Skip to main content
Log in

A smooth simultaneous confidence band for correlation curve

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

A plug-in estimator is proposed for a local measure of variance explained by regression, termed correlation curve in Doksum et al. (J Am Stat Assoc 89:571–582, 1994), consisting of a two-step spline–kernel estimator of the conditional variance function and local quadratic estimator of first derivative of the mean function. The estimator is oracally efficient in the sense that it is as efficient as an infeasible correlation estimator with the variance function known. As a consequence of the oracle efficiency, a smooth simultaneous confidence band (SCB) is constructed around the proposed correlation curve estimator and shown to be asymptotically correct. Simulated examples illustrate the versatility of the proposed oracle SCB which confirms the asymptotic theory. Application to a 1995 British Family Expenditure Survey data has found marginally significant evidence for a local version of Engel’s law, i.e., food budget share and household real income are inversely related (Hamilton in Am Econ Rev 91:619–630, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aerts M, Claeskens G (1997) Local polynomial estimators in multiparameter likelihood models. J Am Stat Assoc 92:1536–1545

    Article  MATH  Google Scholar 

  • Bickel PJ, Rosenblatt M (1973) On some global measures of deviations of density function estimates. Ann Stat 31:1852–1884

    MathSciNet  MATH  Google Scholar 

  • Blundell R, Chen X, Kristensen D (2007) Semi-nonparametric IV estimation of shape invariant Engel curves. Econometrica 75:1613–1670

    Article  MathSciNet  MATH  Google Scholar 

  • Cao G, Wang L, Li Y, Yang L (2016) Oracle-efficient confidence envelopes for covariance functions in dense functional data. Stat Sin 26:359–383

    MathSciNet  MATH  Google Scholar 

  • Cao G, Yang L, Todem D (2012) Simultaneous inference for the mean function based on dense functional data. J Nonparametr Stat 24:359–377

    Article  MathSciNet  MATH  Google Scholar 

  • Cai L, Yang L (2015) A smooth confidence band for variance function. TEST 24:632–655

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll RJ, Ruppert D (1988) Transformations and weighting in regression. Champman and Hall, London

    Book  MATH  Google Scholar 

  • Claeskens G, Van Keilegom I (2003) Bootstrap confidence bands for regression curves and their derivatives. Ann Stat 31:1852–1884

    Article  MathSciNet  MATH  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Article  MathSciNet  MATH  Google Scholar 

  • de Boor C (2001) A practical guide to splines. Springer, New York

    MATH  Google Scholar 

  • Doksum K, Blyth S, Bradlow E, Meng X, Zhao H (1994) Correlation curves as local measures of variance explained by regression. J Am Stat Assoc 89:571–582

    Article  MathSciNet  MATH  Google Scholar 

  • Eubank RL, Speckman PL (1993) Confidence bands in nonparametric regression. J Am Stat Assoc 88:1287–1301

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J (1993) Local linear regression smoothers and their minimax efficiency. Ann Stat 21:196–216

    Article  MATH  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Champman and Hall, London

    MATH  Google Scholar 

  • Fan J, Yao Q (1998) Efficient estimation of conditional variance functions in stochastic regression. Biometrika 85:645–660

    Article  MathSciNet  MATH  Google Scholar 

  • Gasser T, Müller HG, Mammitzsch V (1984) Estimating regression functions and their derivatives with kernel methods. Scand J stat 11:171–185

    MathSciNet  MATH  Google Scholar 

  • Gu L, Wang L, Härdle W, Yang L (2014) A simultaneous confidence corridor for varying coefficient regression with sparse functional data. TEST 23:806–843

    Article  MathSciNet  MATH  Google Scholar 

  • Gu L, Yang L (2015) Oracally efficient estimation for single-index link function with simultaneous band. Electron J Stat 9:1540–1561

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P (1991) Edgeworth expansions for nonparametric density estimators, with applications. Statistics 22:215–232

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P (1992) Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann Stat 20:675–694

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P, Titterington MD (1988) On confidence bands in nonparametric density estimation and regression. J Multivar Anal 27:228–254

    Article  MathSciNet  MATH  Google Scholar 

  • Hamilton BW (2001) Using Engel’s law to estimate CPI bias. Am Econ Rev 91:619–630

    Article  Google Scholar 

  • Härdle W (1989) Asymptotic maximal deviation of M-smoothers. J Multivar Anal 29:163–179

    Article  MathSciNet  MATH  Google Scholar 

  • Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Springer, New York

    Book  MATH  Google Scholar 

  • Ma S, Yang L, Carroll R (2012) A simultaneous confidence band for sparse longitudinal regression. Stat Sin 22:95–122

    MathSciNet  MATH  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Ruppert D, Wand MP (1994) Multivariate weighted least squares regression. Ann Stat 22:1346–1370

    Article  MathSciNet  MATH  Google Scholar 

  • Silverman WB (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Song Q, Liu R, Shao Q, Yang L (2014) A simultaneous confidence band for dense longitudinal regression. Commun Stat Theory Methods 43:5195–5210

    Article  MathSciNet  MATH  Google Scholar 

  • Song Q, Yang L (2009) Spline confidence bands for variance functions. J Nonparametr Stat 5:589–609

    Article  MathSciNet  MATH  Google Scholar 

  • Stapleton J (2009) Linear statistical models, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  • Stone CJ (1977) Consistent nonparametric regression. Ann Stat 5:595–645

    Article  MathSciNet  MATH  Google Scholar 

  • Stone CJ (1980) Optimal rates of convergence for nonparametric estimators. Ann Stat 8:1348–1360

    Article  MathSciNet  MATH  Google Scholar 

  • Tusnády G (1977) A remark on the approximation of the sample DF in the multidimensional case. Period Math Hung 8:53–55

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Cheng F, Yang L (2013) Smooth simultaneous confidence bands for cumulative distribution functions. J Nonparametr Stat 25:395–407

