Skip to main content
Log in

The KIS Science Data Centre

Concept, Data, Data Access, and Analysis Tools

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

With the steady improvement of the observing capabilities and numerical simulations, an efficient data management of large data volumes has become mandatory. The Institute for Solar Physics (KIS) has developed the Science Data Centre (SDC), a data infrastructure to store, curate, and disseminate science-ready data from the German solar-observing facilities and other partner institutions. The SDC was also conceived to create and disseminate higher-level data products of added value like inversions from spectropolarimetric data. The SDC archive infrastructure consists of a back-end based on the Rucio science data-management and MongoDB systems and a front-end web interface that allows the user to search and discover data based on search parameters like instrument, date, wavelength range, and target. The SDC archive also provides data access via API and TAP services. The SDC currently offers access to 1299 science-ready datasets from the GRIS instrument at the GREGOR telescope (Tenerife) since 2014, a set of 610 spectra from the LARS at the Vacuum Solar Telescope (VTT, Tenerife) and 202 404 full-disc solar images from the Chromospheric Telescope (ChroTel). The SDC also offers to the community Milne–Eddington inversions of the GRIS spectropolarimetric archived data that can be downloaded as well as tools for data visualization and advanced analysis (e.g., GRISView tool). Many SDC activities have been carried out within the framework of large international data projects like the Horizon 2020 ASTERICS and ESCAPE EU-funded projects under the FAIR (Findable, Accessible, Interoperable, Reusable) principles. New and planned SDC activities include the ingestion of solar data from GREGOR context imaging instruments, flare observations from Ondřejov Observatory (Czech Republic), archiving and dissemination of in-house magnetohydrodynamic simulations, and creation of high-level data products using machine learning. The KIS Science Data Centre is a state-of-the-art data-management infrastructure that curates, archives, and provides access to ground-based science-ready spectropolarimetric and imaging solar data. SDC also provides advanced data visualization and analysis tools and invites data providers to publish their data to the solar and broader (astro)physics community via the SDC data archive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data Availability

Data and access to them are provided within the manuscript.

Notes

  1. https://www.darts.isas.jaxa.jp/solar/hinode/data/index.html.

  2. https://sdc.uio.no/sdc/.

  3. https://solarb.mssl.ucl.ac.uk/SolarB/daArchGuides.jsp.

  4. https://www.lmsal.com/heksearch/.

  5. http://ibis.oa-roma.inaf.it/IBISA/database/.

  6. https://nso.edu/dkist/data-center/.

  7. https://docs.dkist.nso.edu/projects/data-products/en/stable/index.html.

  8. https://gitlab.leibniz-kis.de/sdc/chroquest.

  9. https://gitlab.leibniz-kis.de/sdc/gris/grisred.

  10. https://www.mongodb.com.

  11. https://gitlab.leibniz-kis.de/sdc/sda_kharon.

  12. https://gitlab.leibniz-kis.de/sdc/gris/grisinv.

  13. https://gitlab.com/sdc-gitlab/grisview.

  14. https://archive.sdc.leibniz-kis.de.

  15. https://helioviewer.org/.

  16. https://restheart.org/.

  17. https://docs.sunpy.org/en/stable/generated/api/sunpy.net.Fido.html.

  18. https://aperiosoftware.com/.

  19. https://sunpy.org.

  20. http://dachs.sdc.leibniz-kis.de/tap.

  21. https://www.star.bris.ac.uk/~mbt/topcat/.

  22. http://aladin.cds.unistra.fr/aladin.gml.

  23. https://solarnet.oma.be/.

  24. https://vespa.obspm.fr/planetary/data/.

  25. https://projectescape.eu/services/esfris-science-analysis-platform-esap.

  26. https://binderhub.readthedocs.io/en/latest/.

  27. https://sdc.leibniz-kis.de/en/license-policy/citation.

  28. https://creativecommons.org/licenses/by/4.0/.

  29. https://igtf.net/.

  30. https://developer.okta.com/docs/concepts/oauth-openid/.

References

  • Abbasvand, V., Sobotka, M., Švanda, M., Heinzel, P., García-Rivas, M., Denker, C., Balthasar, H., Verma, M., Kontogiannis, I., Koza, J., Korda, D., Kuckein, C.: 2020, Observational study of chromospheric heating by acoustic waves. Astron. Astrophys. 642, A52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Anan, T., Schad, T.A., Kitai, R., Dima, G.I., Jaeggli, S.A., Tarr, L.A., Collados, M., Dominguez-Tagle, C., Kleint, L.: 2021, Measurements of photospheric and chromospheric magnetic field structures associated with chromospheric heating over a solar plage region. Astrophys. J. 921, 39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Asensio Ramos, A., Diaz Baso, C.J.: 2019, Stokes inversion based on convolutional neural networks. Astron. Astrophys. 626, A102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Barisits, M., Beermann, T., Berghaus, F., Bockelman, B., Bogado, J., Cameron, D., Christidis, D., Ciangottini, D., Dimitrov, G., Elsing, M., Garonne, V., di Girolamo, A., Goossens, L., Guan, W., Guenther, J., Javurek, T., Kuhn, D., Lassnig, M., Lopez, F., Magini, N., Molfetas, A., Nairz, A., Ould-Saada, F., Prenner, S., Serfon, C., Stewart, G., Vaandering, E., Vasileva, P., Vigne, R., Wegner, T.: 2019, Rucio: scientific data management. Comput. Softw. Big Sci. 3, 11. DOI.

