Skip to main content
Log in

An Erdős–Ko–Rado theorem for finite buildings of type F4

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we determine the largest sets of points of finite thick buildings of type F4 such that no two points of the set are at maximal distance. The motivation for studying these sets comes from [9], where a general Erdős–Ko–Rado problem was formulated for finite thick buildings. The result in this paper solves this problem for points (and dually for symplecta) in finite thick buildings of type F4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Blok, Far from a point in the F 4(q) geometry, European Journal of Combinatorics 22 (2001), 145–163.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Blokhuis, A. E. Brouwer and Ç. Güven, Cocliques in the Kneser graph on the pointhyperplane flags of a projective space, Combinatorica 34 (2014), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. M. Cohen, An axiom system for metasymplectic spaces, Geometriae Dedicata 12 (1982), 417–433.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Frankl and R. M. Wilson, The Erdős–Ko–Rado theorem for vector spaces, Journal of Combinatorial Theory. Series A 43 (1986), 228–236.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Godsil and K. Meagher, Erdős–Ko–Rado Theorems: Algebraic Approaches, Cambridge Studies in Advanced Mathematics, Vol. 149, Cambridge University Press, Cambridge, 2016.

  6. C. D. Godsil and M. W. Newman, Independent sets in association schemes, Combinatorica 26 (2006), 431–443.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford Mathematical Monographs, Clarendon Press, New York, 1991.

    Google Scholar 

  8. W. N. Hsieh, Intersection theorems for systems of finite vector spaces, Discrete Mathematics 12 (1975), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Ihringer, K. Metsch and B. Mühlherr, An EKR theorem for finite buildings of type Dℓ, Journal of Algebraic Combinatorics 47 (2018), 529–541.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Metsch, An Erdős–Ko–Rado result for sets of pairwise non-opposite lines in finite classical polar spaces, Forum Mathematicum, https://doi.org/10.1515/forum-2017-0039.

  11. V. Pepe, L. Storme and F. Vanhove, Theorems of Erdős–Ko–Rado type in polar spaces, Journal of Combinatorial Theory. Series A 118 (2011), 1291–1312.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Stanton, Some Erdős–Ko–Rado theorems for Chevalley groups, SIAM Journal on Algebraic and Discrete Methods 1 (1980), 160–163.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Tanaka, Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs, Journal of Combinatorial Theory. Series A 113 (2006), 903–910.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Tits, Buildings of Spherical Type and Finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer, Berlin–New York, 1974.

  15. R. M. Weiss, The Structure of Spherical Buildings, Princeton University Press, Princeton, NJ, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Metsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metsch, K. An Erdős–Ko–Rado theorem for finite buildings of type F4. Isr. J. Math. 230, 813–830 (2019). https://doi.org/10.1007/s11856-019-1844-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1844-z