Skip to main content
Log in

Lattice point of view for argumentation framework

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The main purpose of this article is to develop a lattice point of view for the study of argumentation framework extensions. We first characterize self-defending sets of an argumentation framework by the closed sets of an implicational system that can be computed in polynomial time from the argumentation framework. On the other hand, for any implicational system \(\Sigma \) over the set of arguments, we associate an argumentation framework whose admissible sets are in bijection with closed sets of \(\Sigma \). Second, we propose conflict-closed sets reduction rules, based on implicational system, to find out minimal subsets of vertex cover closed while maintaining all potential admissible extensions as well as preferred extensions. This leads to a polynomial delay and space algorithm to enumerate admissible sets of argumentation frameworks without even cycles. Finally, based on the implicational system, a new decomposition of the argumentation framework is defined and leads to a polynomial delay and space algorithm to enumerate admissible sets for a bipartite argumentation framework. The proposed algorithm improves the exponential space complexity of previous algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No data was used for the research described in the article.

References

  1. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bench-Capon, T.J., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10–15), 619–641 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence, pp. 63–101. Springer, (2009)

  4. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artif. Intell. 173(3–4), 413–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cocarascu, O., Toni, F.: Argumentation for machine learning: A survey. In: COMMA, pp. 219–230 (2016)

  6. McBurney, P., Parsons, S.: Dialogue games for agent argumentation. Argumentation Artif. Intell. 261–280 (2009)

  7. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, (2007)

  8. Pollock, J.L.: Defeasible reasoning. Cognitive science 11(4), 481–518 (1987)

    Article  Google Scholar 

  9. Apt, K.R.: Logic programming. Handb. Theor. Comput. Sci. Vol. B: Form. Model. Sematics (B) 1990, 493–574 (1990)

  10. Dunne, P.E., Bench-Capon, T.J.: Complexity and combinatorial properties of argument systems. University of Liverpool, Department of Computer Science (ULCS), Technical report (2001)

    MATH  Google Scholar 

  11. Dvořák, W., Dunne, P.E.: Computational problems in formal argumentation and their complexity. J. Log. Appl. 4(8), 2557–2622 (2017)

    Google Scholar 

  12. Gaggl, S.A., Linsbichler, T., Maratea, M., Woltran, S.: Design and results of the second international competition on computational models of argumentation. Artif. Intell. 279, 103193 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kröll, M., Pichler, R., Woltran, S.: On the complexity of enumerating the extensions of abstract argumentation frameworks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 1145–1152 (2017). AAAI Press

  14. Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frameworks. In: European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pp. 317–328 (2005). Springer

  15. Dunne, P.E.: Computational properties of argument systems satisfying graph-theoretic constraints. Artif. Intell. 171(10–15), 701–729 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galeana-Sánchez, H., Neumann-Lara, V.: On kernels and semikernels of digraphs. Discret. Math. 48(1), 67–76 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chesnevar, C.I., Simari, G.R.: A lattice-based approach to computing warranted beliefs in skeptical argumentation frameworks. In: IJCAI, vol. 2007, pp. 280–285 (2007)

  18. Strass, H.: Approximating operators and semantics for abstract dialectical frameworks. Artif. Intell. 205, 39–70 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Elaroussi, M., Nourine, L., Radjef, M.S., Vilmin, S.: On the preferred extensions of argumentation frameworks: Bijections with naive sets. Inf. Process. Lett. 106354 (2023)

  20. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

    Article  Google Scholar 

  22. Dunne, P.E., Dvořák, W., Linsbichler, T., Woltran, S.: Characteristics of multiple viewpoints in abstract argumentation. Artif. Intell. 228, 153–178 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, (2002)

  24. Grätzer, G.: Lattice Theory: Foundation. Springer, (2011)

  25. Wild, M.: A theory of finite closure spaces based on implications. Adv. Math. 108(1), 118–139 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bertet, K., Demko, C., Viaud, J.-F., Guérin, C.: Lattices, closures systems and implication bases: a survey of structural aspects and algorithms. Theor. Comput. Sci. 743, 93–109 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wild, M.: The joy of implications, aka pure horn formulas: mainly a survey. Theor. Comput. Sci. 658, 264–292 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pazienza, A., Grossi, D., Grasso, F., Palmieri, R., Zito, M., Ferilli, S.: An abstract argumentation approach for the prediction of analysts’ recommendations following earnings conference calls. Intelligenza Artificiale 13(2), 173–188 (2019)

    Article  Google Scholar 

  29. Measuring user relevance in online debates through an argumentative model

  30. Simmons, W.L.: A framework for decision support in systems architecting. PhD thesis, Massachusetts Institute of Technology (2008)

  31. Toni, F., Sergot, M.: Argumentation and answer set programming. Log. Program. Knowl. Represent. Nonmonotonic Reason. 6565, 164–180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Robertson, N., Seymour, P.D., Thomas, R.: Permanents, pfaffian orientations, and even directed circuits. Annals of mathematics, 929–975 (1999)

  33. McCuaig, W.: Even dicycles. J. Graph Theory 35(1), 46–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theories. Theor. Comput. Sci. 170(1–2), 209–244 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bistarelli, S., Rossi, F., Santini, F.: A comparative test on the enumeration of extensions in abstract argumentation. Fundam. Informaticae 140(3–4), 263–278 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cerutti, F., Vallati, M., Giacomin, M.: On the impact of configuration on abstract argumentation automated reasoning. Int. J. Approx. Reason. 92, 120–138 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Cerutti, F., Giacomin, M., Vallati, M.: Algorithm selection for preferred extensions enumeration. In: Computational Models of Argument: Proceedings of COMMA 2014, United Kingdom, pp. 221–232

  38. Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for solving reasoning problems in abstract argumentation-a survey. Artif. Intell. 220, 28–63 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for decision problems in argument systems under preferred semantics. Artif. Intell. 207, 23–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ganter, B.: Two basic algorithms in concept analysis. In: International Conference on Formal Concept Analysis, pp. 312–340. Springer (2010)

  42. Baumann, R.: Splitting an argumentation framework. In: International Conference on Logic Programming and Nonmonotonic Reasoning, pp. 40–53. Springer (2011)

  43. Giacomin, M., Baroni, P., Cerutti, F.: Towards a general theory of decomposability in abstract argumentation. In: International Conference on Logic and Argumentation, pp. 169–189. Springer (2021)

  44. Croitoru, C., Croitoru, M.: Indepth combinatorial analysis of admissible sets for abstract argumentation. Ann. Math. Artif. Intell., 1–20 (2022)

  45. Dunne, P.E., Dvořák, W., Woltran, S.: Parametric properties of ideal semantics. Artif. Intell. 202, 1–28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support received from the CMEP Tassili project: 46085QH-21MDU320 PHC, 2021-2023. The second author is also supported by the French government IDEX ISITE initiative 16-IDEX-0001 (CAP 20-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Elaroussi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elaroussi, M., Nourine, L. & Radjef, M.S. Lattice point of view for argumentation framework. Ann Math Artif Intell 91, 691–711 (2023). https://doi.org/10.1007/s10472-023-09873-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-023-09873-y

Keywords