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Liu R, Cheng F, Yang L (2014) Oracally efficient estimation of autoregressive error distribution with simultaneous confidence band. Ann Stat 42:654–668

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Wang S, Yang L (2016) Simultaneous confidence bands for the distribution function of a finite population and its superpopulation. TEST 25:692–709

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Yang L (2009) Polynomial spline confidence bands for regression curves. Stat Sin 19:325–342

    MathSciNet  MATH  Google Scholar 

  • Wu W, Zhao Z (2007) Inference of trends in time series. J R Stat Soc Ser B 69:391–410

    Article  MathSciNet  Google Scholar 

  • Xia Y (1998) Bias-corrected confidence bands in nonparametric regression. J R Stat Soc Ser B 60:797–811

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao Z, Wu W (2008) Confidence bands in nonparametric time series regression. Ann Stat 36:1854–1878

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng S, Liu R, Yang L, Härdle W (2016) Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection. TEST 25:607–626

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng S, Yang L, Härdle W (2014) A smooth simultaneous confidence corridor for the mean of sparse functional data. J Am Stat Assoc 109:661–673

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by Jiangsu Key-Discipline Program ZY107992, National Natural Science Foundation of China award 11371272, and Research Fund for the Doctoral Program of Higher Education of China award 20133201110002. The authors thank two Reviewers, Editor-in-Chief Ana Militino, Prof. Qin Shao, and participants at the First PKU-Tsinghua Colloquium On Statistics for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijian Yang.

Electronic supplementary material

Appendix

Appendix

Throughout this section, for any function \(g\left( u\right) \), define \( \left\| g\right\| _{\infty }=\sup \nolimits _{u\in \mathcal {I} _{n}}\left| g\left( u\right) \right| \). For any vector \(\xi \), one denotes by \(\left\| \xi \right\| \) the Euclidean norm and \(\left\| \xi \right\| _{\infty }\) means the largest absolute value of the elements. We use C to denote any positive constants in the generic sense. A random sequence \(\left\{ X_{n}\right\} \) “bounded in probability” is denoted as \(X_{n}=\mathcal {O}_{p}\left( 1\right) \), while \(X_{n}=o_{p}\left( 1\right) \) denotes convergence to 0 in probability. A sequence of random functions which are \(o_{p}\) or \( \mathcal {O}_{p}\) uniformly over \(x\in \mathcal {I}_{n}\) denoted as \(u_{p}\) or \(U_{p}\).

Next, we state the strong approximation Theorem of Tusnády (1977). It will be used later in the proof of Lemmas 4 and 5.

Let \(U_{1},\ldots ,U_{n}\) be i.i.d r.v.’s on the 2-dimensional unit square with \(\mathbb {P}\left( U_{i}<\mathbf {t}\right) =\lambda \left( \mathbf {t} \right) ,\mathbf {0}\le \mathbf {t}\le \mathbf {1}\), where \(\mathbf {t}=\) \( \left( t_{1},t_{2}\right) \) and \(\mathbf {1}=\left( 1,1\right) \) are 2-dimensional vectors, \(\lambda \left( \mathbf {t}\right) =t_{1}t_{2}\). The empirical distribution function \(F_{n}^{u}\left( \mathbf {t}\right) =n^{-1}\sum _{i=1}^{n}I_{\left\{ U_{i}<\mathbf {t}\right\} }\) for \(\mathbf {0}\le \mathbf {t}\le \mathbf {1}\).

Lemma 1

The 2-dimensional Brownian bridge \(B\left( \mathbf {t}\right) \) is defined by \(B\left( \mathbf {t}\right) =W\left( \mathbf {t}\right) -\lambda \left( \mathbf {t}\right) W\left( \mathbf {1} \right) \) for \(\mathbf {0\le t\le 1}\), where \(W\left( \mathbf {t}\right) \) is a 2-dimensional Wiener process. Then there is a version \(B_{n}\left( \mathbf {t}\right) \) of \(B\left( \mathbf {t}\right) \) such that

$$\begin{aligned} \mathbb {P}\left[ \sup _{\mathbf {0}\le \mathbf {t}\le \mathbf {1}}\left| n^{1/2}\left\{ F_{n}^{u}\left( \mathbf {t}\right) -\lambda \left( \mathbf {t} \right) \right\} -B_{n}\left( \mathbf {t}\right) \right| >n^{-1/2}\left( C\log n+x\right) \log n\right] <Ke^{-\lambda x}, \end{aligned}$$

holds for all x, where \(C, K, \lambda \) are positive constants.

The Rosenblatt transformation for bivariate continuous \(\left( X,\varepsilon \right) \) is

$$\begin{aligned} \left( X^{^{*}},\varepsilon ^{*}\right) =M\left( X,\varepsilon \right) =\left( F_{X}\left( x\right) ,F_{\varepsilon |X}\left( \varepsilon \left| x\right. \right) \right) , \end{aligned}$$
(29)

then \(\left( X^{*},\varepsilon ^{*}\right) \) has uniform distribution on \(\left[ a,b\right] ^{2}\); therefore,

$$\begin{aligned} Z_{n}\left\{ M^{-1}\left( x^{*},\varepsilon ^{*}\right) \right\} =Z_{n}\left( x,\varepsilon \right) =n^{1/2}\left\{ F_{n}\left( x,\varepsilon \right) -F\left( x,\varepsilon \right) \right\} , \end{aligned}$$

with \(F_{n}\left( x,\varepsilon \right) \) denoting the empirical distribution of \(\left( X,\varepsilon \right) \). Lemma 1 implies that there exists a version \(B_{n}\) of 2 -dimensional Brownian bridge such that

$$\begin{aligned} \sup _{x,\varepsilon }\left| Z_{n}\left( x,\varepsilon \right) -B_{n}\left\{ M(x,\varepsilon )\right\} \right| =\mathcal {O} _{a.s.}\left( n^{-1/2}\log ^{2}n\right) . \end{aligned}$$
(30)

Lemma 2

Under Assumptions (A2) and (A5), there exists \(\alpha _{1}>0\) such that the sequence \(D_{n}=n^{\alpha _{1}}\) satisfies

$$\begin{aligned} n^{-1/2}h_{1}^{-1/2}D_{n}\log ^{2}n\rightarrow & {} 0,n^{1/2}h_{1}^{1/2}D_{n}^{-\left( 1+\eta _{1}\right) }\rightarrow 0, \\ \sum \nolimits _{n=1}^{\infty }D_{n}^{-\left( 2+\eta _{1}\right) }< & {} \infty ,D_{n}^{-\eta _{1}}h_{1}^{-1/2}\rightarrow 0. \end{aligned}$$

For such a sequence \(\left\{ D_{n}\right\} \),

$$\begin{aligned} \mathbb {P}\left\{ \omega \shortmid \exists N\left( \omega \right) ,\left| \varepsilon _{i}\left( \omega \right) \right| <D_{n},1\le i\le n,n>N\left( \omega \right) \right\} =1. \end{aligned}$$
(31)

Lemma 3

Under Assumptions (A1)–(A5), as \(n\rightarrow \infty \),

$$\begin{aligned} \tilde{\rho }_{\mathrm {LQ}}\left( x\right) -\rho (x)= & {} \sigma _{1}\left\{ 1-\rho ^{2}\left( x\right) \right\} ^{3/2}\sigma ^{-1}\left( x\right) \mu _{3}(K^{*})\beta ^{\prime \prime }\left( x\right) h_{1}^{2}/6 \nonumber \\&+\,\sigma _{1}\left\{ 1-\rho ^{2}\left( x\right) \right\} ^{3/2}\sigma ^{-1}\left( x\right) n^{-1}h_{1}^{-1}f^{-1}\left( x\right) \nonumber \\&\times \sum \nolimits _{i=1}^{n}K_{h_{1}}^{*}(X_{i}-x)\sigma \left( X_{i}\right) \varepsilon _{i} \nonumber \\&+\,u_{p}\left( h_{1}^{2}+n^{-1/2}h_{1}^{-3/2}\log ^{-1/2}n\right) . \end{aligned}$$
(32)

Proof

From the definition of \(\tilde{\rho }_{\mathrm {LQ}}(x)\) in ( 15), the Taylor series expansions, and \(\hat{\beta }\left( x\right) -\beta \left( x\right) =U_{p}\left( n^{-1/2}h_{1}^{-3/2}\log ^{1/2}n+h_{1}^{2}\right) \), one has

$$\begin{aligned} \tilde{\rho }_{\mathrm {LQ}}\left( x\right) -\rho (x)= & {} \sigma _{1}\left\{ 1-\rho ^{2}\left( x\right) \right\} ^{3/2}\sigma ^{-1}\left( x\right) \left\{ \hat{\beta }\left( x\right) -\beta \left( x\right) \right\} \\&+\,U_{p}\left( n^{-1}h_{1}^{-3}\log n+h_{1}^{4}\right) .\nonumber \end{aligned}$$
(33)

Write \(\mathbf {Y}\) as the sum of a signal vector \(\varvec{\mu =}\left\{ \mu \left( X_{1}\right) ,\ldots ,\mu \left( X_{n}\right) \right\} ^{\scriptstyle { T}}\) and a noise vector \(\mathbf {E=}\left\{ \sigma \left( X_{1}\right) \varepsilon _{1},\ldots ,\sigma \left( X_{n}\right) \varepsilon _{n}\right\} ^{ \scriptstyle {T}}\),

$$\begin{aligned} \mathbf {Y}=\varvec{\mu }+\mathbf {E}. \end{aligned}$$
(34)

The local quadratic estimator \(\hat{\beta }\left( x\right) \) has a noise and bias error decomposition

$$\begin{aligned} \hat{\beta }\left( x\right) -\beta \left( x\right) =I(x)+II(x), \end{aligned}$$

in which the bias term I(x) and noise term II(x) are

$$\begin{aligned} I(x)= & {} e_{1}^{^{\scriptstyle {T}}}(\mathbf {X}^{\scriptstyle {T}}\mathbf {WX})^{-1}\mathbf {X}^{\scriptstyle {T}}\mathbf {W} \nonumber \\&\times \, \left\{ \varvec{\mu }-\mu \left( x\right) \mathbf {X}e_{0}-\beta \left( x\right) \mathbf {X}e_{1}-\beta ^{\prime }\left( x\right) /2\mathbf {X} e_{2}\right\} , \end{aligned}$$
(35)
$$\begin{aligned} II(x)= & {} e_{1}^{^{\scriptstyle {T}}}(\mathbf {X}^{\scriptstyle {T}}\mathbf {WX} )^{-1}\mathbf {X}^{\scriptstyle {T}}\mathbf {WE.} \end{aligned}$$
(36)

where \(e_{k}, k=0,1,2\), as defined in (8), \(\mathbf {X}\) in (9), \(\mathbf {W}\) in (10), \(\varvec{\mu }\) and \( \mathbf {E}\) in (34). Standard arguments from kernel smoothing theory yield that

$$\begin{aligned} I(x)=\mu _{3}(K^{*})\beta ^{\prime \prime }\left( x\right) h_{1}^{2}/6+u_{p}(h_{1}^{2}), \end{aligned}$$
(37)

in which \(\mu _{3}\left( K^{*}\right) =\int v^{3}K^{*}\left( v\right) \mathrm{d}v\). Likewise,

$$\begin{aligned} II(x) =\,&n^{-1}h_{1}^{-1}f^{-1}\left( x\right) \sum \nolimits _{i=1}^{n}K_{h_{1}}^{*}(X_{i}-x)\sigma \left( X_{i}\right) \varepsilon _{i}\left\{ 1+u_{p}\left( \log ^{-1}n\right) \right\} \nonumber \\ =\,&n^{-1}h_{1}^{-1}f^{-1}\left( x\right) \sum \nolimits _{i=1}^{n}K_{h_{1}}^{*}(X_{i}-x)\sigma \left( X_{i}\right) \varepsilon _{i} \nonumber \\&+\,u_{p}\left( n^{-1/2}h_{1}^{-3/2}\log ^{-1/2}n\right) . \end{aligned}$$
(38)

Putting together (33), (37) and (38) completes the proof of the lemma.

