Abstract
The intima media thickness (IMT) of common carotid artery is a reliable measure of cardiovascular diseases. The quantification of IMT is the biomarker for clinical diagnosis of the risk of stroke. For robust measurement of IMT, the ultrasound carotid images must be free of speckle noise. To reduce the effect of speckle noise in the carotid ultrasound image, we propose to use Bayesian least square estimation filter. In addition, the enhancement step based on total variation-\(L_{1}\)(TV-\(L_{1}\)) norm is performed to improve the robustness. Further more, we present a fully automated region of interest and segmentation of intima media complex based on support vector machine. The quantitative evaluation is carried out on 49 carotid ultrasound images. The proposed algorithm is compared with gradient-based methods like model based, dynamic programming, snake algorithm, and classifier-based segmentation using a neural network algorithm. The performance of the experimental result shows that the proposed method is robust in quantifying the IMT in carotid ultrasound images.
Similar content being viewed by others
References
van der Meer, I.M.; Bots, M.L.; Hofman, A.; del Sol, A.I.; van der Kuip, D.A.; Witteman, J.C.: Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction. Circulation 109(9), 1089–1094 (2004)
Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al.: Heart disease and stroke statistics-2013 update. Circulation 127(1) (2013)
University, C.: E-health laboratory cs department. (www.medinfo.cs.ucy.ac.cy/index.php/downloads/datasets) (2007)
Simon, A.; Gariepy, J.; Chironi, G.; Megnien, J.L.; Levenson, J.: Intima-media thickness: a new tool for diagnosis and treatment of cardiovascular risk. J. Hypertens. 20(2), 159–169 (2002)
Lamont, D.; Parker, L.; White, M.; Unwin, N.; Bennett, S.M.; Cohen, M.; Richardson, D.; Dickinson, H.O.; Adamson, A.; Alberti, K.; et al.: Risk of cardiovascular disease measured by carotid intima-media thickness at age 49–51: lifecourse study. Bmj 320(7230), 273–278 (2000)
Aja-Fernández, S.; Alberola-López, C.: On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. 15(9), 2694–2701 (2006)
Lee, J.S.: Speckle suppression and analysis for synthetic aperture radar images. Opt. Eng. 25(5), 170–179 (1986)
Frost, V.S.; Stiles, J.A.; Shanmugan, K.S.; Holtzman, J.C.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 2, 157–166 (1982)
Buades, A.; Coll, B.; Morel, J.M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005. vol. 2, pp. 60–65. IEEE (2005)
Tian, J.; Chen, L.: Image despeckling using a non-parametric statistical model of wavelet coefficients. Biomed. Signal Process. Control 6(4), 432–437 (2011)
Mitra, P.; Chakraborty, C.; Mandana, K.: Wavelet based non local means filter for despeckling of intravascular ultrasound image. In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1361–1365. IEEE (2015)
Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L.: A nonlocal sar image denoising algorithm based on llmmse wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 50(2), 606–616 (2012)
Nagaraj, Y.; Asha, C.; Narasimhadhan, A.: Assessment of speckle denoising in ultrasound carotid images using least square bayesian estimation approach. In: Region 10 Conference (TENCON), 2016 IEEE, pp. 1001–1004. IEEE (2016)
Touboul, P.J.; Prati, P.; Scarabin, P.Y.; Adrai, V.; Thibout, E.; Ducimetière, P.: Use of monitoring software to improve the measurement of carotid wall thickness by b-mode imaging. J. Hypertens. 10, S37–S42 (1992)
Pignoli, P.; Longo, T.: Evaluation of atherosclerosis with b-mode ultrasound imaging. J. Nucl. Med. Allied Sci. 32(3), 166–173 (1987)
Liguori, C.; Paolillo, A.; Pietrosanto, A.: An automatic measurement system for the evaluation of carotid intima-media thickness. IEEE Trans. Instrum. Meas. 50(6), 1684–1691 (2001)
Gutierrez, M.; Pilon, P.; Lage, S.; Kopel, L.; Carvalho, R.; Furuie, S.: Automatic measurement of carotid diameter and wall thickness in ultrasound images. In: Computers in Cardiology, 2002, pp. 359–362. IEEE (2002)
Golemati, S.; Stoitsis, J.; Balkizas, T.; Nikita, K.: Comparison of b-mode, m-mode and hough transform methods for measurement of arterial diastolic and systolic diameters. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005., pp. 1758–1761. IEEE (2006)
Golemati, S.; Stoitsis, J.; Sifakis, E.G.; Balkizas, T.; Nikita, K.S.: Using the hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery. Ultrasound Med. Biol. 33(12), 1918–1932 (2007)
Stein, J.H.; Korcarz, C.E.; Mays, M.E.; Douglas, P.S.; Palta, M.; Zhang, H.; LeCaire, T.; Paine, D.; Gustafson, D.; Fan, L.: A semiautomated ultrasound border detection program that facilitates clinical measurement of ultrasound carotid intima-media thickness. J. Am. Soc. Echocardiogr. 18(3), 244–251 (2005)
Mao, F.; Gill, J.; Downey, D.; Fenster, A.: Segmentation of carotid artery in ultrasound images: method development and evaluation technique. Med. Phys. 27(8), 1961–1970 (2000)
Li, Q.; Zhang, W.; Guan, X.; Bai, Y.; Jia, J.: An improved approach for accurate and efficient measurement of common carotid artery intima-media thickness in ultrasound images. BioMed Res. Int. 2014 (2014)
