Skip to main content
Log in

An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Reducing the energy consumption of network nodes is one of the most important problems for routing in wireless sensor networks because of the battery limitation in each sensor. This paper presents a new ant colony optimization based routing algorithm that uses special parameters in its competency function for reducing energy consumption of network nodes. In this new proposed algorithm called life time aware routing algorithm for wireless sensor networks (LTAWSN), a new pheromone update operator was designed to integrate energy consumption and hops into routing choice. Finally, with the results of the multiple simulations we were able to show that LTAWSN, in comparison with the previous ant colony based routing algorithm, energy aware ant colony routing algorithms for the routing of wireless sensor networks, ant colony optimization-based location-aware routing algorithm for wireless sensor networks and traditional ant colony algorithm, increase the efficiency of the system, obtains more balanced transmission among the nodes and reduce the energy consumption of the routing and extends the network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tanenbaum, A. S., Van Steen, M. (2006). Distributed system principles and paradigm, second edition.

  2. Enami, N., Askari Moghadam, R., & Haghighat, A. T. (2010). A survey on application of neural networks in energy conservation of wireless sensor networks. In WiMo 2010, CCIS 84 (pp. 283–294). Heidelberg: Springer.

  3. Jiang, X, & Hong, B. (2010). ACO based energy-balance routing algorithms for WSNs. In LNCS-6145 (pp. 298–305). Heidelberg: Springer.

  4. Akkaya, K., Younis, M. (2003). A survey on routing protocols for wireless sensor networks.

  5. Medina, C. D., & Cortes, N. C. (2010). Routing algorithms for wireless sensor networks using ant colony optimization. In MICAI 2010, part II, LNAL-6438 (pp. 337–348). Heidelberg: Springer.

  6. Cheng, D., Xun, Y., Zhou, T., & Li, W. (2011). An energy aware ant colony routing algorithms for the routing of wireless sensor networks. In ICICIS 2011, part I, CCIS-134 (pp. 395–401). Heidelberg: Springer.

  7. Wang, X., Li, Q., Xiong, N., & Pan, Y. (2008). Ant colony optimization-based location-aware routing for wireless sensor networks. In Y. Li, D. T. Huynh, S. K. Das, & D. Z. Du (Eds.), WASA 2008 (Vol. 5258, pp. 109–120)., LNCS Heidelberg: Springer.

    Google Scholar 

  8. Agarwal, T, Kumar, D., & Prakash, N. R. (2010). Prolonging network lifetime using ant colony optimization algorithm on LEACH protocol for wireless sensor networks. In NewCom, WiMon, WeST 2010, CCIS-90 (pp. 634–641). Heidelberg: Springer.

  9. Shih, H. C., Chu, S. C., Roddick, J. F., Hung, M. H., & Pan, J. S. (2010). Power reduction of wireless sensor networks using ant colony optimization. In International Conference on Computational Aspects of Social Networks (CASoN), 2010 (pp. 464–467). IEEE.

  10. Handy, M. J., & Haase, M. (2008). Low energy adaptive clustering hierarchy deterministic cluster head selection. In Advances in Computer Science and Engineering. Kish Island, Iran.

  11. Camilo, T., Carreto, C., Silva, J. S., & Boavida, F. (2006). An energy-efficient ant-based routing algorithm for wireless sensor networks. In M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, & T. Stutzle (Eds.), ANTS 2006 (Vol. 4150, pp. 49–59)., LNCS Heidelberg: Springer.

    Google Scholar 

  12. Zhong, Z., Tian, Z., Li, Z., & Xu, P. (2008). An ant colony optimization competition routing algorithm for WSN. In 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008 (pp. 1–4). IEEE.

  13. Houang, R., Chen, Z. Xu, G. (2010). Energy-aware routing algorithm in WSN using predication-mode. IEEE 2010, 978-1-4244-8223-8/10.

  14. Amgoth, T., & Jana, P. K. (2014). Energy-aware routing algorithm for wireless sensor networks. Computers & Electrical Engineering.

  15. Azharuddin, M., & Jana, P. K. (2015). A PSO based fault tolerant routing algorithm for wireless sensor networks. Information systems design and intelligent applications, 329–336.

  16. Gu, X., Yu, J., Yu, D., Wang, G., & Lv, Y. (2014). ECDC: An energy and coverage-aware distributed clustering protocol for wireless sensor networks. Computers & Electrical Engineering, 40(2), 384–398.

    Article  Google Scholar 

  17. Kassotakis, I. E., Markaki, M. E., & Vasilakos, A. V. (2000). A hybrid genetic approach for channel reuse in multiple access telecommunication networks. IEEE Journal on Selected Areas in Communications, 18(2), 234–243.

    Article  Google Scholar 

  18. Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

  19. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  20. Duarte, P. B., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  21. Jiang, T., Wang, H., & Vasilakos, A. V. (2012). QoE-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. Selected Areas in Communications, IEEE Journal on, 30(7), 1215–1224.

    Article  Google Scholar 

  22. Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. Communications Magazine, IEEE, 51(7), 107–113.

    Article  Google Scholar 

  23. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. Communications Surveys & Tutorials, IEEE, 16(1), 92–109.

    Article  Google Scholar 

  24. Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D. Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. Mobile Computing, IEEE Transactions on, 11(10), 1538–1554.

    Article  Google Scholar 

  25. Fadlullah, Z. M., Taleb, T., Vasilakos, A. V., Guizani, M., & Kato, N. (2010). DTRAB: Combating against attacks on encrypted protocols through traffic-feature analysis. IEEE/ACM Transactions on Networking (TON), 18(4), 1234–1247.