Now from Lemma 3, one can rewrite (32) as

$$\begin{aligned} \tilde{\rho }_{\mathrm {LQ}}\left( x\right) -\rho (x) =\,&\sigma _{1}\left\{ 1-\rho ^{2}\left( x\right) \right\} ^{3/2}\sigma ^{-1}\left( x\right) \mu _{3}(K^{*})\beta ^{\prime \prime }\left( x\right) h_{1}^{2}/6 \nonumber \\&+\,\sigma _{1}\left\{ 1-\rho ^{2}\left( x\right) \right\} ^{3/2}f^{-1/2}\left( x\right) n^{-1/2}h_{1}^{-3/2}Y(x) \nonumber \\&+\,u_{p}\left( n^{-1/2}h_{1}^{-3/2}\log ^{-1/2}n+h_{1}^{2}\right) , \end{aligned}$$
(39)

in which the process

$$\begin{aligned} Y(x)=h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) n^{-1/2}\sum \nolimits _{i=1}^{n}K_{h_{1}}^{*}(X_{i}-x)\sigma \left( X_{i}\right) \varepsilon _{i},x\in \mathcal {I}_{n}. \end{aligned}$$
(40)

Define next four stochastic processes, which approximate each other in probability uniformly over \(\mathcal {I} _{n}\) or have the exact same distributions over \(\mathcal {I}_{n}\). More precisely, with \(D_{n}\) defined in Lemma 2, and \(B_{n}\) in Lemma 1, let

$$\begin{aligned} Y_{0}(x)= & {} h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) \int _{\mathbb {R} }K_{h_{1}}^{*}(u-x)\varepsilon I_{\left\{ \left| \varepsilon \right| \le D_{n}\right\} }\mathrm{d}B_{n}\left\{ M(u,\varepsilon )\right\} , \end{aligned}$$
(41)
$$\begin{aligned} Y_{1}(x)= & {} h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) \int _{\mathbb {R} }K_{h_{1}}^{*}(u-x)\varepsilon I_{\left\{ \left| \varepsilon \right| \le D_{n}\right\} }\mathrm{d}W_{n}\left\{ M(u,\varepsilon )\right\} , \end{aligned}$$
(42)
$$\begin{aligned} Y_{2}(x)= & {} h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) \int _{\mathbb {R} }K_{h_{1}}^{*}(u-x)f^{1/2}(u)\sigma (u)s_{n}\left( u\right) \mathrm{d}W_{n}(u), \end{aligned}$$
(43)

where

$$\begin{aligned} s_{n}^{2}(u)=\int _{\mathbb {R}}\varepsilon ^{2}I_{\left\{ \left| \varepsilon \right| \le D_{n}\right\} }\mathrm{d}F\left( \varepsilon \left| u\right. \right) , \end{aligned}$$

and satisfies that

$$\begin{aligned}&\sup _{u\in \mathcal {I}_{n}}\left| s_{n}^{2}\left( u\right) -1\right| =\sup _{u\in \mathcal {I}_{n}}\int _{\mathbb {R}}\varepsilon ^{2}I_{\left\{ \left| \varepsilon \right| >D_{n}\right\} }\mathrm{d}F\left( \varepsilon \left| u\right. \right) \le M_{\eta _{1}}D_{n}^{-\eta _{1}}, \end{aligned}$$
(44)
$$\begin{aligned}&Y_{3}(x)=h_{1}^{1/2}\int _{\mathbb {R}}K_{h_{1}}^{*}\left( u-x\right) \mathrm{d}W_{n}\left( u\right) . \end{aligned}$$
(45)

Lemma 4

Under Assumptions (A2)–(A5), as \(n\rightarrow \infty ,\)

$$\begin{aligned} \sup _{x\in \mathcal {I}_{n}}\left| Y\left( x\right) -Y^{D}\left( x\right) \right| =\mathcal {O}_{p}\left( n^{1/2}h_{1}^{1/2}D_{n}^{-1-\eta _{1}}\right) , \end{aligned}$$

where, for \(x\in \mathcal {I}_{n},\)

$$\begin{aligned} Y^{D}\left( x\right)= & {} h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) n^{-1/2} \nonumber \\&\times \sum \nolimits _{i=1}^{n}K_{h_{1}}^{*}(X_{i}-x)\sigma \left( X_{i}\right) \varepsilon _{i}I_{\left\{ \left| \varepsilon \right| \le D_{n}\right\} }. \end{aligned}$$
(46)

Proof

Using notations from Lemma 1, the processes Y(x) defined in (40) and \(Y^{D}(x)\) can be written as

$$\begin{aligned} Y(x)= & {} h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) \iint K_{h_{1}}^{*}(u-x)\sigma \left( u\right) \varepsilon \mathrm{d}Z_{n}\left( u,\varepsilon \right) , \\ Y^{D}(x)= & {} h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) \iint K_{h_{1}}^{*}(u-x)\sigma \left( u\right) \varepsilon I_{\left\{ \left| \varepsilon \right| \le D_{n}\right\} }\mathrm{d}Z_{n}\left( u,\varepsilon \right) . \end{aligned}$$