Loizou, C.P.; Pattichis, C.S.; Pantziaris, M.; Tyllis, T.; Nicolaides, A.: Snakes based segmentation of the common carotid artery intima media. Med. Biol. Eng. Comput. 45(1), 35–49 (2007)
Loizou, C.P.; Pattichis, C.S.; Nicolaides, A.N.; Pantziaris, M.: Manual and automated media and intima thickness measurements of the common carotid artery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5) (2009)
Loizou, C.P.; Kasparis, T.; Lazarou, T.; Pattichis, C.S.; Pantziaris, M.: Manual and automated intima-media thickness and diameter measurements of the common carotid artery in patients with renal failure disease. Comput. Biol. Med. 53, 220–229 (2014)
Loizou, C.P.; Nicolaides, A.; Kyriacou, E.; Georghiou, N.; Griffin, M.; Pattichis, C.S.: A comparison of ultrasound intima-media thickness measurements of the left and right common carotid artery. IEEE J. Transl. Eng. Health Med. 3, 1–10 (2015)
Delsanto, S.; Molinari, F.; Giustetto, P.; Liboni, W.; Badalamenti, S.; Suri, J.S.: Characterization of a completely user-independent algorithm for carotid artery segmentation in 2-d ultrasound images. IEEE Trans. Instrum. Meas. 56(4), 1265–1274 (2007)
Destrempes, F.; Meunier, J.; Giroux, M.F.; Soulez, G.; Cloutier, G.: Segmentation in ultrasonic b-mode images of healthy carotid arteries using mixtures of nakagami distributions and stochastic optimization. IEEE Trans. Med. Imaging 28(2), 215–229 (2009)
Ilea, D.E.; Whelan, P.F.; Brown, C.; Stanton, A.: An automatic 2d cad algorithm for the segmentation of the imt in ultrasound carotid artery images. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp. 515–519. IEEE (2009)
Ilea, D.E.; Duffy, C.; Kavanagh, L.; Stanton, A.; Whelan, P.F.: Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(1), 158–177 (2013)
Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier, New York City (2014)
Akay, B.: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. 13(6), 3066–3091 (2013)
Eberhart, R.; Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS’95., pp. 39–43. IEEE (1995)
Bayraktar, Z.; Komurcu, M.; Bossard, J.A.; Werner, D.H.: The wind driven optimization technique and its application in electromagnetics. IEEE Trans. Antennas Propag. 61(5), 2745–2757 (2013)
Li, H.; Zhang, S.; Ma, R.; Chen, H.; Xi, S.; Zhang, J.; Fang, J.: Ultrasound intima-media thickness measurement of the carotid artery using ant colony optimization combined with a curvelet-based orientation-selective filter. Med. Phys. 43(4), 1795–1807 (2016)
Menchón-Lara, R.M.; Bastida-Jumilla, M.C.; Morales-Sánchez, J.; Sancho-Gómez, J.L.: Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks. Med. Biol. Eng. Comput. 52(2), 169–181 (2014)
Araki, T.; Jain, P.K.; Suri, H.S.; Londhe, N.D.; Ikeda, N.; El-Baz, A.; Shrivastava, V.K.; Saba, L.; Nicolaides, A.; Shafique, S.: Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: a machine learning paradigm. Comput. Biol. Med. 80, 77–96 (2017)
Nagaraj, Y.; Asha, C.S.; H.S.T.A.; Narasimhadhan, A.V.: Carotid wall segmentation in longitudinal ultrasound images using structured random forest (2018). https://doi.org/10.1016/j.compeleceng.2018.02.010
Wong, A.; Mishra, A.; Bizheva, K.; Clausi, D.A.: General bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Opt. Express 18(8), 8338–8352 (2010)
Zhang, Q.; Li, C.; Han, H.; Yang, L.; Wang, Y.; Wang, W.: Computer-aided quantification of contrast agent spatial distribution within atherosclerotic plaque in contrast-enhanced ultrasound image sequences. Biomed. Signal Process. Control 13, 50–61 (2014)
Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)
Ghita, O.; Ilea, D.E.; Whelan, P.F.: Texture enhanced histogram equalization using \(tv-l1\) image decomposition. IEEE Trans. Image Process. 22(8), 3133–3144 (2013)
Nagaraj, Y.; Pardhu, M.; J.R.K.K.; Narasimhadhan, A.V.: Segmentation of intima media complex from carotid ultrasound images using wind driven optimization technique (2017). https://doi.org/10.1016/j.bspc.2017.08.009
Meyer, F.: Topographic distance and watershed lines. Signal Process. 38(1), 113–125 (1994)
Gonzalez, R.C.E.; Woods, S.L.; Gonzalez, R.E.R.E.R.C.; Woods, R.E.; Eddins, S.L.: Digital image processing using MATLAB. 04; TA1637, G6. (2004)
Chang, C.C.; Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)
Vert, J.P.; Tsuda, K.; Schölkopf, B.: A primer on kernel methods. Kernel Methods Comput. Biol. pp. 35–70 (2004)
Molinari, F.; Zeng, G.; Suri, J.S.: A state of the art review on intima-media thickness (imt) measurement and wall segmentation techniques for carotid ultrasound. Comput. Methods Progr. Biomed. 100(3), 201–221 (2010)
Garren, S.T.: Maximum likelihood estimation of the correlation coefficient in a bivariate normal model with missing data. Stat. Probab. Lett. 38(3), 281–288 (1998)
Acknowledgements
The authors would like to thank Department of Radiology, Father Muller Hospital, Mangalore, for validating the results.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nagaraj, Y., Hema Sai Teja, A. & Narasimhadhan, A.V. Automatic Segmentation of Intima Media Complex in Carotid Ultrasound Images Using Support Vector Machine. Arab J Sci Eng 44, 3489–3496 (2019). https://doi.org/10.1007/s13369-018-3549-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-018-3549-8