    Article  Google Scholar 

  • Berkefeld, T., Schmidt, D., Soltau, D., von der Lühe, O., Heidecke, F.: 2012, The GREGOR adaptive optics system. Astron. Nachr. 333, 863. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bertocco, S., Boisson, C., Boutigny, D., Collinson, J., Alvarez Crespo, N., Dickinson, H., Lavrik, E., Lautenbach, F., Füßling, M., Vigeesh, G., Contreras, J.L., Grange, Y., Hughes, G., Kliffen, K., Mancini, M., di Maria, R., Meyer, Z., Russo, S.A., Savchenko, V., Servillat, M., Swinbank, J., Verkouter, M., Vermaas, N., Voutsinas, S., Vuillaume, T., Verdes-Montenegro, L., Garrido, R., Garrido, J., Rodón, J.R., Pascual, J., Parra-Royón, M., Sánchez-Exposito, S., Luna-Valero, S., Morris, D.: 2023, ESFRI Science Analysis Platform, Zenodo. DOI.

    Book  Google Scholar 

  • Bethge, C., Peter, H., Kentischer, T.J., Halbgewachs, C., Elmore, D.F., Beck, C.: 2011, The chromospheric telescope. Astron. Astrophys. 534, A105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bethge, C., Beck, C., Peter, H., Lagg, A.: 2012, Siphon flow in a cool magnetic loop. Astron. Astrophys. 537, A130. DOI. ADS.

    Article  ADS  Google Scholar 

  • Borrero, J.M., Ichimoto, K.: 2011, Magnetic structure of sunspots. Living Rev. Solar Phys. 8, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Borrero, J.M., Tomczyk, S., Kubo, M., Socas-Navarro, H., Schou, J., Couvidat, S., Bogart, R.: 2011, VFISV: very fast inversion of the Stokes vector for the helioseismic and magnetic imager. Solar Phys. 273, 267. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bose, S., Nagaraju, K.: 2018, On the variability of the solar mean magnetic field: contributions from various magnetic features on the surface of the Sun. Astrophys. J. 862, 35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Campbell, R.J., Shelyag, S., Quintero Noda, C., Mathioudakis, M., Keys, P.H., Reid, A.: 2021, Constraining the magnetic vector in the quiet solar photosphere and the impact of instrumental degradation. Astron. Astrophys. 654, A11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Campbell, R.J., Gafeira, R., Mathioudakis, M., Noda, C.Q., Collados, M.: 2023, Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU. Astrophys. J. 944, 150. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cauley, P.W., Kuckein, C., Redfield, S., Shkolnik, E.L., Denker, C., Llama, J., Verma, M.: 2018, The effects of stellar activity on optical high-resolution exoplanet transmission spectra. Astron. J. 156, 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cavallini, F.: 2006, IBIS: a new post-focus instrument for solar imaging spectroscopy. Solar Phys. 236, 415. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chatzistergos, T., Ermolli, I., Krivova, N.A., Solanki, S.K., Banerjee, D., Barata, T., Belik, M., Gafeira, R., Garcia, A., Hanaoka, Y., Hegde, M., Klimeš, J., Korokhin, V.V., Lourenço, A., Malherbe, J.-M., Marchenko, G.P., Peixinho, N., Sakurai, T., Tlatov, A.G.: 2020, Analysis of full-disc Ca II K spectroheliograms. III. Plage area composite series covering 1892-2019. Astron. Astrophys. 639, A88. DOI. ADS.

    Article  Google Scholar 

  • Chatzistergos, T., Krivova, N.A., Ermolli, I., Yeo, K.L., Mandal, S., Solanki, S.K., Kopp, G., Malherbe, J.-M.: 2021, Reconstructing solar irradiance from historical Ca II K observations. I. Method and its validation. Astron. Astrophys. 656, A104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Collados, M.: 1999, High resolution spectropolarimetry and magnetography. In: Schmieder, B., Hofmann, A., Staude, J. (eds.) Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations, Astronomical Society of the Pacific Conference Series 184, 3. ADS.

    Google Scholar 

  • Collados, M.V.: 2003, Stokes polarimeters in the near-infrared. In: Fineschi, S. (ed.) Polarimetry in Astronomy, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 4843, 55. DOI. ADS.

    Chapter  Google Scholar 

  • Collados, M., López, R., Páez, E., Hernández, E., Reyes, M., Calcines, A., Ballesteros, E., Díaz, J.J., Denker, C., Lagg, A., Schlichenmaier, R., Schmidt, W., Solanki, S.K., Strassmeier, K.G., von der Lühe, O., Volkmer, R.: 2012, GRIS: the GREGOR infrared spectrograph. Astron. Nachr. 333, 872. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The interface region imaging spectrograph (IRIS). Solar Phys. 289, 2733. DOI. ADS.

    Article  ADS  Google Scholar 

  • Demleitner, M., Neves, M.C., Rothmaier, F., Wambsganss, J.: 2014, Virtual observatory publishing with DaCHS. Astron. Comput. 7, 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Denker, C., Verma, M., Wiśniewska, A., Kamlah, R., Kontogiannis, I., Dineva, E., Rendtel, J., Bauer, S.-M., Dionies, M., Önel, H., Woche, M., Kuckein, C., Seelemann, T., Pal, P.S.: 2023, Improved high-resolution fast imager. J. Astron. Telesc. Instrum. Syst. 9, 015001. DOI. ADS.

    Article  ADS  Google Scholar 

  • Díaz Baso, C.J., Martínez González, M.J., Asensio Ramos, A.: 2019, Spectropolarimetric analysis of an active region filament. II. Evidence of the limitations of a single-component model. Astron. Astrophys. 625, A129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Díaz Baso, C.J., Martínez González, M.J., Asensio Ramos, A., de la Cruz Rodríguez, J.: 2019, Diagnostic potential of the Ca II 8542 Å line for solar filaments. Astron. Astrophys. 623, A178. DOI. ADS.

    Article  Google Scholar 

  • Diercke, A., Denker, C.: 2019, Chromospheric synoptic maps of polar crown filaments. Solar Phys. 294, 152. DOI. ADS.

    Article  ADS  Google Scholar 

  • Diercke, A., Kuckein, C., Verma, M., Denker, C.: 2018, Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet. Astron. Astrophys. 611, A64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Diercke, A., Kuckein, C., Verma, M., Denker, C.: 2021, Filigree in the surroundings of polar crown and high-latitude filaments. Solar Phys. 296, 35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Diercke, A., Kuckein, C., Cauley, P.W., Poppenhäger, K., Alvarado-Gómez, J.D., Dineva, E., Denker, C.: 2022, Solar H\(\alpha \) excess during solar cycle 24 from full-disk filtergrams of the chromospheric telescope. Astron. Astrophys. 661, A107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Diercke, A., Jarolim, R., Kuckein, C., González Manrique, S.J., Ziener, M., Veronig, A.M., Denker, C., Pötzi, W., Podladchikova, T., Pevtsov, A.A.: 2024, A universal method for solar filament detection from H\(\alpha \) observations using semi-supervised deep learning. Astron. Astrophys. 686, A213. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dineva, E., Pearson, J., Ilyin, I., Verma, M., Diercke, A., Strassmeier, K.G., Denker, C.: 2022, Characterization of chromospheric activity based on Sun-as-a-star spectral and disk-resolved activity indices. Astron. Nachr. 343, e23996. DOI. ADS.

    Article  ADS  Google Scholar 

  • Doerr, H.-P.: 2016, Precision spectroscopy with a frequency-comb-calibrated solar spectrograph. PhD thesis, Albert Ludwigs University of Freiburg, Germany. ADS.

  • Dominguez-Tagle, C., Collados, M., Lopez, R., Cedillo, J.J.V., Esteves, M.A., Grassin, O., Vega, N., Mato, A., Quintero, J., Rodriguez, H., Regalado, S., Gonzalez, F.: 2022, First light of the integral field unit of GRIS on the GREGOR solar telescope. J. Astron. Instrum. 11, 2250014. DOI.

