar 

  42. I. A. Kunina, S. A. Gladilin, and D. P. Nikolaev, “Blind radial distortion compensation in a single image using fast Hough transform,” Comput. Opt. 40, 395–403 (2016). https://doi.org/10.18287/2412-6179-2016-40-3-395-403

    Article  ADS  Google Scholar 

  43. I. A. Kunina, E. I. Panfilova, and M. A. Povolotskii, “Zebra-crossing detection on road images using dynamic time warping,” Tr. Inst. Sistemnogo Anal. Ross. Akad. Nauk 68 (1), 23–31 (2018). https://doi.org/10.14357/20790279180503

    Article  Google Scholar 

  44. I. A. Kunina, M. A. Aliev, N. V. Arlazarov, and D. V. Polevoy, “A method of fluorescent fibers detection on identity documents under ultraviolet light,” Proc. SPIE 11433, 114330D (2020). https://doi.org/10.1117/12.2558080

  45. A. V. Kuroptev, D. P. Nikolaev, and V. V. Postnikov, “Precise localization of supporting grids for handwritten filling in document forms using the dynamic programming methods and morphological filtering,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 63 (3), 111–116 (2013).

    Google Scholar 

  46. E. E. Limonova, N. L. Rzhenev, A. V. Uskov, and M. I. Neiman-Zade, “Fast implementation of Hamming distance on VLIW-architectures on the example of Elbrus platform,” Tr. Inst. Sistemnogo Anal. Ross. Akad. Nauk 68 (1), 65–72 (2018). https://doi.org/10.14357/20790279180507

    Article  Google Scholar 

  47. E. Limonova, P. Bezmaternykh, D. Nikolaev, and V. Arlazarov, “Slant rectification in Russian passport OCR system using fast Hough transform,” Proc. SPIE 10341, 103410P (2017). https://doi.org/10.1117/12.2268725

  48. E. E. Limonova, A. Terekhin, D. P. Nikolaev, and V. Arlazarov, “Fast implementation of morphological filtering using ARM NEON extension,” Int. J. Appl. Eng. Res. 11, 11675–11680 (2016).

    Google Scholar 

  49. D. P. Matalov, S. A. Usilin, and V. V. Arlazarov, “Single-sample augmentation framework for training Viola–Jones classifiers,” Proc. SPIE 11433, 114330I (2020). https://doi.org/10.1117/12.2559435

  50. A. A. Mikhailov, “Typical problems of determining the angle of inclination of a document’s image elements,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 58, 262–270 (2010).

    Google Scholar 

  51. A. S. Mironov and D. P. Nikolaev, “Comparison of variants of implementation of the Niblek binarization algorithm of gray-scale images,” in Information Technologies and Systems ITIS’10 (Inst. Probl. Peredachi Inf. Ross. Akad. Nauk, Moscow, 2010), Vol. 2010, pp. 138–144.

    Google Scholar 

  52. D. P. Nikolaev, D. V. Polevoi, and T. S. Chernov, “Method for automatic estimation of the quality of color segmentation in the problem of packaging the images of printing documents,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 63 (3), 78–84 (2013).

    Google Scholar 

  53. D. P. Nikolaev and A. A. Saraev, “Criteria of estimating the quality in the problem of automated adjustment of binarization algorithms,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 63 (3), 85–94 (2013).

    Google Scholar 

  54. D. P. Nikolaev, S. M. Karpenko, I. P. Nikolaev, and P. P. Nikolayev, “Hough transform: Underestimated tool in the computer vision field,” in Proc. 22nd Eur. Conf. on Modelling and Simulation (Eur. Council for Modelling and Simulation, 2008), pp. 238–243. https://doi.org/10.7148/2008-0238

  55. E. I. Panfilova, M. A. Aliev, I. A. Kunina, V. V. Postnikov, and D. P. Nikolaev, “A method of detecting end-to-end curves of limited curvature,” Proc. SPIE 11433, 114330K (2020).