The tail part \(Y\left( x\right) -Y^{D}\left( x\right) \) is bounded uniformly over \(\mathcal {I}_{n}\) by

$$\begin{aligned}&\sup _{x\in \mathcal {I}_{n}}h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) \left| \iint K_{h_{1}}^{*}(u-x)\sigma \left( u\right) \varepsilon I_{\left\{ \left| \varepsilon \right|>D_{n}\right\} }\mathrm{d}Z_{n}\left( u,\varepsilon \right) \right| \nonumber \\&\quad \le \sup _{x\in \mathcal {I}_{n}}h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) n^{-1/2} \nonumber \\&\quad \quad \times \, \left| \sum \nolimits _{i=1}^{n}K_{h_{1}}^{*}\left( X_{i}-x\right) \sigma \left( X_{i}\right) \varepsilon _{i}I_{\left\{ \left| \varepsilon _{i}\right| >D_{n}\right\} }\right| \end{aligned}$$
(47)
$$\begin{aligned}&\quad \quad +\sup _{x\in \mathcal {I}_{n}}n^{1/2}h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) \nonumber \\&\quad \quad \times \,\left| \iint K_{h_{1}}^{*}(u-x)\sigma \left( u\right) \varepsilon I_{\left\{ \left| \varepsilon \right| >D_{n}\right\} }\mathrm{d}F\left( u,\varepsilon \right) \right| . \end{aligned}$$
(48)

By (31) in Lemma 2 and Borel–Cantelli Lemma, the first term in Eq. (47) is \(\mathcal {O}_{a.s.}\left( n^{-a}\right) \) for any \(a>0\), for instance \(a=100\), and the second term in Eq. (48) is bounded by

$$\begin{aligned}&\sup _{x\in \mathcal {I}_{n}}n^{1/2}h_{1}^{1/2}f^{-1/2}\left( x\right) \sigma ^{-1}(x) \\&\quad \quad \times \, \int \left| K_{h_{1}}^{*}(u-x)\right| \sigma \left( u\right) f\left( u\right) \left[ \int \left| \varepsilon \right| I_{\left\{ \left| \varepsilon \right| > D_{n}\right\} }\mathrm{d}F\left( \varepsilon \left| u\right. \right) \right] \mathrm{d}u \\&\quad \le \sup _{x\in \mathcal {I}_{n}}n^{1/2}h_{1}^{1/2}f^{-1/2}\left( x\right) \sigma ^{-1}(x)M_{\eta _{1}}D_{n}^{-\left( 1+\eta _{1}\right) }\int \left| K_{h_{1}}^{*}(u-x)\right| \sigma \left( u\right) f\left( u\right) \mathrm{d}u \\&\quad \le Cn^{1/2}h_{1}^{1/2}D_{n}^{-1-\eta _{1}}=\mathcal {O}\left( n^{1/2}h_{1}^{1/2}D_{n}^{-1-\eta _{1}}\right) . \end{aligned}$$

Lemma 5

Under Assumptions (A2)–(A5), as \(n\rightarrow \infty ,\)

$$\begin{aligned} \sup _{x\in \mathcal {I}_{n}}\left| Y^{D}\left( x\right) -Y_{0}\left( x\right) \right| =\mathcal {O}_{p}\left( n^{-1/2}h_{1}^{-1/2}D_{n}\log ^{2}n\right) . \end{aligned}$$

Proof

First, \(\left| Y^{D}\left( x\right) -Y_{0}\left( x\right) \right| \) can be written as

$$\begin{aligned} h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) \iint K_{h_{1}}^{*}(u-x)\sigma \left( u\right) \varepsilon I_{\left\{ \left| \varepsilon \right| \le D_{n}\right\} }d\left[ Z_{n}\left( u,\varepsilon \right) -B_{n}\left\{ M(u,\varepsilon )\right\} \right] , \end{aligned}$$

which becomes the following via integration by parts

$$\begin{aligned}&h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) \\&\quad \times \iint \sigma \left( u\right) \left[ Z_{n}\left( u,\varepsilon \right) -B_{n}\left\{ M\left( u,\varepsilon \right) \right\} \right] d\left\{ \varepsilon I_{\left\{ \left| \varepsilon \right| \le D_{n}\right\} }\right\} d\left\{ K_{h_{1}}^{*}\left( u-x\right) \right\} . \end{aligned}$$

Next, from the strong approximation result in Eq. (30) and the first condition in Lemma 2, \( \sup \nolimits _{x\in \mathcal {I}_{n}}\left| Y^{D}\left( x\right) -Y_{0}\left( x\right) \right| \) is bounded by

$$\begin{aligned} \mathcal {O}_{a.s.}\left( h_{1}^{1/2}h_{1}^{-2}n^{-1/2}h_{1}D_{n}\log ^{2}n\right) =\mathcal {O}_{a.s.}\left( n^{-1/2}h_{1}^{-1/2}D_{n}\log ^{2}n\right) , \end{aligned}$$

thus completing the proof of the lemma.

Lemma 6

Under Assumptions (A2)–(A5), as \(n\rightarrow \infty ,\)

$$\begin{aligned} \sup _{x\in \mathcal {I}_{n}}\left| Y_{0}\left( x\right) -Y_{1}\left( x\right) \right| =\mathcal {O}_{p}\left( h_{1}^{1/2}\right) . \end{aligned}$$

Proof

Based on Rosenblatt transformation \(M(x,\varepsilon )\) defined in Eq. (29) and according to Lemma , the term \(\left| Y_{0}\left( x\right) -Y_{1}\left( x\right) \right| \) is bounded by

$$\begin{aligned}&\sup _{x\in \mathcal {I}_{n}}h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) \\&\quad \quad \times \,\left| \iint K_{h_{1}}^{*}\left( u-x\right) \sigma \left( u\right) \left| \varepsilon \right| I_{\left\{ \left| \varepsilon \right| \le D_{n}\right\} }\mathrm{d}M(u,\varepsilon )W_{n}\left( 1,1\right) \right| \\&\quad \le \sup _{x\in \mathcal {I}_{n}}h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) \left| W_{n}\left( 1,1\right) \right| \\&\quad \quad \times \int \left| K_{h_{1}}^{*}\left( u-x\right) \right| \sigma \left( u\right) f\left( u\right) \mathrm{d}u\left\{ \int \left| \varepsilon \right| I_{\left\{ \left| \varepsilon \right| \le D_{n}\right\} }\mathrm{d}F\left( \varepsilon \left| u\right. \right) \right\} = \mathcal {O}_{p}\left( h_{1}^{1/2}\right) . \end{aligned}$$

The next lemma expresses the distribution of \(Y_{1}\left( x\right) \) in terms of one-dimensional Brownian motion.

