Skip to main content
Account

Table 2 Table 2 Comparison of our method with state-of-the-art methods on the EndoVis 2017 and EndoVis 2018 datasets for multi-class segmentation

From: Enhancing surgical instrument segmentation: integrating vision transformer insights with adapter

Method

Ch_IoU

ISI_IoU

Bipolar

Prograsp

Large

Vessel

Grasping

Monopolar

Ultrasound

mc_IoU

   

Forceps

Forceps

Needle driver

Instrument

Applier

Curved scissors

Probe

 

EndoVis 2017

 TraSeTR [16]

60.40

65.20

45.20

56.70

55.80

38.90

11.40

31.3

18.20

36.79

 S3Net [23]

72.54

71.99

75.08

54.32

61.84

35.5

27.47

43.23

28.38

46.55

 Ours

73.96

69.15

66.45

67.56

70.52

42.68

12.9

40.15

29.12

47.06

EndoVis 2018

 TraSeTR [16]

76.20

76.30

53.30

46.50

40.60

13.90

86.30

17.50

47.77

 S3Net [23]

75.81

74.02

77.22

50.87

19.83

50.59

0.00

92.12

7.44

42.58

 MSLRGR [24]

69.66

43.56

0.15

34.71

3.87

87.16

12.03

35.88

 Ours

85.25

82.99

85.72

67.86

72.56

89.16

6.39

91.07

22.12

63.55

  1. The values in bold signifies the best performance in the specific metric represented by that column