Abstract
This paper addresses the example-based stylization of videos. Style transfer aims at editing an image so that it matches the style of an example. This topic has been recently investigated by several researchers, both in the industry and in academia. The difficulty lies in how to capture the style of an image and correctly transferring it to a video. In this paper, we build on our previous work “Split and Match” for still pictures, based on adaptive patch synthesis. We address the issue of extending that particular technique to video, ensuring that the solution is spatially and temporally consistent. Results show that our video style transfer is visually plausible, while being very competitive regarding computation time and memory when compared to neural network approaches.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Durand, F.: An invitation to discuss computer depiction. In: NPAR, New York, NY, USA, pp. 111–124 (2002). https://doi.org/10.1145/508530.508550
Kyprianidis, J., Collomosse, J., Wang, T., Isenberg, T.: State of the art: a taxonomy of artistic stylization techniques for images and video. IEEE Trans. Vis. