Skip to main content
Log in

On k-Wise L-Intersecting Families for Simplicial Complexes

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

A family \(\Delta \) of subsets of \(\{1,2,\ldots ,n\}\) is a simplicial complex if all subsets of F are in \(\Delta \) for any \(F\in \Delta ,\) and the element of \(\Delta \) is called the face of \(\Delta .\) Let \(V(\Delta )=\bigcup _{F\in \Delta } F.\) A simplicial complex \(\Delta \) is a near-cone with respect to an apex vertex \(v\in V(\Delta )\) if for every face \(F\in \Delta ,\) the set \((F\backslash \{w\})\cup \{v\}\) is also a face of \(\Delta \) for every \(w\in F.\) Denote by \(f_{i}(\Delta )=|\{A\in \Delta :|A|=i+1\}|\) and \(h_{i}(\Delta )=|\{A\in \Delta :|A|=i+1,n\not \in A\}|\) for every i,  and let \(\text {link}_{\Delta }(v)=\{E:E\cup \{v\}\in \Delta , v\not \in E\}\) for every \(v\in V(\Delta ).\) Assume that p is a prime and \(k\geqslant 2\) is an integer. In this paper, some extremal problems on k-wise L-intersecting families for simplicial complexes are considered. (i) Let \(L=\{l_1,l_2,\ldots ,l_s\}\) be a subset of s nonnegative integers. If \(\mathscr {F}=\{F_1, F_2,\ldots , F_m\}\) is a family of faces of the simplicial complex \(\Delta \) such that \(|F_{i_1}\cap F_{i_2}\cap \cdots \cap F_{i_k}|\in L\) for any collection of k distinct sets from \(\mathscr {F},\) then \(m\leqslant (k-1)\sum _{i=-1}^{s-1}f_i(\Delta ).\) In addition, if the size of every member of \(\mathscr {F}\) belongs to the set \(K:=\{k_1,k_2,\ldots ,k_r\}\) with \(\min K>s-r,\) then \(m\leqslant (k-1)\sum _{i=s-r}^{s-1}f_i(\Delta ).\) (ii) Let \(L=\{l_1,l_2,\ldots ,l_s\}\) and \(K=\{k_1,k_2,\ldots ,k_r\}\) be two disjoint subsets of \(\{0,1,\ldots ,p-1\}\) such that \(\min K>s-2r+1.\) Assume that \(\Delta \) is a simplicial complex with \(n\in V(\Delta )\) and \(\mathscr {F}=\{F_1, F_2,\ldots , F_m\}\) is a family of faces of \(\Delta \) such that \(|F_j|\pmod {p}\in K\) for every j and \(|F_{i_1}\cap F_{i_2}\cap \cdots \cap F_{i_k}|\pmod {p}\in L\) for any collection of k distinct sets from \(\mathscr {F}.\) Then \(m\leqslant (k-1)\sum _{i=s-2r}^{s-1}h_i(\Delta ).\) (iii) Let \(L=\{l_1,l_2,\ldots ,l_s\}\) be a subset of \(\{0,1,\ldots ,p-1\}.\) Assume that \(\Delta \) is a near-cone with apex vertex v and \(\mathscr {F}=\{F_1, F_2,\ldots , F_m\}\) is a family of faces of \(\Delta \) such that \(|F_j|\pmod {p}\not \in L\) for every j and \(|F_{i_1}\cap F_{i_2}\cap \cdots \cap F_{i_k}|\pmod {p}\in L\) for any collection of k distinct sets from \(\mathscr {F}.\) Then \( m\leqslant (k-1)\sum _{i=-1}^{s-1}f_i(\text {link}_\Delta (v)).\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlswede, R., Khachatrian, L.H.: The complete intersection theorem for systems of finite sets. Eur. J. Comb. 18, 125–136 (1997)

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Babai, L., Suzuki, H.: Multilinear polynomials and Frankl–Ray–Chaudhuri–Wilson type intersection theorems. J. Comb. Theory Ser. A 58, 165–180 (1991)

    Article  MathSciNet  Google Scholar 

  3. Borg, P.: Extremal \(t\)-intersecting sub-families of hereditary families. J. Lond. Math. Soc. 79(2), 167–185 (2009)

    Article  MathSciNet  Google Scholar 

  4. Borg, P.: Non-trivial intersecting uniform sub-families of hereditary families. Discrete Math. 313, 1754–1761 (2013)

    Article  MathSciNet  Google Scholar 

  5. William, Y.C., Chen, J.Q.: Liu, set systems with \(L\)-intersections modulo a prime number. J. Comb. Theory Ser. A 116, 120–131 (2009)