    Article  Google Scholar 

  • Erard, S., Cecconi, B., Le Sidaner, P., Berthier, J., Henry, F., Molinaro, M., Giardino, M., Bourrel, N., André, N., Gangloff, M., Jacquey, C., Topf, F.: 2014, The EPN-TAP protocol for the planetary science virtual observatory. Astron. Comput. 7, 52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Erard, S., Cecconi, B., Le Sidaner, P., Rossi, A.P., Capria, M.T., Schmitt, B., Génot, V., André, N., Vandaele, A.C., Scherf, M., Hueso, R., Määttänen, A., Thuillot, W., Carry, B., Achilleos, N., Marmo, C., Santolik, O., Benson, K., Fernique, P., Beigbeder, L., Millour, E., Rousseau, B., Andrieu, F., Chauvin, C., Minin, M., Ivanoski, S., Longobardo, A., Bollard, P., Albert, D., Gangloff, M., Jourdane, N., Bouchemit, M., Glorian, J.-M., Trompet, L., Al-Ubaidi, T., Juaristi, J., Desmars, J., Guio, P., Delaa, O., Lagain, A., Soucek, J., Pisa, D.: 2018, VESPA: a community-driven virtual observatory in planetary science. Planet. Space Sci. 150, 65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ermolli, I., Giorgi, F., Murabito, M., Stangalini, M., Guido, V., Molinaro, M., Romano, P., Guglielmino, S.L., Viavattene, G., Cauzzi, G., Criscuoli, S., Reardon, K.P., Tritschler, A.: 2022, IBIS-A: the IBIS data archive. High-resolution observations of the solar photosphere and chromosphere with contextual data. Astron. Astrophys. 661, A74. DOI. ADS.

    Article  Google Scholar 

  • Felipe, T., Kuckein, C., González Manrique, S.J., Milic, I., Sangeetha, C.R.: 2020, Chromospheric resonances above sunspots and potential seismological applications. Astrophys. J. Lett. 900, L29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Felipe, T., González Manrique, S.J., Sangeetha, C.R., Asensio Ramos, A.: 2023, Magnetic field fluctuations in the shocked umbral chromosphere. Astron. Astrophys. 676, A77. DOI. ADS.

    Article  ADS  Google Scholar 

  • Franz, M., Collados, M., Bethge, C., Schlichenmaier, R., Borrero, J.M., Schmidt, W., Lagg, A., Solanki, S.K., Berkefeld, T., Kiess, C., Rezaei, R., Schmidt, D., Sigwarth, M., Soltau, D., Volkmer, R., von der Luhe, O., Waldmann, T., Orozco, D., Pastor Yabar, A., Denker, C., Balthasar, H., Staude, J., Hofmann, A., Strassmeier, K., Feller, A., Nicklas, H., Kneer, F., Sobotka, M.: 2016, Magnetic fields of opposite polarity in sunspot penumbrae. Astron. Astrophys. 596, A4. DOI. ADS.

    Article  Google Scholar 

  • Gafeira, R., Orozco Suárez, D., Milić, I., Quintero Noda, C., Ruiz Cobo, B., Uitenbroek, H.: 2021, Machine learning initialization to accelerate Stokes profile inversions. Astron. Astrophys. 651, A31. DOI. ADS.

    Article  ADS  Google Scholar 

  • González Manrique, S.J., Kuckein, C., Pastor Yabar, A., Diercke, A., Collados, M., Gömöry, P., Zhong, S., Hou, Y., Denker, C.: 2020, Tracking downflows from the chromosphere to the photosphere in a solar arch filament system. Astrophys. J. 890, 82. DOI. ADS.

    Article  ADS  Google Scholar 

  • González Manrique, S.J., Khomenko, E., Collados, M., Kuckein, C., Felipe, T., Gömöry, P.: 2024, Two fluid dynamics in solar prominences. Astron. Astrophys. 681, A114. DOI. ADS.

    Article  ADS  Google Scholar 

  • Griñón-Marín, A.B., Pastor Yabar, A., Centeno, R., Socas-Navarro, H.: 2021, Long-term evolution of three light bridges developed on the same sunspot. Astron. Astrophys. 647, A148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gudiksen, B.V., Carlsson, M., Hansteen, V.H., Hayek, W., Leenaarts, J., Martínez-Sykora, J.: 2011, The stellar atmosphere simulation code Bifrost. Code description and validation. Astron. Astrophys. 531, A154. DOI. ADS.

    Article  ADS  Google Scholar 

  • Halbgewachs, C., Bethge, C., Caligari, P., Elmore, D., Kentischer, T.J., Peter, H., Sigwarth, M., Schmidt, W.: 2008, The control and data concept for the robotic solar telescope ChroTel. In: Bridger, A., Radziwill, N.M. (eds.) Advanced Software and Control for Astronomy II, Proc. SPIE 7019, 70192T. DOI. ADS.

    Chapter  Google Scholar 

  • Hanisch, R.J., Farris, A., Greisen, E.W., Pence, W.D., Schlesinger, B.M., Teuben, P.J., Thompson, R.W., Warnock, I.A.: 2001, Definition of the flexible image transport system (FITS). Astron. Astrophys. 376, 359. DOI. ADS.

    Article  ADS  Google Scholar 

  • Haugan, S.V.H., Fredvik, T.: 2021, SOLARNET Metadata Recommendations for Solar Observations. DOI.

  • Higgins, R.E., Fouhey, D.F., Zhang, D., Antiochos, S.K., Barnes, G., Hoeksema, J.T., Leka, K.D., Liu, Y., Schuck, P.W., Gombosi, T.I.: 2021, Fast and accurate emulation of the SDO/HMI Stokes inversion with uncertainty quantification. Astrophys. J. 911, 130H. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hurlburt, N., Timmons, R., Seguin, R.: 2020, The heliophysics coverage registry: an integrated metadata system for coordinated, multi-mission solar observatories. In: Ballester, P., Ibsen, J., Solar, M., Shortridge, K. (eds.) Astronomical Data Analysis Software and Systems XXVII, Astronomical Society of the Pacific Conference Series 522, 615. ADS.

    Google Scholar 

  • Kaithakkal, A.J., Borrero, J.M., Fischer, C.E., Dominguez-Tagle, C., Collados, M.: 2020, Evolution of Stokes V area asymmetry related to a quiet Sun cancellation observed with GRIS/IFU. Astron. Astrophys. 634, A131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kentischer, T.J., Bethge, C., Elmore, D.F., Friedlein, R., Halbgewachs, C., Knölker, M., Peter, H., Schmidt, W., Sigwarth, M., Streander, K.: 2008, ChroTel: a robotic telescope to observe the chromosphere of the Sun. In: McLean, I.S., Casali, M.M. (eds.) Ground-Based and Airborne Instrumentation for Astronomy II, Proc. SPIE 7014, 701413. DOI. ADS.

    Chapter  Google Scholar 

  • Kiess, C., Borrero, J.M., Schmidt, W.: 2018, Three-lobed near-infrared Stokes V profiles in the quiet Sun. Astron. Astrophys. 616, A109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kleint, L., Berkefeld, T., Esteves, M., Sonner, T., Volkmer, R., Gerber, K., Krämer, F., Grassin, O., Berdyugina, S.: 2020, GREGOR: optics redesign and updates from 2018-2020. Astron. Astrophys. 641, A27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: An overview. Solar Phys. 243, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuckein, C., Verma, M., Denker, C.: 2016, Giant quiescent solar filament observed with high-resolution spectroscopy. Astron. Astrophys. 589, A84. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuckein, C., Denker, C., Verma, M., Balthasar, H., González Manrique, S.J., Louis, R.E., Diercke, A.: 2017, sTools—a data reduction pipeline for the GREGOR Fabry-Pérot interferometer and the high-resolution fast imager at the GREGOR solar telescope. In: Vargas Domínguez, S., Kosovichev, A.G., Antolin, P., Harra, L. (eds.) Fine Structure and Dynamics of the Solar Atmosphere, IAU Symposium. 327, 20. DOI. ADS.

    Chapter  Google Scholar 

  • Kuckein, C., González Manrique, S.J., Kleint, L., Asensio Ramos, A.: 2020a, Determining the dynamics and magnetic fields in He I 10 830 Å during a solar filament eruption. Astron. Astrophys. 640, A71. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuckein, C., González Manrique, S.J., Kleint, L., Asensio Ramos, A.: 2020b, Determining the dynamics and magnetic fields in He I 10 830 Å during a solar filament eruption. Astron. Astrophys. 640, A71. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuckein, C., Balthasar, H., Quintero Noda, C., Diercke, A., Trelles Arjona, J.C., Ruiz Cobo, B., Felipe, T., Denker, C., Verma, M., Kontogiannis, I., Sobotka, M.: 2021, Multiple Stokes I inversions for inferring magnetic fields in the spectral range around Cr I 5782 Å. Astron. Astrophys. 653, A165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuridze, D., Heinzel, P., Koza, J., Oliver, R.: 2022, Dark off-limb gap: manifestation of a temperature minimum and the dynamic nature of the chromosphere. Astrophys. J. 937, 56. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lindner, P., Kuckein, C., González Manrique, S.J., Bello González, N., Kleint, L., Berkefeld, T.: 2023, The role of the chromospheric magnetic canopy in the formation of a sunspot penumbra. Astron. Astrophys. 673, A64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Löhner-Böttcher, J., Schmidt, W., Doerr, H.-P., Kentischer, T., Steinmetz, T., Probst, R.A., Holzwarth, R.: 2017, LARS: an absolute reference spectrograph for solar observations. Upgrade from a prototype to a turn-key system. Astron. Astrophys. 607, A12. DOI. ADS.

    Article  Google Scholar 

  • Löhner-Böttcher, J., Schmidt, W., Schlichenmaier, R., Doerr, H.-P., Steinmetz, T., Holzwarth, R.: 2018a, Absolute velocity measurements in sunspot umbrae. Astron. Astrophys. 617, A19. DOI. ADS.