  56. D. V. Polevoi, E. I. Panfilova, and D. P. Nikolaev, “Balance of white for detecting holograms on colored images of black-and-white photos,” Inf. Tekhnol. Vychisl. Sist., No. 3, 82–95 (2021). https://doi.org/10.14357/20718632210308

  57. M. A. Povolotskii, E. G. Kuznetsova, N. V. Utkin, and D. P. Nikolaev, “Segmentation of registration numbers of cars with application of an algorithm for dynamic transformation of temporal axis,” Sensornye Sist. 32 (1), 50–59 (2018). https://doi.org/10.7868/S0235009218010080

    Article  Google Scholar 

  58. M. A. Povolotskii, D. V. Tropin, T. S. Chernov, and B. I. Savel’ev, “Method for segmentation of structured textual objects on images using dynamic programming,” Inf. Tekhnol. Vychisl. Sist. 69 (3), 66–78 (2019). https://doi.org/10.14357/20718632190306

    Article  Google Scholar 

  59. I. Pratikakis, K. Zagoris, G. Barlas, and B. Gatos, “ICDAR2017 Competition on Document Image Binarization (DIBCO 2017),” in 14th IAPR Int. Conf. on Document Analysis and Recognition (ICDAR), Kyoto, 2017 (IEEE, 2017), pp. 1395–1403. https://doi.org/10.1109/ICDAR.2017.228

  60. A. A. Saraev and D. P. Nikolaev, “Extraction of graphical primitives for analyzing the structure of a document on example of stamp localization,” Inf. Tekhnol. Vychisl. Sist. 2012, 371–376 (2012).

    Google Scholar 

  61. D. D. Senshina, A. A. Glikin, D. V. Polevoy, I. A. Kunina, E. I. Ershov, and A. A. Smagina, “Correction of radial distortion at submerging of a camera in water,” Sensornye Sist. 34 (3), 254–264 (2020). https://doi.org/10.31857/S0235009220030087

    Article  Google Scholar 

  62. Ju. Shemyakina, E. Limonova, N. Skoryukina, V. Arlazarov, and D. Nikolaev, “A method of image quality assessment for text recognition on camera-captured and projectively distorted documents,” Mathematics 9, 2155 (2021). https://doi.org/10.3390/math9172155

    Article  Google Scholar 

  63. O. A. Slavin, “Methods for accelerating the algorithms of symbol recognition,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 45, 287–299 (2009).

    Google Scholar 

  64. O. A. Slavin, “On the approaches of summation of binary images,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 58, 172–183 (2010).

    Google Scholar 

  65. O. A. Slavin, V. V. Farsobina, and L. S. Shibaeva, “Experimental testing of stability of summation of binary images,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 58, 184–199 (2010).

    Google Scholar 

  66. D. G. Slugin and V. V. Arlazarov, “Search of text fields of a document using the methods of image processing,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 67 (4), 65–73 (2017).

    Google Scholar 

  67. Smart Endzhins Servis, System of document recognition Smart DocumentReader, Rospatent (2020).

    Google Scholar 

  68. Smart Endzhins Servis, Platform-independent library of high-performance processing of images minimgprc, Rospatent (2021).

    Google Scholar 

  69. K. V. Soshin, D. P. Nikolaev, S. A. Gladilin, and E. I. Ershov, “Acceleration of summation over segments using the fast hough transformation pyramid,” Vestn. Yuzhno-Ural. Gos. Univ. Ser. Mat. Model. 13 (1), 129–140 (2020). https://doi.org/10.14529/mmp200110

    Article  Google Scholar 

  70. L. Teplyakov, K. Kaymakov, E. A. Shvets, and D. P. Nikolaev, “Line detection via a lightweight CNN with a Hough layerProc. SPIE 11605, 116051B (2021).https://doi.org/10.1117/12.2587167

  71. D. V. Tropin, D. P. Nikolaev, and D. G. Slugin, “The method of image alignment based on sharpness maximization,” Tr. Inst. Sistemnogo Anal. Ross. Akad. Nauk 68 (1), 134–141 (2018). https://doi.org/10.14357/20790279180515

    Article  Google Scholar 

  72. D. V. Tropin, Yu. A. Shemyakina, I. A. Konovalenko, and I. A. Faradzhev, “On the localization of planar objects on images with a complex structure of projective distortions,” Inf. Protsessy 19 (2), 208–229 (2019).