    Article  Google Scholar 

  6. Chen, William Y.C., Liu, J.Q., Larry X.W., Wang: Families of sets with intersecting clusters. SIAM J. Discrete Math. 23(3), 1249–1260 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chvátal, V.: Unsolved problem no. 7. In: Berge, C., Ray-Chaudhuri, D.K. (eds.) Hypergraph Seminar. Lecture Notes in Mathematics, vol. 411. Springer, Berlin (1974)

  8. Chvátal, V.: Intersecting families of edges in hypergraphs having the hereditary property. In: Hypergraph Seminar, Proceedings of the First Working Seminar, Ohio State University, Columbus, OH, USA (1972)

  9. Chvátal, V.: Intersecting families of edges in hypergraphs having the hereditary property. In: Lecture Notes in Mathematics, vol. 411, pp. 61–66. Springer, Berlin (1974) (dedicated to Arnold Ross)

  10. Deza, M., Frankl, P.: Erdős–Ko–Rado theorem—22 years later. SIAM J. Algebr. Discrete Methods 4, 419–431 (1983)

    Article  Google Scholar 

  11. Erdős, P., Ko, C., Rado, R.: Intersection theorems for systems of finite sets. Q. J. Math. Oxf. Ser. 12(2), 313–320 (1961)

    Article  MathSciNet  Google Scholar 

  12. Fakhari, S.A.S.: Erdős–Ko–Rado type theorems for simplicial complexes. Electron. J. Comb. 24(2), 2–38 (2017)

    Google Scholar 

  13. Frankl, P.: The Erdős–Ko–Rado theorem is true for \(n=ckt\). In: Proc. Fifth Hung. Comb. Coll., pp. 365–375. North-Holland, Amsterdam (1978)

  14. Frankl, P., Wilson, R.M.: Intersection theorems with geometric consequences. Combinatorica 1, 357–368 (1981)

    Article  MathSciNet  Google Scholar 

  15. Füredi, Z., Hwang, K.W., Weichsel, P.: A proof and generalizations of the Erdős–Ko–Rado theorem using the method of linearly independent polynomials. In: Klazar, M., Kratochvil, J., Loebl, M., Matousek, J., Thomas, R., Valtr, P. (eds.) Algorithms Combin., vol. 26, pp. 215–224. Springer, Berlin (2006)

  16. Füredi, Z., Sudakov, B.: Extremal set systems with restricted \(k\)-wise intersections. J. Comb. Theory Ser. A 105, 143–159 (2004)

    Article  MathSciNet  Google Scholar 

  17. Grolmusz, V., Sudakov, B.: On \(k\)-wise set-intersections and \(k\)-wise hamming-distances. J. Comb. Theory Ser. A 99, 180–190 (2002)

    Article  MathSciNet  Google Scholar 

  18. Hilton, A.J.W., Milner, E.C.: Some intersection theorems for systems of finite sets. Q. J. Math. Oxf. Ser. (2) 18, 369–384 (1967)

    Article  MathSciNet  Google Scholar 

  19. Holroyd, F., Talbot, J.: Graphs with the Erdős–Ko–Rado property. Discrete Math. 293, 165–176 (2005)

    Article  MathSciNet  Google Scholar 

  20. Hwang, K.W., Kim, Y.: A proof of Alon–Babai–Suzuki’s conjecture and multilinear polynomials. Eur. J. Comb. 43, 289–294 (2015)

    Article  MathSciNet  Google Scholar 

  21. Liu, J., Liu, J.Q.: Set systems with cross \(L\)-intersection and \(k\)-wise \(L\)-intersecting families. Discrete Math. 309, 5920–5925 (2009)

    Article  MathSciNet  Google Scholar 

  22. Liu, J.Q., Liu, X.D.: Cross \(L\)-intersecting families on set systems. Discrete Math. 310, 720–726 (2010)

    Article  MathSciNet  Google Scholar 

  23. Liu, J.Q., Yang, W.B.: Set systems with restricted \(k\)-wise \(L\)-intersections modulo a prime number. Eur. J. Comb. 36, 707–719 (2014)

    Article  MathSciNet  Google Scholar 

  24. Li, S.C., Zhang, H.H.: Set systems with \(L\)-intersections and \(k\)-wise \(L\)-intersecting families. J. Comb. Des. 24, 514–529 (2016)

    Article  MathSciNet  Google Scholar 

  25. Li, S.C., Zhang, H.H.: On set systems with restricted \(k\)-wise \(L\)-intersection modulo a prime, and beyond. J. Comb. Des. 26, 267–279 (2018)

    Article  MathSciNet  Google Scholar 

  26. Liu, J.Q., Zhang, S.G., Li, S.C., Zhang, H.H.: Set systems with \(k\)-wise \(L\)-intersections and codes with restricted Hamming distances. Eur. J. Comb. 58, 166–180 (2016)

    Article  MathSciNet  Google Scholar 

  27. Miklós, D.: Some Results Related to a Conjecture of Chvátal. PhD Dissertation, Ohio State University (1986)

  28. Ou, L., Lv, B.J., Wang, K.S.: The Erdős–Ko–Rado theorem for singular linear spaces. Linear Algebra Appl. 440, 206–212 (2014)

    Article  MathSciNet  Google Scholar 

  29. Olarte, J.A., Santos, F., Spreer, J.: Short proof of two cases of Chvátal’s conjecture. Discrete Math. 342, 2192–2194 (2019)

    Article  MathSciNet  Google Scholar 

  30. Olarte, J.A., Santos, F., Spreer, J., Stump, C.: The EKR property for flag pure simplicial complexes without boundary. J. Comb. Theory Ser. A 172, 105205 (2020)

    Article  MathSciNet  Google Scholar 

  31. Qian, J., Ray-Chaudhuri, D.K.: On the mod-\(p\) Alon–Babai–Suzuki inequality. J. Algebr. Comb. 12, 85–93 (2000)

    Article  MathSciNet  Google Scholar 

  32. Ray-Chaudhuri, D.K., Wilson, R.M.: On \(t\)-designs. Osaka J. Math. 12, 737–744 (1975)

    MathSciNet  Google Scholar 

  33. Siggers, M., Tokushige, N.: The maximum size of intersecting and union families of sets. Eur. J. Comb. 33, 128–138 (2012)

    Article  MathSciNet  Google Scholar 

  34. Snevily, H.: A new result of Chvátal’s conjecture. J. Comb. Theory Ser. A 61, 137–141 (1992)

    Article  MathSciNet  Google Scholar 

  35. Snevily, H.: On generalizations of the deBruijin–Erdős theorem. J. Comb. Theory Ser. A 68, 232–238 (1994)

    Article  MathSciNet  Google Scholar 

  36. Snevily, H.: A sharp bound for the number of sets that pairswise intersect at \(k\) positive values. Combinatorica 23, 527–533 (2003)

    Article  MathSciNet  Google Scholar 

  37. Wang, J., Zhang, H.J.: Nontrivial independent sets of bipartite graphs and cross-intersecting families. J. Comb. Theory Ser. A 120(1), 129–141 (2013)

    Article  MathSciNet  Google Scholar 

  38. Wang, X.W.: Restricted intersecting families on simplicial complex. Adv. Appl. Math. 124, 102144 (2021)

    Article  MathSciNet  Google Scholar 

  39. Wilson, R.W.: The exact bound in the Erdős–Ko–Rado theorem. Combinatorica 12, 247–257 (1984)

    Article  Google Scholar 

  40. Woodroofe, R.: Erdős–Ko–Rado theorems for simplicial complexes. J. Comb. Theory Ser. A 118, 1218–1227 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Shuchao Li for his extensive and valuable suggestions, which leads to significant improvements of the paper. We also take this opportunity to thank the editor Rosihan M. Ali and the anonymous reviewer for their critical reading of the manuscript and suggestions, which have immensely helped us in getting the article to its present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huihui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Sandi Klavžar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Z. is financially supported by the National Natural Science Foundation of China (Grant No. 11801253), the Basic Research Foundation of Henan Educational Committee (Grant No. 22ZX009) and the Heluo Young Talent Lifting Project (Grant No. 2022HLTJ14).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, H. On k-Wise L-Intersecting Families for Simplicial Complexes. Bull. Malays. Math. Sci. Soc. 47, 128 (2024). https://doi.org/10.1007/s40840-024-01725-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-024-01725-0

Keywords

Mathematics Subject Classification