Skip to main content
Log in

Some Notes on the Second Maximal Subgroups of Finite Groups

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Under study are the arithmetic properties of second maximal subgroups of finite groups. Generally speaking, we investigated the problem by Monakhov [1, Problem 19.54] and developed the research of Meng and Guo [2, Theorem B] by weakening the condition of solvability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Kourovka Notebook: Unsolved Problems in Group Theory. 19th ed., Khukhro E. I. and Mazurov V. D. (eds.), Sobolev Inst. Math., Novosibirsk (2018).

    MATH  Google Scholar 

  2. Meng H. and Guo X., “Weak second maximal subgroups in solvable groups,” J. Algebra, vol. 517, 112–118 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  3. Doerk K. and Hawkes T., Finite Soluble Groups, De Gruyter, Berlin and New York (1992).

    Book  MATH  Google Scholar 

  4. Guo W., The Theory of Classes of Groups, Science Press and Kluwer Acad. Publ., Beijing, New York, Dordrecht, Boston, and London (2000).

    Google Scholar 

  5. Isaacs I. M., Navarro G., and Wolf T. R., “Finite group elements where no irreducible character vanishes,” J. Algebra, vol. 222, no. 2, 413–423 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo W., Skiba A. N., and Tang X., “On boundary factors and traces of subgroups of finite groups,” Commun. Math. Stat., vol. 2, no. 3–4, 349–361 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. Janko Z., “Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen,” Math. Z., vol. 79, no. 1, 422–424 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  8. Berkovič Ya. G., “The existence of subgroups of a finite non-solvable group,” Dokl. Akad. Nauk, vol. 156, no. 6, 1255–1257 (1964).

    MathSciNet  Google Scholar 

  9. Huppert B., Endliche Gruppen. I, Springer, Berlin and New York (1967).

    Book  MATH  Google Scholar 

  10. Conway J. H., Curtis R. T., Norton S. P., Parker R. A., and Wilson R. A., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon, Oxford (1985).

    MATH  Google Scholar 

  11. Huppert B. and Blackburn N., Finite Groups. III, Springer, Berlin and New York (1982).

    Book  MATH  Google Scholar 

  12. Guo X. and Shum K. P., “Cover-avoidance properties and the structure of finite groups,” J. Pure Appl. Algebra, vol. 181, no. 2, 297–308 (2003).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This research is supported by the NSFC (Grants # 11871062 and 12001436), the NSFC–RFBR (Grant # 12011530061), the Chunhui Plan Cooperative Scientific Research Project of the Ministry of Education of the People’s Republic of China and the Natural Science Foundation of Jiangsu Province (Grant # BK20181451), and the Fundamental Research Funds of China West Normal University (Grants # 17E091 and 18B032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Gao, Z. & Miao, L. Some Notes on the Second Maximal Subgroups of Finite Groups. Sib Math J 62, 178–181 (2021). https://doi.org/10.1134/S0037446621010195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446621010195

Keywords

UDC