Skip to main content
Log in

Self-weighted subspace clustering via adaptive rank constrained graph embedding

  • Original Article
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Recent years, subspace clustering methods have attracted wide attention in partitioning high-dimensional data from a union of underlying subspaces, in which the data distribution is mainly explored to compensate for the absence of label information. However, for practical applications, subspace clustering still suffers from redundant and noisy features, which brings about disturbed reconstruction loss and restricts trustworthy graph learning. In this paper, we propose a robust subspace clustering framework via Self-weighted feature learning and adaptive rank constrained graph embedding (SWARG) to address the limitations of existing graph-based subspace clustering models. Specifically, a feature self-weighted learning term is introduced to the sparse subspace clustering framework to alleviate the disturbed contributions from the noisy and redundant features. As such, a few discriminative features will act as remarkable contributions in representing data samples. Meanwhile, the profile-based graph embedding term further preserving the contribution behavior information of data samples that distributed around the same subspace. Moreover, the adaptive rank-constraint graph embedding method is considered to guarantee discriminative structure for different components of representation matrix with flexible entropy-based similarity preserving. To solve the proposed model, we then develop an efficient alternative direction updating algorithm, together with convergence and complexity analysis. Finally, experimental results on toy databases and benchmark databases demonstrate the effectiveness of the proposed SWARG model compared to a series of state-of-the-art models. Our code is available at http://github.com/ty-kj/SAWRG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are publicly available or included in this published article.

Notes

  1. Codes and Datasets for Feature Learning:http://www.cad.zju.edu.cn/home/dengcai/Data/data.html.

  2. Label Consistent K-SVD, Downloads:http://www.zhuolin.umiacs.io/projectlcksvd.html.

  3. Japanese Female Facial Expression (JAFFE) Database:http://www.kasrl.org/jaffe.html.

References

  1. Lu C, Feng J, Lin Z, Mei T, Yan S (2019) Subspace clustering by block diagonal representation. IEEE Trans Pattern Anal Mach Intell 41(2):487–501. https://doi.org/10.1109/TPAMI.2018.2794348

    Article  MATH  Google Scholar 

  2. Shah SA, Koltun V (2017) Robust continuous clustering. Proc Natl Acad Sci 114(37):9814–9819. https://doi.org/10.1073/pnas.1700770114

    Article  MATH  Google Scholar 

  3. Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: 2009 IEEE Conference on computer vision and pattern recognition, pp. 2790–2797

  4. Luo M, Chang X, Nie L, Yang Y, Hauptmann AG, Zheng Q (2018) An adaptive semisupervised feature analysis for video semantic recognition. IEEE Trans Cybern 48(2):648–660. https://doi.org/10.1109/TCYB.2017.2647904

    Article  MATH  Google Scholar 

  5. Duan Y, Wu D, Wang R, Li X, Nie F (2024) Scalable and parameter-free fusion graph learning for multi-view clustering. Neurocomputing 597:128037. https://doi.org/10.1016/j.neucom.2024.128037

    Article  MATH  Google Scholar 

  6. Yang J, Liang J, Wang K, Rosin PL, Yang M-H (2020) Subspace clustering via good neighbors. IEEE Trans Pattern Anal Mach Intell 42(6):1537–1544. https://doi.org/10.1109/TPAMI.2019.2913863

    Article  MATH  Google Scholar 

  7. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905. https://doi.org/10.1109/34.868688

    Article  MATH  Google Scholar 

  8. Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416. https://doi.org/10.48550/arXiv.0711.0189

    Article  MathSciNet  MATH  Google Scholar 

  9. Kanungo T, Mount D, Netanyahu N, Piatko C, Silverman R, Wu A (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892. https://doi.org/10.1109/TPAMI.2002.1017616

    Article  MATH  Google Scholar 

  10. Maier M, Luxburg Uv, Hein M (2008) Influence of graph construction on graph-based clustering measures. In: Proceedings of the 21st International Conference on Neural Information Processing Systems, NIPS’08, Curran Associates Inc., Red Hook, NY, USA, pp. 1025–1032

  11. Yin M, Wu Z, Zeng D, Li P, Xie S (2018) Sparse subspace clustering with jointly learning representation and affinity matrix. J Franklin Inst 355(8):3795–3811. https://doi.org/10.1016/j.jfranklin.2018.02.024