Lemma 7

The process \(Y_{1}\left( x\right) \) has the same distribution as \(Y_{2}\left( x\right) \) over \(x\in \mathcal {I}_{n}.\)

Proof

By definitions, \(Y_{1}\left( x\right) \) defined in (42) and \(Y_{2}\left( x\right) \) in (43) are Gaussian processes with zero mean and unit variance. They have the same covariance functions as

$$\begin{aligned} \mathrm {cov}\left\{ Y_{1}\left( x\right) ,Y_{1}\left( x^{\prime }\right) \right\} =\,&h_{1}^{1/2}\sigma ^{-1}(x)f^{-1/2}\left( x\right) h_{1}^{1/2}\sigma ^{-1}(x^{\prime })f^{-1/2}\left( x^{\prime }\right) \\&\times \int K_{h_{1}}^{*}(u-x)K_{h_{1}}^{*}(u-x^{\prime })f(u)\sigma ^{2}(u)s_{n}^{2}\left( u\right) \mathrm{d}u \\ =\,&\mathrm {cov}\left\{ Y_{2}\left( x\right) ,Y_{2}\left( x^{\prime }\right) \right\} . \end{aligned}$$

Hence, according to Itô’s Isometry Theorem, they have the same distribution.

Lemma 8

Under Assumptions (A2)–(A5), as \(n\rightarrow \infty ,\)

$$\begin{aligned} \sup _{x\in \mathcal {I}_{n}}\left| Y_{2}\left( x\right) -Y_{3}\left( x\right) \right| =\mathcal {O}_{p}\left( h_{1}^{1/2}+h_{1}^{-1/2}D_{n}^{-\eta _{1}}\right) . \end{aligned}$$

Proof

By the aforementioned condition in Lemma 2 and Eq. (44), \(\sup \nolimits _{x\in \mathcal {I}_{n}}\left| Y_{2}\left( x\right) \right. \left. -Y_{3}\left( x\right) \right| \) is almost surely bounded by

$$\begin{aligned}&\sup _{x\in \mathcal {I}_{n}}\left| W_{n}\left( u\right) \right| h_{1}^{1/2}\left| \int d\left[ K_{h_{1}}^{*}\left( u-x\right) \left[ \left\{ \frac{f\left( u\right) }{f\left( x\right) }\right\} ^{1/2}\left\{ \frac{\sigma \left( u\right) }{\sigma \left( x\right) }\right\} s_{n}\left( u\right) -1\right] \right] \right| \\&\quad \le \sup _{x\in \mathcal {I}_{n}}\left| W_{n}\left( u\right) \right| h_{1}^{1/2}h_{1}^{-1} \\&\quad \quad \times \int h_{1}^{-1}\left| K^{*\prime }\left( \frac{u-x}{h_{1}} \right) \right| \left[ \left\{ \frac{f\left( u\right) }{f\left( x\right) }\right\} ^{1/2}\left\{ \frac{\sigma \left( u\right) }{\sigma \left( x\right) }\right\} s_{n}\left( u\right) -1\right] \\&\quad \quad +\,\left| K^{*}\left( \frac{u-x}{h_{1}}\right) \right| \left[ \left\{ \frac{f\left( u\right) }{f\left( x\right) }\right\} ^{1/2}\left\{ \frac{\sigma \left( u\right) }{\sigma \left( x\right) }\right\} s_{n}\left( u\right) -1\right] ^{^{\prime }}\mathrm{d}u \\&\quad =\mathcal {O}_{p}\left( h_{1}^{-1/2}\right) \left\{ III\left( x\right) +IV\left( x\right) \right\} , \end{aligned}$$

where the term \(III\left( x\right) \) is bounded by

$$\begin{aligned}&\sup _{x\in \mathcal {I}_{n}}Ch_{1}^{-1}\left\| K^{*}\right\| _{\infty }f^{-1/2}\left( x\right) \sigma ^{-1}\left( x\right) h_{1} \\&\qquad \times \, \left| \left[ h_{1}/2\left\{ f^{\prime }\left( x\right) \right\} ^{1/2}\sigma \left( u\right) s_{n}\left( u\right) +f^{1/2}\left( x\right) \left\{ \sigma \left( u\right) s_{n}\left( u\right) -\sigma \left( x\right) \right\} \right] \right| \\&\quad \le C\left\| K^{*}\right\| _{\infty }C_{f}^{-1/2}C_{\sigma }^{-1}\left\{ h_{1}/2+\left\| s_{n}^{2}-1\right\| _{\infty }\right\} \\&\quad \le C\left( h_{1}+D_{n}^{-\eta _{1}}\right) , \end{aligned}$$

and the term \(IV\left( x\right) \) is bounded by

$$\begin{aligned}&Ch_{1}ch_{1}2^{-1}f^{\prime }\left( u\right) f^{-1/2}\left( u\right) f^{-1/2}\left( x\right) \sigma \left( u\right) \sigma ^{-1}\left( x\right) s_{n}\left( u\right) \\&\qquad +\,Ch_{1}f^{1/2}\left( u\right) f^{-1/2}\left( x\right) \left\{ \sigma ^{\prime }\left( u\right) \sigma ^{-1}\left( x\right) s_{n}\left( u\right) +\sigma \left( u\right) s_{n}^{\prime }\left( u\right) /\sigma \left( x\right) \right\} \\&\quad \le Ch_{1}\left( 2^{-1}\left\| f^{\prime }\right\| _{\infty }C_{f}\left\| s_{n}\right\| _{\infty }+\left\| \sigma ^{\prime }\right\| _{\infty }C_{\sigma }^{-1}\left\| s_{n}\right\| _{\infty }+\left\| s_{n}^{\prime }\right\| _{\infty }\right) \\&\quad \le Ch_{1}. \end{aligned}$$

Putting together the above, one obtains that

$$\begin{aligned} \sup \nolimits _{x\in \mathcal {I}_{n}}\left| Y_{2}\left( x\right) -Y_{3}\left( x\right) \right|= & {} \mathcal {O}_{p}\left( h_{1}^{-1/2}\right) \left\{ III\left( x\right) +IV\left( x\right) \right\} \\= & {} \mathcal {O}_{p}\left( h_{1}^{1/2}+h_{1}^{-1/2}D_{n}^{-\eta _{1}}\right) + \mathcal {O}_{p}\left( h_{1}^{1/2}\right) , \end{aligned}$$

completing the proof of this lemma.

Proof of Proposition 1

The absolute maximum of \(\left\{ Y_{3}\left( x\right) ,x\in \mathcal {I}_{n}\right\} \) is the same as that of

$$\begin{aligned}&\left\{ h_{1}^{-1/2}\int K^{*}\left( \frac{u}{h_{1}}-x\right) \mathrm{d}W_{n}\left( u\right) ,x\in \left[ ah_{1}^{-1}+1,bh_{1}^{-1}-1\right] \right\} \nonumber \\&\quad =\left\{ \int K^{*}\left( v-x\right) \mathrm{d}W_{n}\left( v\right) \mathrm {, }x\in \left[ ah_{1}^{-1}+1,bh_{1}^{-1}-1\right] \right\} . \end{aligned}$$
(49)

For process \(\xi \left( x\right) =\int K^{*}(v-x)\mathrm{d}W_{n}\left( v\right) \), \(x\in \left[ ah_{1}^{-1}+1, bh_{1}^{-1}-1\right] \), the correlation function is

$$\begin{aligned} r\left( x-y\right) =\frac{\mathsf {E}\left\{ \xi \left( x\right) \xi \left( y\right) \right\} }{\mathrm {var}^{1/2}\left\{ \xi \left( x\right) \right\} \mathrm {var} ^{1/2}\left\{ \xi \left( y\right) \right\} }, \end{aligned}$$

which implies that

$$\begin{aligned} r\left( t\right) =\frac{\int K^{*}\left( v\right) K^{*}\left( v-t\right) \mathrm{d}v}{\int K^{*}\left( v\right) ^{2}\mathrm{d}v}. \end{aligned}$$

Define next a Gaussian process \(\varsigma \left( t\right) ,0\le t\le T=T_{n}=\left( b-a\right) /h_{1}-2,\)

$$\begin{aligned} \varsigma \left( t\right) =\xi \left( t+ah_{1}^{-1}+1\right) \left\{ \int K^{*}\left( v\right) ^{2}\mathrm{d}v\right\} ^{-1/2}, \end{aligned}$$

which is stationary with mean zero and variance one, and covariance function

$$\begin{aligned} r\left( t\right) =\mathsf {E}\varsigma \left( s\right) \varsigma \left( t+s\right) =1-Ct^{2}+o\left( \left| t\right| ^{2}\right) \mathrm { as } t\rightarrow 0, \end{aligned}$$

with \(C=C_{K^{*\prime }}/2C_{K^{*}}\). Then applying Theorems 11.1.5 and 12.3.5 of Leadbetter et al. (1983), one has for \(h_{1}\rightarrow 0\) or \( T\rightarrow \infty \),

$$\begin{aligned} \mathbb {P}\left[ a_{T}\left\{ \sup \nolimits _{t\in \left[ 0,T\right] }\left| \varsigma \left( t\right) \right| -b_{T}\right\} \le z \right] \rightarrow e^{-2e^{-z}},\quad \forall z\in \mathbb {R}, \end{aligned}$$

where \(a_{T}=\left( 2\log T\right) ^{1/2}\) and \(b_{T}=\) \(a_{T}+a_{T}^{-1} \left\{ \sqrt{C\left( K^{*}\right) }/2\pi \right\} \). Note that for \( a_{h_{1}},b_{h_{1}}\) defined in (21), as \(n\rightarrow \infty \),

$$\begin{aligned} a_{h_{1}}a_{T}^{-1}\rightarrow 1,a_{T}\left( b_{T}-b_{h_{1}}\right) = \mathcal {O}\left( \log ^{1/2}n\times h_{1}\log ^{-1/2}n\right) \rightarrow 0. \end{aligned}$$

Hence, applying Slutsky’s Theorem twice, one obtains that

$$\begin{aligned} a_{h_{1}}\left\{ \sup \nolimits _{t\in \left[ 0,T\right] }\left| \varsigma \left( t\right) \right| -b_{h_{1}}\right\}= & {} a_{h_{1}}a_{T}^{-1}\left[ a_{T}\left\{ \sup \nolimits _{t\in \left[ 0,T\right] }\left| \varsigma \left( t\right) \right| -b_{T}\right\} \right] \\&+\,a_{h_{1}}\left( b_{T}-b_{h_{1}}\right) \end{aligned}$$

converges in distribution to the same limit as \(a_{T}\left\{ \sup \nolimits _{t\in \left[ 0,T\right] }\left| \varsigma \left( t\right) \right| -b_{T}\right\} \). Thus,

$$\begin{aligned} \mathbb {P}\left( a_{h_{1}}\left[ \frac{\sup \nolimits _{x\in \mathcal {I} _{n}}\left| Y_{3}\left( x\right) \right| }{\left\{ \int K^{*}\left( v\right) ^{2}\mathrm{d}v\right\} ^{1/2}}-b_{h_{1}}\right] \le z\right) \rightarrow e^{-2e^{-z}},\quad \forall z\in \mathbb {R}. \end{aligned}$$