    Article  Google Scholar 

  • Löhner-Böttcher, J., Schmidt, W., Stief, F., Steinmetz, T., Holzwarth, R.: 2018b, Convective blueshifts in the solar atmosphere. I. Absolute measurements with LARS of the spectral lines at 6302 Å. Astron. Astrophys. 611, A4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Löhner-Böttcher, J., Schmidt, W., Schlichenmaier, R., Steinmetz, T., Holzwarth, R.: 2019, Convective blueshifts in the solar atmosphere. III. High-accuracy observations of spectral lines in the visible. Astron. Astrophys. 624, A57. DOI. ADS.

    Article  ADS  Google Scholar 

  • Louis, R.E., Puschmann, K.G., Kliem, B., Balthasar, H., Denker, C.: 2014, Sunspot splitting triggering an eruptive flare. Astron. Astrophys. 562, A110. DOI. ADS.

    Article  ADS  Google Scholar 

  • Milic, I., Gafeira, R.: 2020, Mimicking spectropolarimetric inversions using convolutional neural networks. Astron. Astrophys. 644, A129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Milić, I., Smitha, H.N., Lagg, A.: 2019, Using the infrared iron lines to probe solar subsurface convection. Astron. Astrophys. 630, A133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Müller, D., Nicula, B., Felix, S., Verstringe, F., Bourgoignie, B., Csillaghy, A., Berghmans, D., Jiggens, P., García-Ortiz, J.P., Ireland, J., Zahniy, S., Fleck, B.: 2017, JHelioviewer. Time-dependent 3D visualization of solar and heliospheric data. Astron. Astrophys. 606, A10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nelson, C.J., Campbell, R.J., Mathioudakis, M.: 2021, Oscillations in the line-of-sight magnetic field strength in a pore observed by the GREGOR infrared spectrograph (GRIS). Astron. Astrophys. 654, A50. DOI. ADS.

    Article  ADS  Google Scholar 

  • Palacios, J., Utz, D., Hofmeister, S., Krikova, K., Gömöry, P., Kuckein, C., Denker, C., Verma, M., González Manrique, S.J., Campos Rozo, J.I., Koza, J., Temmer, M., Veronig, A., Diercke, A., Kontogiannis, I., Cid, C.: 2020, Magnetic flux emergence in a coronal hole. Solar Phys. 295, 64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Palumbo, I.M.L., Ford, E.B., Wright, J.T., Mahadevan, S., Wise, A.W., Löhner-Böttcher, J.: 2022, GRASS: distinguishing planet-induced Doppler signatures from granulation with a synthetic spectra generator. Astron. J. 163, 11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Palumbo, M.L., Ford, E.B., Gonzalez, E.B., Wright, J.T., Al Moulla, K., Schlichenmaier, R.: 2024, GRASS. II. Simulations of potential granulation noise mitigation methods. Astron. J. 168, 46. DOI. ADS.

    Article  Google Scholar 

  • Quintero Noda, C., Schlichenmaier, R., Bellot Rubio, L.R., Löfdahl, M.G., Khomenko, E., Jurčák, J., Leenaarts, J., Kuckein, C., González Manrique, S.J., Gunár, S., et al.: 2022, The European Solar Telescope. Astron. Astrophys. 666, A21. DOI. ADS.

    Article  Google Scholar 

  • Rachmeler, L.A., Platten, S.J., Bethge, C., Seaton, D.B., Yeates, A.R.: 2014, Observations of a hybrid double-streamer/pseudostreamer in the solar corona. Astrophys. J. Lett. 787, L3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rimmele, T.R., Warner, M., Keil, S.L., Goode, P.R., Knölker, M., Kuhn, J.R., Rosner, R.R., McMullin, J.P., Casini, R., Lin, H., Wöger, F., von der Lühe, O., Tritschler, A., Davey, A., de Wijn, A., Elmore, D.F., Fehlmann, A., Harrington, D.M., Jaeggli, S.A., Rast, M.P., Schad, T.A., Schmidt, W., Mathioudakis, M., Mickey, D.L., Anan, T., Beck, C., Marshall, H.K., Jeffers, P.F., Oschmann, J.M., Beard, A., Berst, D.C., Cowan, B.A., Craig, S.C., Cross, E., Cummings, B.K., Donnelly, C., de Vanssay, J.-B., Eigenbrot, A.D., Ferayorni, A., Foster, C., Galapon, C.A., Gedrites, C., Gonzales, K., Goodrich, B.D., Gregory, B.S., Guzman, S.S., Guzzo, S., Hegwer, S., Hubbard, R.P., Hubbard, J.R., Johansson, E.M., Johnson, L.C., Liang, C., Liang, M., McQuillen, I., Mayer, C., Newman, K., Onodera, B., Phelps, L., Puentes, M.M., Richards, C., Rimmele, L.M., Sekulic, P., Shimko, S.R., Simison, B.E., Smith, B., Starman, E., Sueoka, S.R., Summers, R.T., Szabo, A., Szabo, L., Wampler, S.B., Williams, T.R., White, C.: 2020, The Daniel K. Inouye Solar Telescope—Observatory overview. Solar Phys. 295, 172. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rodríguez-Gómez, J.M., Kuckein, C., González Manrique, S.J., Saqri, J., Veronig, A., Gömöry, P., Podladchikova, T.: 2024, The plasma \(\beta \) in quiet Sun regions: multi-instrument view. Astrophys. J. 964, 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scharmer, G.B., Bjelksjo, K., Korhonen, T.K., Lindberg, B., Petterson, B.: 2003, The 1-meter Swedish solar telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 4853, 341. DOI. ADS.

    Chapter  Google Scholar 

  • Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S.K., Balthasar, H., Bello Gonzalez, N., Berkefeld, T., Collados, M., Fischer, A., Halbgewachs, C., Heidecke, F., Hofmann, A., Kneer, F., Lagg, A., Nicklas, H., Popow, E., Puschmann, K.G., Schmidt, D., Sigwarth, M., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Waldmann, T.A.: 2012, The 1.5 meter solar telescope GREGOR. Astron. Nachr. 333, 796. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schmidt, W., Bell, A., Halbgewachs, C., Heidecke, F., Kentischer, T.J., von der Lühe, O., Scheiffelen, T., Sigwarth, M.: 2014, A two-dimensional spectropolarimeter as a first-light instrument for the Daniel K. Inouye solar telescope. In: Ramsay, S.K., McLean, I.S., Takami, H. (eds.) Ground-Based and Airborne Instrumentation for Astronomy V, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 9147, 91470E. DOI. ADS.

    Chapter  Google Scholar 

  • Schwanitz, C., Harra, L., Barczynski, K., Mandrini, C.H., Orozco Suárez, D., Moreno Vacas, A., Raouafi, N.E.: 2023, Small-scale upflows in a coronal hole—tracked from the photosphere to the corona. Solar Phys. 298, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Z., Diercke, A., Denker, C.: 2018, Calibration of full-disk He I 10 830 Å filtergrams of the chromospheric telescope. Astron. Nachr. 339, 661. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Chen, P.F., Liu, Y.D., Shibata, K., Tang, Z., Liu, Y.: 2019, First unambiguous imaging of large-scale quasi-periodic extreme-ultraviolet wave or shock. Astrophys. J. 873, 22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sobotka, M., Jurčák, J., Castellanos Durán, J.S., García-Rivas, M.: 2024, The relation between magnetic field inclination and the apparent motion of penumbral grains. Astron. Astrophys. 682, A65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sowmya, K., Lagg, A., Solanki, S.K., Castellanos Durán, J.S.: 2022, Magnetized supersonic downflows in the chromosphere. A statistical study using the He I 10 830 Å lines. Astron. Astrophys. 661, A122. DOI. ADS.

    Article  ADS  Google Scholar 

  • Stief, F., Löhner-Böttcher, J., Schmidt, W., Steinmetz, T., Holzwarth, R.: 2019, Convective blueshifts in the solar atmosphere. II. High-accuracy observations of the Fe I 6173.3 Å line and deviations of full-disk Dopplergrams. Astron. Astrophys. 622, A34. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tähtinen, I., Virtanen, I.I., Pevtsov, A.A., Mursula, K.: 2022, Reconstructing solar magnetic fields from historical observations. VIII. AIA 1600 Å contrast as a proxy of solar magnetic fields. Astron. Astrophys. 664, A2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Trelles Arjona, J.C., Martínez González, M.J., Ruiz Cobo, B.: 2023, Solar-cycle and latitude variations in the internetwork magnetism. Astrophys. J. 944, 95. DOI. ADS.

    Article  ADS  Google Scholar 

  • van der Luehe, O., Soltau, D., Berkefeld, T., Schelenz, T.: 2003, KAOS: Adaptive optics system for the Vacuum Tower Telescope at Teide Observatory. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 4853, 187. DOI. ADS.

    Chapter  Google Scholar 

  • Verma, M., Denker, C., Balthasar, H., Kuckein, C., Rezaei, R., Sobotka, M., Deng, N., Wang, H., Tritschler, A., Collados, M., Diercke, A., González Manrique, S.J.: 2018, High-resolution imaging and near-infrared spectroscopy of penumbral decay. Astron. Astrophys. 614, A2. DOI. ADS.

    Article  Google Scholar 

  • von der Lühe, O.: 1998, High-resolution observations with the German Vacuum Tower Telescope on Tenerife. New Astron. Rev. 42, 493. DOI. ADS.