    Article  MathSciNet  MATH  Google Scholar 

  12. Nie F, Wu D, Wang R, Li X (2020) Self-weighted clustering with adaptive neighbors. IEEE Trans Neural Netw Learn Syst 31(9):3428–3441. https://doi.org/10.1109/TNNLS.2019.2944565

    Article  MathSciNet  MATH  Google Scholar 

  13. Wen J, Zhang B, Xu Y, Yang J, Han N (2018) Adaptive weighted nonnegative low-rank representation. Pattern Recogn 81:326–340. https://doi.org/10.1016/j.patcog.2018.04.004

    Article  MATH  Google Scholar 

  14. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326. https://doi.org/10.1126/science.290.5500.2323

    Article  MATH  Google Scholar 

  15. Fang X, Xu Y, Li X, Fan Z, Liu H, Chen Y (2014) Locality and similarity preserving embedding for feature selection. Neurocomputing 128:304–315. https://doi.org/10.1016/j.neucom.2013.08.040

    Article  MATH  Google Scholar 

  16. Yi Y, Wang J, Zhou W, Fang Y, Kong J, Lu Y (2019) Joint graph optimization and projection learning for dimensionality reduction. Pattern Recogn 92:258–273. https://doi.org/10.1016/j.patcog.2019.03.024

    Article  MATH  Google Scholar 

  17. Qin Y, Tang Z, Wu H, Feng G (2024) Flexible tensor learning for multi-view clustering with Markov chain. IEEE Trans Knowl Data Eng 36(4):1552–1565. https://doi.org/10.1109/TKDE.2023.3305624

    Article  MATH  Google Scholar 

  18. Fang X, Xu Y, Li X, Lai Z, Wong WK (2016) Robust semi-supervised subspace clustering via non-negative low-rank representation. IEEE Trans Cybern 46(8):1828–1838. https://doi.org/10.1109/TCYB.2015.2454521

    Article  MATH  Google Scholar 

  19. Lu C-Y, Min H, Zhao Z-Q, Zhu L, Huang D-S, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C (eds) Computer Vision - ECCV 2012. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 347–360

  20. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184. https://doi.org/10.1109/TPAMI.2012.88

    Article  MATH  Google Scholar 

  21. Zhuang L, Gao S, Tang J, Wang J, Lin Z, Ma Y, Yu N (2015) Constructing a nonnegative low-rank and sparse graph with data-adaptive features. IEEE Trans Image Process 24(11):3717–3728. https://doi.org/10.1109/TIP.2015.2441632

    Article  MathSciNet  MATH  Google Scholar 

  22. Feng J, Lin Z, Xu H, Yan S (2014) Robust subspace segmentation with block-diagonal prior. In: 2014 IEEE Conference on computer vision and pattern recognition, pp. 3818–3825

  23. Qin Y, Zhang X, Shen L, Feng G (2023) Maximum block energy guided robust subspace clustering. IEEE Trans Pattern Anal Mach Intell 45(2):2652–2659. https://doi.org/10.1109/TPAMI.2022.3168882

    Article  MATH  Google Scholar 

  24. Qin Y, Feng G, Ren Y, Zhang X (2023) Block-diagonal guided symmetric nonnegative matrix factorization. IEEE Trans Knowl Data Eng 35(3):2313–2325. https://doi.org/10.1109/TKDE.2021.3113943

    Article  MATH  Google Scholar 

  25. Hu H, Lin Z, Feng J, Zhou J (2014) Smooth representation clustering. In: 2014 IEEE Conference on computer vision and pattern recognition, pp. 3834–3841

  26. Liu J, Chen Y, Zhang J, Xu Z (2014) Enhancing low-rank subspace clustering by manifold regularization. IEEE Trans Image Process 23(9):4022–4030. https://doi.org/10.1109/TIP.2014.2343458

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu X, Wang Y, Yuan Y (2013) Graph-regularized low-rank representation for destriping of hyperspectral images. IEEE Trans Geosci Remote Sens 51(7):4009–4018. https://doi.org/10.1109/TGRS.2012.2226730

    Article  MATH  Google Scholar 

  28. Yin M, Gao J, Lin Z (2016) Laplacian regularized low-rank representation and its applications. IEEE Trans Pattern Anal Mach Intell 38(3):504–517. https://doi.org/10.1109/TPAMI.2015.2462360

    Article  MATH  Google Scholar 

  29. Guo X (2015) Robust subspace segmentation by simultaneously learning data representations and their affinity matrix. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, AAAI Press, pp. 3547–3553