    Google Scholar 

  73. D. V. Tropin, A. M. Ershov, D. P. Nikolaev, and V. V. Arlazarov, “Advanced Hough-based method for on-device document localization,” Comput. Opt. 45, 702–712 (2021). https://doi.org/10.18287/2412-6179-co-895

    Article  ADS  Google Scholar 

  74. D. V. Tropin, S. A. Ilyuhin, D. P. Nikolaev, and V. V. Arlazarov, “Approach for document detection by contours and contrasts,” in 2020 25th Int. Conf. on Pattern Recognition (ICPR), Manhattan, N.Y. (IEEE, 2021), pp. 9689–9695. https://doi.org/10.1109/icpr48806.2021.9413271

  75. A. V. Trusov, E. E. Limonova, and A. R. Mirgasimov, “Increasing the computational efficiency of projective transform of images on SIMD architectures,” Sensornye Sist. 33 (1), 60–64 (2019). https://doi.org/10.1134/S023500921901013X

    Article  Google Scholar 

  76. S. A. Usilin, D. P. Nikolaev, and V. V. Postnikov, “Cognitive PDF/A: Technology for digitizing text documents for publication in the Internet and long-term archive storage,” Tr. Inst. Sist. Anal. Ross. Akad. Nauk 45, 159–173 (2009).

    Google Scholar 

  77. S. A. Usilin, P. V. Bezmaternykh, and V. V. Arlazarov, “Fast approach for QR code localization on images using Viola–Jones method,” Proc. SPIE 11433, 114333G (2020). https://doi.org/10.1117/12.2559386

  78. Yu. V. Vinogradova, D. P. Nikolaev, and D. G. Slugin, “Image segmentation of color documents using color clustering,” Inf. Tekhnol. Vychisl. Sist., No. 2, 40–49 (2015).

  79. A. Zhukovsky, D. Nikolaev, V. Arlazarov, V. Postnikov, D. Polevoy, N. Skoryukina, T. Chernov, J. Shemiakina, A. Mukovozov, I. Konovalenko, and M. Povolotsky, “Segments graph-based approach for document capture in a smartphone video stream,” in 2017 14th IAPR Int. Conf. on Document Analysis and Recognition (ICDAR), Kyoto, 2017 (IEEE, 2017), pp. 337–342. https://doi.org/10.1109/icdar.2017.63

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. V. Bezmaternykh, D. P. Nikolaev or V. L. Arlazarov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Pavel Vladimirovich Bezmaternykh (born 1987), received a specialist degree in applied mathematics from the Moscow Institute of Steel and Alloys in 2009. Since 2016 he has been employed at Smart Engines Service LLC, Moscow, Russia, and since 2019 he has been employed at the Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Moscow, Russia. His primary fields of study are image processing, document recognition, and text layout analysis.

Dmitrii Petrovich Nikolaev (born 1978), Dr. Sci., graduated from Moscow State University in 2000. Since 2007, he has been the Head of the Vision Systems Laboratory, Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences and, since 2016, he has been the CTO of Smart Engines Service LLC. Since 2016, he has been an Associate Professor with the Moscow Institute of Physics and Technology (MIPT), teaching the Image Processing and Analysis Course. His research activities are in the area of computer vision with primary application to color image understanding.

Vladimir L’vovich Arlazarov (born 1939), Dr. Sci., Corresponding Member of the Russian Academy of Sciences, graduated from Moscow State University in 1961. Currently he works as head of sector at the Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences (FRC CSC RAS). His research interests are game theory and pattern recognition.

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezmaternykh, P.V., Nikolaev, D.P. & Arlazarov, V.L. High-Performance Digital Image Processing. Pattern Recognit. Image Anal. 33, 743–755 (2023). https://doi.org/10.1134/S1054661823040090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661823040090

Keywords: