Skip to main content
Log in

Multi-strategy ant colony optimization with k-means clustering algorithm for capacitated vehicle routing problem

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The capacitated vehicle routing problem (CVRP) is a well-known optimization issue in transportation logistics. As a typical representative of swarm intelligence algorithm, ant colony optimization (ACO) has shown encouraging outcomes in CVRP. In contrast, ACO has limitations such as undesirable solutions and susceptibility to getting stuck in local optima. To address these challenges, a multi-strategy adaptive ant colony optimization with the k-means clustering algorithm (KMACO) is proposed for solving CVRP in this study. In the initial stage of KMACO, k-means clustering algorithm is introduced to enhance the quality of the initial solution. Simultaneously, a path-saving factor is added to the state transition rules to improve the success rate of planning. Moreover, the algorithm’s global search capability is further enhanced by dynamically adjusting the pheromone volatilization coefficient. Then, a problem-specific crossover operator and three-stage local operators are designed to strike a balance between the global optimization and local search of KMACO. Finally, to confirm the effectiveness of KMACO, simulation experiments are conducted on three types of datasets. Compared with ACO and six other intelligent algorithms, the KMACO achieves the best-known solution in 17, 12, and 10 instances in benchmark sets A, B, and P, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Algorithm 2
Algorithm 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availibility

The data used in this paper are all from public datasets.

Materials availability

Not applicable.

Code availability

Confidential.

References

  1. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91 (1959). https://doi.org/10.1287/mnsc.6.1.80

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhao, J., Poon, M., Tan, V.Y.F., Zhang, Z.: A hybrid genetic search and dynamic programming-based split algorithm for the multi-trip time-dependent vehicle routing problem. Eur. J. Oper. Res. 317(3), 921–935 (2024). https://doi.org/10.1016/j.ejor.2024.04.011

    Article  MathSciNet  MATH  Google Scholar 

  3. Sciortino, M., Lewis, R., Thompson, J.: A school bus routing heuristic algorithm allowing heterogeneous fleets and bus stop selection. SN Comput. Sci. 4(1), 74 (2022). https://doi.org/10.1007/s42979-022-01466-6

    Article  MATH  Google Scholar 

  4. Xue, G., Wang, Z., Wang, G.: Optimization of rider scheduling for a food delivery service in o2o business. J. Adv. Transp. 2021, 5515909 (2021). https://doi.org/10.1155/2021/5515909

    Article  MATH  Google Scholar 

  5. Liu, S.: Research on logistics distribution path planning based on genetic algorithm. In: Paper Presented at the 2nd International Conference on Applied Physics and Computing, Ottawa, Canada, 8–10 September 2021 (2021). https://doi.org/10.1088/1742-6596/2083/3/032013

  6. Meng, J., You, X., Liu, S.: Heterogeneous ant colony optimization based on adaptive interactive learning and non-zero-sum game. Soft Comput. 26, 3903–3920 (2022). https://doi.org/10.1007/s00500-022-06833-2

    Article  MATH  Google Scholar 

  7. Bie, Y., Ji, J., Wang, X., Qu, X.: Optimization of electric bus scheduling considering stochastic volatilities in trip travel time and energy consumption. Comput. Aided Civ. Infrastruct. Eng. 36(12), 1530–1548 (2021). https://doi.org/10.1111/mice.12684

    Article  MATH  Google Scholar 

  8. Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(3), 345–358 (1992). https://doi.org/10.1016/0377-2217(92)90192-C

    Article  MathSciNet  MATH  Google Scholar 

  9. Pan, W., Liu, S.Q.: Deep reinforcement learning for the dynamic and uncertain vehicle routing problem. Appl. Intell. 53, 405–422 (2023). https://doi.org/10.1007/s10489-022-03456-w

    Article  MATH  Google Scholar 

  10. Marques, G., Sadykov, R., Deschamps, J.-C., Dupas, R.: An improved branch-cut-and-price algorithm for the two-echelon capacitated vehicle routing problem. Comput. Oper. Res. 114, 104833 (2020). https://doi.org/10.1016/j.cor.2019.104833

    Article  MathSciNet  MATH  Google Scholar 

  11. Duman, E.N., Taş, D., Çatay, B.: Branch-and-price-and-cut methods for the electric vehicle routing problem with time windows. Int. J. Prod. Res. 60(17), 5332–5353 (2022). https://doi.org/10.1080/00207543.2021.1955995

    Article  MATH  Google Scholar 

  12. Rezaei, B., Guimaraes, F.G., Enayatifar, R., Haddow, P.C.: Combining genetic local search into a multi-population imperialist competitive algorithm for the capacitated vehicle routing problem. Appl. Soft Comput. 142, 110309 (2023). https://doi.org/10.1016/j.asoc.2023.110309

    Article  Google Scholar 

  13. Jiang, H., Lu, M., Tian, Y., Qiu, J., Zhang, X.: An evolutionary algorithm for solving capacitated vehicle routing problems by using local information. Appl. Soft Comput. 117, 108431 (2022). https://doi.org/10.1016/j.asoc.2022.108431

    Article  Google Scholar 

  14. Holanda Maia, M.R., Plastino, A., Santos Souza, U.: Solving capacitated vehicle routing problem using chicken swarm optimization with genetic algorithm. Int. J. Intell. Eng. Syst. 83(4), 692–711 (2024). https://doi.org/10.1002/net.22213

    Article  MATH  Google Scholar 

  15. Lin, N., Shi, Y., Zhang, T., Wang, X.: An effective order-aware hybrid genetic algorithm for capacitated vehicle routing problems in internet of things. IEEE Access 7, 86102–86114 (2019). https://doi.org/10.1109/ACCESS.2019.2925831

    Article  MATH  Google Scholar 

  16. Souza, I.P., Boeres, M.C.S., Moraes, R.E.N.: A robust algorithm based on differential evolution with local search for the capacitated vehicle routing problem. Swarm Evol. Comput. 77, 101245 (2023). https://doi.org/10.1016/j.swevo.2023.101245

    Article  MATH  Google Scholar 

  17. Sbai, I., Krichen, S., Limam, O.: Two meta-heuristics for solving the capacitated vehicle routing problem: the case of the Tunisian post office. Oper. Res. 22, 507–549 (2022). https://doi.org/10.1007/s12351-019-00543-8

    Article  MATH  Google Scholar 

  18. Ji, Z.: Solving capacitated vehicle routing problem by an improved genetic algorithm with fuzzy c-means clustering. Sci. Program. 2022, 8514660 (2022). https://doi.org/10.1155/2022/8514660

    Article  Google Scholar 

  19. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE T. Evolut. Comput. 1(1), 53–66 (1997). https://doi.org/10.1109/4235.585892

    Article  MATH  Google Scholar 

  20. Stützle, T., Hoos, H.H.: Max-min ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000). https://doi.org/10.1016/S0167-739X(00)00043-1

    Article  MATH  Google Scholar 

  21. Li, W., Xia, L., Huang, Y., Mahmoodi, S.: An ant colony optimization algorithm with adaptive greedy strategy to optimize path problems. J. Ambient Intell. Human. Comput. 13, 1557–1571 (2022). https://doi.org/10.1007/s12652-021-03120-0

    Article  MATH  Google Scholar 

  22. Abuhamdah, A.: Adaptive elitist-ant system for solving combinatorial optimization problems. Appl. Soft Comput. 105, 107293 (2021). https://doi.org/10.1016/j.asoc.2021.107293

    Article  MATH  Google Scholar 

  23. Cai, J., Wang, P., Sun, S., Dong, H.: A dynamic space reduction ant colony optimization for capacitated vehicle routing problem. Soft Comput. 26, 8745–8756 (2022). https://doi.org/10.1007/s00500-022-07198-2

    Article  MATH  Google Scholar 

  24. Liu, H., Lee, A., Lee, W., Guo, P.: Daaco: adaptive dynamic quantity of ant aco algorithm to solve the traveling salesman problem. Complex Intell. Syst. 9, 4317–4330 (2023). https://doi.org/10.1007/s40747-022-00949-6

    Article  MATH  Google Scholar 

  25. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

    Article  MATH  Google Scholar 

  26. Gao, Y., Wu, H., Wang, W.: A hybrid ant colony optimization with fireworks algorithm to solve capacitated vehicle routing problem. Appl. Intell. 53, 7326–7342 (2023). https://doi.org/10.1007/s10489-022-03912-7

    Article  MATH  Google Scholar 

  27. Jiao, D., Liu, C., Li, Z., Wang, D.: An improved ant colony algorithm for tsp application. In: Paper Presented at the 7th International Conference on Computer-Aided Design, Manufacturing, Modeling and Simulation, Busan, South Korea, 14–15 November 2020 (2020). https://doi.org/10.1088/1742-6596/1802/3/032067

  28. Jiang, C., Fu, J., Liu, W.: Research on vehicle routing planning based on adaptive ant colony and particle swarm optimization algorithm. Int. J. Intell. Transp. Syst. Res. 19, 83–91 (2021). https://doi.org/10.1007/s13177-020-00224-3

    Article  MATH  Google Scholar 

  29. Wang, Y., Wang, L., Chen, G., Cai, Z., Zhou, Y., Xing, L.: An improved ant colony optimization algorithm to the periodic vehicle routing problem with time window and service choice. Swarm Evol. Comput. 55, 100675 (2020). https://doi.org/10.1016/j.swevo.2020.100675

    Article  MATH  Google Scholar 

  30. Molina, J.C., Salmeron, J.L., Eguia, I.: An acs-based memetic algorithm for the heterogeneous vehicle routing problem with time windows. Expert Syst. Appl. 157, 113379 (2020). https://doi.org/10.1016/j.eswa.2020.113379

    Article  MATH  Google Scholar 

  31. Hameed, A., Burhanuddin, M., Mutar, M., Ngo, H.C., Albadri, R., Talib, M.: A hybrid method integrating a rank-based ant system algorithm with insert and swap algorithm for the capacitated vehicle routing problem solution. J. Theor. Appl. Inf. Technol. 99(3), 685–695 (2021)

    Google Scholar 

  32. Goel, R., Maini, R.: A hybrid of ant colony and firefly algorithms (hafa) for solving vehicle routing problems. Int. J. Comput. Sci. Eng. 25, 28–37 (2018). https://doi.org/10.1016/j.jocs.2017.12.012

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao, G.: Application of swarm intelligence optimization algorithm in logistics delivery path optimization under the background of big data. J. Funct. Spaces. 2023, 3476711 (2023). https://doi.org/10.1155/2023/3476711

    Article  Google Scholar 

  34. Altabeeb, A.M., Mohsen, A.M., Ghallab, A.: An improved hybrid firefly algorithm for capacitated vehicle routing problem. Appl. Soft Comput. 84, 105728 (2019). https://doi.org/10.1016/j.asoc.2019.105728

    Article  Google Scholar 

  35. Ran, X., Suyaroj, N., Tepsan, W., Ma, J., Zhou, X., Deng, W.: A hybrid genetic-fuzzy ant colony optimization algorithm for automatic k-means clustering in urban global positioning system. Eng. Appl. Artif. Intell. 137, 109237 (2024)

    Article  Google Scholar 

  36. Li, T., Lyu, X., Li, F., Chen, Y.: Routing optimization model and algorithm for takeout distribution with multiple fuzzy variables under dynamics demand. Control Decis 34(2), 406–413 (2019)

    MATH  Google Scholar 

  37. Lin, S.-W., Lee, Z.-J., Ying, K.-C., Lee, C.-Y.: Applying hybrid meta-heuristics for capacitated vehicle routing problem. Expert Syst. Appl. 36(2), 1505–1512 (2009). https://doi.org/10.1016/j.eswa.2007.11.060

    Article  MATH  Google Scholar 

  38. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Lucien Marie L.C., Neyman J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Statistical Laboratory of the University of California, Berkeley, Oakland, CA, USA (1967)

  39. Oliveira, S., Hussin, M.S., Roli, A., Dorigo, M., Stützle, T.: Analysis of the population-based ant colony optimization algorithm for the TSP and the QAP. In: Paper Presented at 2017 IEEE Congress on Evolutionary Computation, Donostia/San Sebastian, Spain, 5–8 June 2017 (2017). https://doi.org/10.1109/CEC.2017.7969511

  40. Augerat: Capacitated vehicle routing problem library (2006). http://vrp.atd-lab.inf.puc-rio.br/index.php/en/. Accessed 15 June 2024

  41. Ghannadpour, S.F., Noori, S., Tavakkoli-Moghaddam, R., Ghoseiri, K.: A multi-objective dynamic vehicle routing problem with fuzzy time windows: model, solution and application. Appl. Soft Comput. 14, 504–527 (2014). https://doi.org/10.1016/j.asoc.2013.08.015

    Article  MATH  Google Scholar 

  42. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011). https://doi.org/10.1016/j.swevo.2011.02.001

    Article  MATH  Google Scholar 

  43. Miao, C., Chen, G., Yan, C., Wu, Y.: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm. Comput. Ind. Eng. 156, 107230 (2021). https://doi.org/10.1016/j.cie.2021.107230

    Article  MATH  Google Scholar 

  44. Zhang, H., Zhang, Q., Ma, L., Zhang, Z., Liu, Y.: A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows. Inform. Sci. 490, 166–190 (2019). https://doi.org/10.1016/j.ins.2019.03.070

    Article  MathSciNet  MATH  Google Scholar 

  45. Ombuki, B., Ross, B.J., Hanshar, F.: Multi-objective genetic algorithms for vehicle routing problem with time windows. Appl. Intell. 24, 17–30 (2006). https://doi.org/10.1007/s10489-006-6926-z

    Article  MATH  Google Scholar 

  46. Matthopoulos, P.-P., Sofianopoulou, S.: A firefly algorithm for the heterogeneous fixed fleet vehicle routing problem. Int. J. Ind. Syst. Eng. 33(2), 204–224 (2019). https://doi.org/10.1504/IJISE.2019.102471

    Article  MATH  Google Scholar 

  47. Thammano, A., Rungwachira, P.: Hybrid modified ant system with sweep algorithm and path relinking for the capacitated vehicle routing problem. Heliyon 7(9), 08029 (2021). https://doi.org/10.1016/j.heliyon.2021.e08029

    Article  MATH  Google Scholar 

Download references

Funding

This work was supported by the Xuzhou Science and Technology Program (KC21001) and National Natural Science Foundation of China (62173166).

Author information

Authors and Affiliations

Authors

Contributions

Zhaojun Zhang: Methodology, Validation, Supervision. Simeng Tan: Conceptualization, Investigation, Writing - Original Draft. Jiale Qin: Visualization, Formal analysis. Kuansheng Zou: Data Curation. Shengwu Zhou: Writing - Review and Editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhaojun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Tan, S., Qin, J. et al. Multi-strategy ant colony optimization with k-means clustering algorithm for capacitated vehicle routing problem. Cluster Comput 28, 202 (2025). https://doi.org/10.1007/s10586-024-04860-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04860-2

Keywords