    Article  ADS  Google Scholar 

  • von der Lühe, O., Volkmer, R., Kentischer, T.J., Geißler, R.: 2012, The GREGOR broad-band imager. Astron. Nachr. 333, 894. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wallace, L., Livingston, W.: 2003, An Atlas of the Solar Spectrum in the Infrared from 1850 to 9000 cm-1 (1.1 to 5.4 Micrometer). National Solar Observatory, Tucson. ADS.

    Google Scholar 

  • Wang, S., Jenkins, J.M., Muglach, K., Martinez Pillet, V., Beck, C., Long, D.M., Choudhary, D.P., McAteer, J.: 2022, Velocities of an erupting filament. Astrophys. J. 926, 18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wells, D.C., Greisen, E.W., Harten, R.H.: 1981, FITS—a flexible image transport system. Astron. Astrophys. Suppl. Ser. 44, 363. ADS.

    ADS  Google Scholar 

  • Yadav, R., de la Cruz Rodríguez, J., Díaz Baso, C.J., Prasad, A., Libbrecht, T., Robustini, C., Asensio Ramos, A.: 2019, Three-dimensional magnetic field structure of a flux-emerging region in the solar atmosphere. Astron. Astrophys. 632, A112. DOI. ADS.

    Article  Google Scholar 

Download references

Acknowledgments

The SDC was funded by the German Scientific Conference (GWK) with time-limited (2021 – 2023) contributions from the Baden-Württemberg Ministry for Science, Research and Art (MWK) and the Federal Ministry for Education and Research (BMBF). Data-curation and data-dissemination SDC activities have been partly funded by the European Union’s Horizon 2020 Research and Innovation Programme through the SOLARNET (Grant Agreement No. 824135) and ESCAPE (Grant Agreement No. 824064.) projects. The 1.5-meter GREGOR solar telescope was built by a German consortium under the leadership of the Leibniz-Institute for Solar Physics (KIS) in Freiburg with the Leibniz Institute for Astrophysics Potsdam, the Institute for Astrophysics Göttingen, and the Max Planck Institute for Solar System Research in Göttingen as partners, and with contributions by the Instituto de Astrofísica de Canarias and the Astronomical Institute of the Academy of Sciences of the Czech Republic. The redesign of the GREGOR AO and instrument distribution optics was carried out by KIS whose technical staff is gratefully acknowledged. The GRIS instrument was developed thanks to the support of the Spanish Ministry of Economy and Competitiveness through the project AYA2010-18029 (Solar Magnetism and Astrophysical Spectropolarimetry).

Author information

Authors and Affiliations

Authors

Contributions

P.C. contributed to Section 2.1, 2.6, Section 3, Section 4, Section 5 and overall revision of the manuscript. F.A. contributed to 2.7, and the overall revision of the manuscript. J.B. contributed to Section 2.6, Section 3, and overall revision of the manuscript. N.B.G. contributed to Section 1, Section 2.1, 2.2, 2.4, 2.5, Section 5 and overall revision of the manuscript. S.B. contributed to Section 1, Section 2.7 and overall revision of the manuscript. A.B. contributed to Section 2.6, Section 3 and overall revision of the manuscript. A.D. contributed to Section 2.2, 2.3, 2.6, 2.7, Section 3 and the overall revision of the manuscript. I.G. contributed to Section 2.7, and the overall revision of the manuscript. A.G. contributed to Section 2.7, and the overall revision of the manuscript. M.G. contributed to Section 2.1, 2.6, Section 3 and overall revision of the manuscript. K.H. contributed to 2.6, Section 3 and the overall revision of the manuscript. A.H. contributed to Section 2.6, Section 3 and overall revision of the manuscript. L.H. contributed to Section 2.6, Section 3 and overall revision of the manuscript. P.K. contributed to Section 3 and overall revision of the manuscript. M.K. contributed to Section 2.1, Section 3 and overall revision of the manuscript. S.P. contributed to Section 2.6 and overall revision of the manuscript. M.S. contributed to Section 4, and overall revision of the manuscript. G.V. contributed to Section 2.2, 2.6, 2.7, Section 3 and overall revision of the manuscript. T.Y. contributed to Section 2.1, 2.6, 2.8, Section 3, Section 5, and the overall revision of the manuscript. M.F. contributed to Section 2.1, 2.2, 2.5, 2.6, Section 3 and the overall revision of the manuscript. T.H. contributed to Section 2.1, 2.6, Section 3 and overall revision of the manuscript. C.S. contributed to Section 2.1, 2.2, 2.4, 2.5, 2.6, Section 3 and overall revision of the manuscript. M.C. contributed to Section 2.1, 2.2, 2.5, 2.6, and overall revision of the manuscript.

Corresponding author

Correspondence to Nazaret Bello González.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caligari, P., Aghaei, F., Beck, J. et al. The KIS Science Data Centre. Sol Phys 299, 143 (2024). https://doi.org/10.1007/s11207-024-02388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-024-02388-7

Keywords