  30. Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, Association for Computing Machinery, New York, NY, USA, pp. 977–986. https://doi.org/10.1145/2623330.2623726

  31. Yin M, Xie S, Wu Z, Zhang Y, Gao J (2018) Subspace clustering via learning an adaptive low-rank graph. IEEE Trans Image Process 27(8):3716–3728. https://doi.org/10.1109/TIP.2018.2825647

    Article  MathSciNet  MATH  Google Scholar 

  32. Fang X, Zhang R, Li Z, Shao X (2021) Subspace clustering with block diagonal sparse representation. Neural Process Lett 53(6):4293–4312. https://doi.org/10.1007/s11063-021-10597-5

    Article  MATH  Google Scholar 

  33. Wen J, Fang X, Xu Y, Tian C, Fei L (2018) Low-rank representation with adaptive graph regularization. Neural Netw 108:83–96. https://doi.org/10.1016/j.neunet.2018.08.007

    Article  MATH  Google Scholar 

  34. Liao M, Li Y, Gao M (2022) Graph-based adaptive and discriminative subspace learning for face image clustering. Expert Syst Appl 192:116359. https://doi.org/10.1016/j.eswa.2021.116359

    Article  MATH  Google Scholar 

  35. Chen M, Gong M, Li X (2023) Feature weighted non-negative matrix factorization. IEEE Trans Cybern 53(2):1093–1105. https://doi.org/10.1109/TCYB.2021.3100067

    Article  MATH  Google Scholar 

  36. Yang M, Zhang L, Yang J, Zhang D (2013) Regularized robust coding for face recognition. IEEE Trans Image Process 22(5):1753–1766. https://doi.org/10.1109/TIP.2012.2235849

    Article  MathSciNet  MATH  Google Scholar 

  37. Feng W, Wang Z, Xiao T, Yang M (2024) Adaptive weighted dictionary representation using anchor graph for subspace clustering. Pattern Recogn 151:110350. https://doi.org/10.1016/j.patcog.2024.110350

    Article  MATH  Google Scholar 

  38. Jiang K, Liu Z, Sun Q (2024) Robust auto-weighted and dual-structural representation learning for image clustering. J Electron Imaging 33(4):043039. https://doi.org/10.1117/1.JEI.33.4.043039

    Article  MATH  Google Scholar 

  39. Bouhlel N, Feki G, Ben Amar C (2021) Adaptive weighted least squares regression for subspace clustering. Knowl Inf Syst 63(11):2883–2900. https://doi.org/10.1007/s10115-021-01612-1

    Article  MATH  Google Scholar 

  40. Wang L, Huang J, Yin M, Cai R, Hao Z (2020) Block diagonal representation learning for robust subspace clustering. Inf Sci 526:54–67. https://doi.org/10.1016/j.ins.2020.03.103

    Article  MathSciNet  MATH  Google Scholar 

  41. Nie F, Wang X, Jordan MI, Huang H (2016) The constrained Laplacian rank algorithm for graph-based clustering. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, AAAI Press, pp. 1969–1976

  42. Kong Z, Chang D, Fu Z, Wang J, Wang Y, Zhao Y (2023) Projection-preserving block-diagonal low-rank representation for subspace clustering. Neurocomputing 526:19–29. https://doi.org/10.1016/j.neucom.2023.01.051

    Article  MATH  Google Scholar 

  43. Fu Z, Zhao Y, Chang D, Zhang X, Wang Y (2022) Auto-weighted low-rank representation for clustering. Knowl-Based Syst 251:109063. https://doi.org/10.1016/j.knosys.2022.109063

    Article  MATH  Google Scholar 

  44. Xing Z, Zhao W (2024) Block-diagonal guided dbscan clustering. IEEE Trans Knowl Data Eng 36(11):5709–5722. https://doi.org/10.1109/TKDE.2024.3401075

    Article  MATH  Google Scholar 

  45. Zheng J, Lu C, Yu H, Wang W, Chen S (2018) Iterative reconstrained low-rank representation via weighted nonconvex regularizer. IEEE Access 6:51693–51707. https://doi.org/10.1109/ACCESS.2018.2870371

    Article  Google Scholar 

  46. Sadeghi M, Babaie-Zadeh M, Jutten C (2014) Learning overcomplete dictionaries based on atom-by-atom updating. IEEE Trans Signal Process 62(4):883–891. https://doi.org/10.1109/TSP.2013.2295062

    Article  MathSciNet  MATH  Google Scholar 

  47. Li Z, Zhang Z, Qin J, Zhang Z, Shao L (2020) Discriminative fisher embedding dictionary learning algorithm for object recognition. IEEE Trans Neural Netw Learn Syst 31(3):786–800. https://doi.org/10.1109/TNNLS.2019.2910146

    Article  MathSciNet  MATH  Google Scholar 

  48. Mohar B, Alavi Y, Chartrand G, Oellermann O, Schwenk A (1991) The Laplacian spectrum of graphs. Graph Theory Combin Appl 2:5364

    MATH  Google Scholar 

  49. Fan K (1950) On a theorem of Weyl concerning eigenvalues of linear transformations. ii. Proceedings of the National Academy of Sciences of the United States of America 36(1):31–35. http://www.jstor.org/stable/88028. Accessed 3 Jan 2025

  50. Lee DD, Seung HS (2000) Algorithms for non-negative matrix factorization. In: Proceedings of the 13th International Conference on Neural Information Processing Systems, NIPS’00, MIT Press, Cambridge, MA, USA, p. 535-541

  51. Sun Y, Babu P, Palomar DP (2017) Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Trans Signal Process 65(3):794–816. https://doi.org/10.1109/TSP.2016.2601299

    Article  MathSciNet  MATH  Google Scholar 

  52. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  MATH  Google Scholar 

  53. Lee K-C, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698. https://doi.org/10.1109/TPAMI.2005.92

    Article  MATH  Google Scholar 

  54. Samaria F, Harter A (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of 1994 IEEE Workshop on Applications of Computer Vision, pp. 138–142. https://doi.org/10.1109/ACV.1994.341300

  55. Martínez A, Benavente R (1998) The ar face database, Tech. Rep. 24, Computer Vision Center, Bellatera. https://portalrecerca.uab.cat/en/publications/the-ar-face-database-cvc-technicalreport-24. Accessed 3 Jan 2025

  56. Lyons MJ, Kamachi M, Gyoba J. Coding facial expressions with gabor wavelets (ivc special issue), CoRR https://doi.org/10.5281/ZENODO.4029679

  57. Hull J (1994) A database for handwritten text recognition research. IEEE Trans Pattern Anal Mach Intell 16(5):550–554. https://doi.org/10.1109/34.291440

    Article  MATH  Google Scholar 

  58. Nene SA, Nayar SK, Murase H (February 1996) Columbia object image library (coil-20), Tech. Rep. CUCS-005-96, The Columbia Imaging and Vision Laboratory. https://cave.cs.columbia.edu/repository/COIL-20. Accessed 3 Jan 2025

  59. Nene SA, Nayar SK, Murase H (February 1996) Columbia object image library (coil100), Tech. Rep. CUCS-006-96, The Columbia Imaging and Vision Laboratory. https://cave.cs.columbia.edu/repository/COIL-100. Accessed 3 Jan 2025

  60. Wei L, Liu S, Zhou R, Zhu C, Liu J (2024) Learning idempotent representation for subspace clustering. IEEE Trans Knowl Data Eng 36(3):1183–1197. https://doi.org/10.1109/TKDE.2023.3303343

    Article  MATH  Google Scholar 

  61. Liao H, Chen H, Yin T, Yuan Z, Horng S-J, Li T (2025) A general adaptive unsupervised feature selection with auto-weighting. Neural Netw 181:106840. https://doi.org/10.1016/j.neunet.2024.106840

    Article  MATH  Google Scholar 

  62. van der Maaten L, Hinton G (2008) Visualizing data using t-sne. Journal of Machine Learning Research 9(86):2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html. Accessed 3 Jan 2025

Download references

Acknowledgements

This work is supported by the Scientific Research Program Funded by Education Department of Shaanxi Provincial Government (Program No. 23JP107 and 21JP081), in part by the National Natural Science Foundation of China under Grant (Program No. 62172331), in part by the Natural Science Founds of Shaanxi (Program No. 2023-YBGY-271), in part by the Natural Science Founds of Sichuan (Program No. 2022NSFSC0549).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Yang, Z. & Sun, Q. Self-weighted subspace clustering via adaptive rank constrained graph embedding. Pattern Anal Applic 28, 23 (2025). https://doi.org/10.1007/s10044-024-01405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10044-024-01405-6

Keywords