Next applying Lemma 8 and Slutsky’s Theorem, \(\forall z\in \mathbb {R},\)

$$\begin{aligned} \mathbb {P}\left( a_{h_{1}}\left[ \frac{\sup \nolimits _{x\in \mathcal {I} _{n}}\left| Y_{2}\left( x\right) \right| }{\left\{ \int K^{*}\left( v\right) ^{2}\mathrm{d}v\right\} ^{1/2}}-b_{h_{1}}\right] \le z\right) \rightarrow e^{-2e^{-z}}. \end{aligned}$$
(50)

Furthermore, applying Lemma 7 and Slutsky’s Theorem, the limiting distribution (50) is the same as

$$\begin{aligned} \mathbb {P}\left( a_{h_{1}}\left[ \frac{\sup \nolimits _{x\in \mathcal {I} _{n}}\left| Y_{1}\left( x\right) \right| }{\left\{ \int K^{*}\left( v\right) ^{2}\mathrm{d}v\right\} ^{1/2}}-b_{h_{1}}\right] \le z\right) \rightarrow e^{-2e^{-z}}. \end{aligned}$$

Furthermore, applying Lemmas 1 to 6 and Slutsky’s Theorem, one obtains

$$\begin{aligned} \mathbb {P}\left( a_{h_{1}}\left[ \frac{\sup \nolimits _{x\in \mathcal {I} _{n}}\left| Y\left( x\right) \right| }{\left\{ \int K^{*}\left( v\right) ^{2}\mathrm{d}v\right\} ^{1/2}}-b_{h_{1}}\right] \le z\right) \rightarrow e^{-2e^{-z}}. \end{aligned}$$
(51)

By taking \(1-\alpha =e^{-2e^{-z}}\) for \(\alpha \in \left( 0,1\right) \), the above (51) implies that

$$\begin{aligned} \lim _{n\rightarrow \infty }\mathbb {P}\left\{ \rho \left( x\right) \in \tilde{ \rho }_{\mathrm {\mathrm {LQ}}}(x)\pm a_{h_{1}}V_{n}(x)Q_{n}\left( \alpha \right) ,x\in \mathcal {I}_{n}\right\} =1-\alpha . \end{aligned}$$

Thus, an infeasible SCB for \(\rho \left( x\right) \) over \(\mathcal {I}_{n}\) is

$$\begin{aligned} \tilde{\rho }_{\mathrm {\mathrm {LQ}}}(x)\pm a_{h_{1}}V_{n}(x)Q_{n}\left( \alpha \right) , \end{aligned}$$

which establishes Proposition 1.

Proof of Theorem 1

Applying Taylor expansion to \(\hat{\rho }_{\mathrm {\mathrm {LQ}}}(x)-\tilde{\rho }_{\mathrm {LQ} }\left( x\right) \), its asymptotic order is the lower of \(\hat{\sigma } _{1}^{2}-\sigma _{1}^{2}\) and \(\hat{\sigma }_{\mathrm {SK}}^{2}(x)-\sigma ^{2}\left( x\right) \). While \(\hat{\sigma }_{1}^{2}-\sigma _{1}^{2}=\mathcal {O }_{p}\left( n^{-1/2}\right) ,\sup \nolimits _{x\in \left[ a+h_{2},b-h_{2} \right] }\left| \hat{\sigma }_{\mathrm {SK}}^{2}(x)-\sigma ^{2}\left( x\right) \right| \) is of order \(\mathcal {O}_{p}\left( n^{-1/2}h_{2}^{-1/2}\log ^{1/2}n\right) \) according to Cai and Yang (2015), and of order \(o_{p}\left( n^{-1/2}h_{1}^{-3/2}\log ^{-1/2}n\right) \) by applying (16). As (17) entails that \(\mathcal {I}_{n}\subset \left[ a+h_{2},b-h_{2}\right] \) for large enough n, one has

$$\begin{aligned} \sup \limits _{x\in \mathcal {I}_{n}}\left| \hat{\sigma }_{\mathrm {SK} }^{2}(x)-\sigma ^{2}\left( x\right) \right| =o_{p}\left( n^{-1/2}h_{1}^{-3/2}\log ^{-1/2}n\right) , \end{aligned}$$
(52)

and thus \(\sup \nolimits _{x\in \mathcal {I}_{n}}\left| \hat{\rho }_{\mathrm { \mathrm {LQ}}}(x)-\tilde{\rho }_{\mathrm {LQ}}\left( x\right) \right| =o_{p}\left( n^{-1/2}h_{1}^{-3/2}\log ^{-1/2}n\right) \). Hence, the proof of the theorem is complete.

Proof of Theorem 2

Proposition 1, Theorem 1, and repeated applications of Slutsky’s Theorem entail that

$$\begin{aligned} \lim _{n\rightarrow \infty }\mathbb {P}\left\{ \rho \left( x\right) \in \hat{ \rho }_{\mathrm {\mathrm {LQ}}}\left( x\right) \pm a_{h_{1}}\hat{V} _{n}(x)Q_{n}\left( \alpha \right) ,x\in \mathcal {I}_{n}\right\} =1-\alpha , \end{aligned}$$

which yields the oracle SCB for \(\rho \left( x\right) \) over \(\mathcal {I} _{n} \) in Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, L. A smooth simultaneous confidence band for correlation curve. TEST 27, 247–269 (2018). https://doi.org/10.1007/s11749-017-0543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-017-0543-5

Keywords

Mathematics Subject Classification