Skip to main content
Log in

A fractional-order decomposition model of image registration and its numerical algorithm

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

To overcome the weakness of TV based image registration models, we propose a fractional-order decomposition model for image registration. In this model, deformation is decomposed into two components: discontinuous component and smooth component. The fractional-order total variation regularization and higher order regularization are added on these two components, respectively. Furthermore, a numerical algorithm is proposed to solve this model. Numerical tests are also performed to show the efficiency of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdeljawad T (2015) On conformable fractional calculus. J Comput Appl Math 279:57–66

    Article  MathSciNet  Google Scholar 

  • Alahyane M, Hakim A, Laghrib A, Raghay S (2018) Fluid image registration using a finite volume scheme of the incompressible Navier Stokes equation. Inverse Probl Imaging 12(5):1055–1081

    Article  MathSciNet  Google Scholar 

  • Alahyane M, Hakim A, Laghrib A, Raghay S (2019) A lattice Boltzmann method applied to the fluid image registration. Appl Math Comput 349:421–438

    MathSciNet  MATH  Google Scholar 

  • Amit Y (1994) A nonlinear variational problem for image matching. SIAM J Sci Comput 15(1):207–224

    Article  MathSciNet  Google Scholar 

  • Beg MF, Miller MI, Trouve A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61(2):139–157

    Article  Google Scholar 

  • Bruveris M, Gay-Balmaz F, Holm DD, Ratiu TS (2011) The momentum map representation of images. J Nonlinear Sci 21:115–150

    Article  MathSciNet  Google Scholar 

  • Chen H, Song J, Tai X (2009) A dual algorithm for minimization of the LLT model. Adv Comput Math 31:115–130

    Article  MathSciNet  Google Scholar 

  • Demengel F, Demengel G (2011) Functional Spaces for the Theory of Elliptic Partial Differential Equations. Springer, Berlin, pp 219–224

    MATH  Google Scholar 

  • Dupuis P, Grenander U, Miller MI (1998) Variational problems on flows of diffeomorphisms for image matching. Q Appl Math 6:587–600

    Article  MathSciNet  Google Scholar 

  • Ervin VJ, Roop JP (2006) Variational formulation for the stationary fractional advection dispersion equation. Numer Method Partial Differ Equ 22:558–576

    Article  MathSciNet  Google Scholar 

  • Evans LC (1997) Partial Differential Equations. American Mathematical Society, Berkeley

    Google Scholar 

  • Fischer B, Modersitzki J (2002) Fast diffusion registration. Contemp Math 313:117–128

    Article  MathSciNet  Google Scholar 

  • Goldstein T, Osher S (2009) The split Bregman method for L1-regularized problems. SIAM J Imaging Sci 2(2):323–343

    Article  MathSciNet  Google Scholar 

  • Haber E, Modersitzki J (2007) COFIR: coarse and fine image registration. In: SIAM real-time PDE constrained optimization. SIAM, Philadelphia, pp 37–49

  • Han H (2018) A variational model with fractional-order regularization term arising in registration of diffusion tensor image. Inverse Probl Imaging 12(6):1263–1291

    Article  MathSciNet  Google Scholar 

  • Han H, Zhou H (2017) A variational problem arising in registration of diffusion tensor image. Acta Math Sci 37B(2):539–554

    Article  MathSciNet  Google Scholar 

  • Ibrahim M, Chen K (2017) Unifying framework for decomposition models of parametric and non-parametric image registration. In: Proceedings of the 24th national symposium on mathematical sciences: mathematical sciences exploration for the universal preservation

  • Idczak D, Walczak S (2013) Fractional sobolev spaces via Riemann–Liouville derivatives. J Funct Spaces Appl 2013:1–15

    Article  MathSciNet  Google Scholar 

  • Jud C, Luthi M, Albrecht T et al (2014) Variational image registration using inhomogeneous regularization. J Math Imaging Vis 50(3):246–260

    Article  Google Scholar 

  • Jumarie G (2009) Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions. Appl Math Lett 22(3):378–385

    Article  MathSciNet  Google Scholar 

  • Lederman C, Joshi A, Dinov I et al (2016) A unified variational volume registration method based on automatically learned brain structures. J Math Imaging Vis 55(2):179–198

    Article  MathSciNet  Google Scholar 

  • Machado J, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153

    Article  MathSciNet  Google Scholar 

  • Metzler R, Klafter J (2000) The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  Google Scholar 

  • Nezza ED, Palatucci G, Valdinoci E (2012) Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math 136(5):521–573

    Article  MathSciNet  Google Scholar 

  • Pock T, Urschler M, Zach C, Beichel R, Bischof H (2007) A duality based algorithm for TV-L1 optical flow image registration, Medical Image Computing and Computer-Assisted Intervention, MICCAI. Springer, Berlin, pp 511–518

    Google Scholar 

  • Podlubny I (1999) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng. Elservier Science, Amsterdam

    MATH  Google Scholar 

  • Thirion JP (1998) Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal 2(3):243–260

    Article  Google Scholar 

  • Vercauteren T, Pennec X, Perchant X, Ayache N (2007) Nonparametric diffeomorphic image registration with the demons algorithm, Medical image computing and computer-assisted intervention, MICCAI 2007, Lecture Notes in Computer Science, vol 4792. Springer, Berlin, pp 319–326

  • Wang H, Du N (2014) Fast solution methods for space-fractional diffusion equations. J Comput Appl Math 255:376–383

    Article  MathSciNet  Google Scholar 

  • Zhang J, Chen K (2015) Variational image registration by a total fractional-order variation model. J Comput Phys 293:442–461

    Article  MathSciNet  Google Scholar 

  • Zhang D, Chen K (2018) A novel diffeomorphic model for image registration and its algorithm. J Math Imaging Vis, 1–23

  • Zhang J, Chen K, Yu B (2016a) An improved discontinuity-preserving image registration model and its fast algorithm. Appl Math Model 40:10740–10759

    Article  MathSciNet  Google Scholar 

  • Zhang J, Chen K, Yu B (2016b) A novel high-order functional based image registration model with inequality constraint. Comput Math Appl 72:2887–2899

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors of this paper would like to thank Professor Huan-Song Zhou in Wuhan University of Technology for his suggestions on this work. Thanks also to the Referee for her/his very helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Han.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSFC under Grant Nos. 11871387, 11871386, 11901443 and Natural Science Foundation Project of Guangxi Province (2018GXNSFAA138056).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H. A fractional-order decomposition model of image registration and its numerical algorithm. Comp. Appl. Math. 39, 45 (2020). https://doi.org/10.1007/s40314-020-1066-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-1066-3

Keywords

Mathematics Subject Classification