    Article  Google Scholar 

  26. Liu, X. Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., & Wu, M. Y. (2014). CDC: Compressive data collection for wireless sensor networks.

  27. Sengupta, S., Das, S., Nasir, M., Vasilakos, A. V., & Pedrycz, W. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 42(6), 1093–1102.

    Article  Google Scholar 

  28. Rahimi, M. R., Venkatasubramanian, N., Mehrotra, S., & Vasilakos, A. V. (2012, November). MAPCloud: mobile applications on an elastic and scalable 2-tier cloud architecture. In Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing (pp. 83–90). IEEE Computer Society.

  29. Vasilakos, A., Saltouros, M. P., Atlassis, A. F., & Pedrycz, W. (2003). Optimizing QoS routing in hierarchical ATM networks using computational intelligence techniques. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 33(3), 297–312.

    Article  Google Scholar 

  30. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. Computers, IEEE Transactions on, 64(3), 819–832.

    MathSciNet  Google Scholar 

  31. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks.

  32. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. (2011). Body area networks: A survey. Mobile Networks and Applications, 16(2), 171–193.

    Article  Google Scholar 

  33. Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for Internet of Things. Journal of Network and Computer Applications, 42, 120–134.

    Article  Google Scholar 

  34. Vasilakos, A. V., & Papadimitriou, G. I. (1995). A new approach to the design of reinforcement schemes for learning automata: Stochastic estimator learning algorithm. Neurocomputing, 7(3), 275–297.

    Article  MATH  Google Scholar 

  35. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  36. Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.

    Article  Google Scholar 

  37. Cheng, H., Xiong, N., Vasilakos, A. V., Yang, L. T., Chen, G., & Zhuang, X. (2012). Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks. Ad Hoc Networks, 10(5), 760–773.

    Article  Google Scholar 

  38. Wei, G., Ling, Y., Guo, B., Xiao, B., & Vasilakos, A. V. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.

    Article  Google Scholar 

  39. Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  40. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  41. Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  42. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. Parallel and Distributed Systems, IEEE Transactions on, 25(12), 3264–3273.

    Article  Google Scholar 

  43. Marwaha, S., Srinivasan, D., Tham, C. K., & Vasilakos, A. (2004, June). Evolutionary fuzzy multi-objective routing for wireless mobile ad hoc networks. In Evolutionary computation, 2004. CEC2004. Congress on (vol. 2, pp. 1964–1971). IEEE.

  44. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012, March). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM, 2012 proceedings IEEE (pp. 100–108). IEEE.

  45. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013, October). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In Mobile ad-hoc and sensor systems (MASS), 2013 IEEE 10th international conference on (pp. 182–190). IEEE.

  46. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6), 91–98.

    Article  Google Scholar 

  47. Xiang, L., Luo, J., & Vasilakos, A. (2011, June). Compressed data aggregation for energy efficient wireless sensor networks. In Sensor, mesh and ad hoc communications and networks (SECON), 2011 8th annual IEEE communications society conference on (pp. 46–54). IEEE.

  48. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  49. Chilamkurti, N., Zeadally, S., Vasilakos, A., & Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors.

  50. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). “Approximating congestion+ dilation in networks via” quality of routin; games. Computers, IEEE Transactions on, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  51. Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks (TOSN), 11(3), 45.

    Article  Google Scholar 

  52. Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    Google Scholar 

  53. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (Eds.). (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  54. Cobo, L., Quintero, A., & Pierre, S. (2010). Ant-based routing for wireless multimedia sensor networks using multiple QoS. Computer Networks, 54, 2991–3010.

    Article  Google Scholar 

  55. Camilo, T., Carreto, C., Silva, J. S., Boavida, F. (2006). An energy-efficient ant-based routing algorithm for wireless sensor networks. In ANTS 2006, LNCS-4150 (pp. 49–59). Heidelberg: Springer.

  56. Torres, M. G. (2006). Energy consumption in wireless sensor networks using GSP. Medellin, Colombia: Universidad Pontificia Bolivariana.

    Google Scholar 

  57. Acharya, A., Seetharam, A., & Bhattacharyya, A. (2009). Balancing energy dissipation in data gathering wireless sensor networks using ant colony optimization. In LNCS-5408 (pp. 437–443). Heidelberg: Springer.

  58. Zhu, X. (2007). Pheromone based energy aware directed diffusion algorithm for wireless sensor network, vol. 4681 (pp. 283–291). Heidelberg: Springer.

  59. Farooq, M. & Caro, G. A. (2008). Routing protocols for next-generation networks inspired by collective behaviors of insect societies an overview. Swarm Intelligence, 283–291.

  60. Eftekhari, P., Shokrzadeh, H., & Haghighat, A. T. (2010). Cluster-base directional rumor routing protocol in wireless sensor network. In Information and Communication Technologies (pp. 394–399). Heidelberg, Berlin: Springer.

  61. Rivero, J., Cuadra, D., Calle, J., & Isasi, P. (2011). Using the ACO algorithm for path searches in social networks. Berlin: Springer.

    Google Scholar 

  62. Kolavali, R, & Bhatnagar, S. (2009). Ant colony optimization algorithms for shortest path problems. In NET-COOP 2008, LNCS 5425 (pp. 37–44) Heidelberg: Springer.

  63. Okdem, S, & Karaboga, D., Routing in wireless sensor networks using ant colony optimization. In Proceedings of the fi rst NASA/ESA conference on adaptive hardware and systems , IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Gharavian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohajerani, A., Gharavian, D. An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks. Wireless Netw 22, 2637–2647 (2016). https://doi.org/10.1007/s11276-015-1061-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1061-6

Keywords