Skip to main content
Log in

Flocking of a Cucker–Smale Type Model with Compactly Supported Interaction Functions

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

How to analyze flocking behaviors of a multi-agent system with local interaction functions is a challenging problem in theory. Motsch and Tadmor in 2011 also stressed the significance to assume that the interaction function is rapidly decaying or cut-off at a finite distance (cf. Motsch and Tadmor in J. Stat. Phys. 2011). In this paper, we study the flocking behavior of a Cucker–Smale type model with compactly supported interaction functions. Using properties of a connected stochastic matrix, together with an elaborate analysis on perturbations of a linearized system, we obtain a sufficient condition imposed only on model parameters and initial data to guarantee flocking. Moreover, it is shown that the system achieves flocking at an exponential rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canizo, J. A., Carrillo, J. A., Rosado, J.: A well-posedness theory in measures for some kinetic models of collective motion. Math. Models Methods Appl. Sci., 21, 515–539 (2011)

    Article  MathSciNet  Google Scholar 

  2. Carrillo, J. A., Fornasier, M., Rosado, J., et al.: Asymptotic flocking dynamics for the kinetic Cucker–Smale model. SIAM J. Math. Anal., 42, 218–236 (2010)

    Article  MathSciNet  Google Scholar 

  3. Carrillo, J. A., Fornasier, M., Toscani, G., et al.: Particle, kinetic, and hydrodynamic models of swarming. In: Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences, Birkhäuser-Springer, Boston, 2010, 297–336

    Chapter  Google Scholar 

  4. Chen, G., Liu, Z. X.: Flocking with general local interaction and large population. J. Syst. Sci. Complex., 32, 1498–1525 (2019)

    Article  MathSciNet  Google Scholar 

  5. Chen, G., Liu, Z. X., Guo, L.: The smallest possible interaction radius for synchronization of self-propelled particles. SIAM Rev., 56, 499–521 (2014)

    Article  MathSciNet  Google Scholar 

  6. Choi, Y.-P., Ha, S.-Y., Li, Z. C.: Emergent dynamics of the Cucker–Smale flocking model and its variants. In: Active Particles, Volume 1, Birkhäuser-Springer, Cham, 2017, 299–331

    Chapter  Google Scholar 

  7. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Automat. Control, 52, 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  8. Ha, S.-Y., Huang, F. M., Wang, Y.: A global unique solvability of entropic weak solution to the one-dimensional pressureless Euler system with a flocking dissipation. J. Differential Equations, 257, 1333–1371 (2014)

    Article  MathSciNet  Google Scholar 

  9. Ha, S.-Y., Kang, M.-J., Kwon, B.: A hydrodynamic model for the interaction of Cucker–Smale particles and incompressible fluid. Math. Models Methods Appl. Sci., 24, 2311–2359 (2014)

    Article  MathSciNet  Google Scholar 

  10. Ha, S.-Y., Kang, M.-J., Kwon, B.: Emergent dynamics for the hydrodynamic Cucker–Smale system in a moving domain. SIAM J. Math. Anal., 47, 3813–3831 (2015)

    Article  MathSciNet  Google Scholar 

  11. Ha, S.-Y., Liu, J.-G.: A simple proof of the Cucker–Smale flocking dynamics and mean-field limit. Commun. Math. Sci., 7, 297–325 (2009)

    Article  MathSciNet  Google Scholar 

  12. Haskovec, J.: Flocking dynamics and mean-field limit in the Cucker–Smale type model with topological interactions. Physica D, 261, 42–51 (2013)

    Article  MathSciNet  Google Scholar 

  13. Jadbabaie, A., Lin, J., Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Control, 48, 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  14. Jin, C. Y.: Well posedness for pressureless Euler system with a flocking dissipation in Wasserstein space. Nonlinear Anal.-Theor., 128, 412–422 (2015)

    Article  MathSciNet  Google Scholar 

  15. Jin, C. Y.: Existence and uniqueness of entroy solution to pressureless Euler system with a flocking dissipation. Acta Math. Sci. Ser. B Engl. Ed., 36, 1262–1284 (2016)

    Article  MathSciNet  Google Scholar 

  16. Jin, C. Y.: Flocking of the Motsch–Tadmor model with a cut-off interaction function. J. Stat. Phys., 171, 345–360 (2018)

    Article  MathSciNet  Google Scholar 

  17. Jin, C. Y.: Well-posedness of weak and strong solutions to the kinetic Cucker–Smale model. J. Differential Equations, 264, 1581–1612 (2018)

    Article  MathSciNet  Google Scholar 

  18. Karper, T. K., Mellet, A., Trivisa, K.: Existence of weak solutions to kinetic flocking models. SIAM J. Math. Anal., 45, 215–243 (2013)

    Article  MathSciNet  Google Scholar 

  19. Liu, Z. X., Guo, L.: Connectivity and synchronization of Vicsek model. Sci. China Inf. Sci., 51, 848–858 (2008)

    Article  MathSciNet  Google Scholar 

  20. Liu, Z. X., Guo, L.: Synchronization of multi-agent systems without connectivity assumptions. Automatica, 45, 2744–2753 (2009)

    Article  MathSciNet  Google Scholar 

  21. Motsch, S., Tadmor, E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys., 144, 923–947 (2011)

    Article  MathSciNet  Google Scholar 

  22. Tang, G. G., Guo, L.: Convergence of a class of multi-agent systems in probabilistic framework. J. Syst. Sci. Complex., 20, 173–197 (2007)

    Article  MathSciNet  Google Scholar 

  23. Vicsek, T., Czirók, A., Ben-Jacob, E., et al.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75, 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referees for their time and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Yin Jin.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

The first author is supported by NSFC (Grant No. 12001530)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C.Y., Li, S.Z. Flocking of a Cucker–Smale Type Model with Compactly Supported Interaction Functions. Acta. Math. Sin.-English Ser. 40, 2285–2296 (2024). https://doi.org/10.1007/s10114-024-2127-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-024-2127-0

Keywords

MR(2010) Subject Classification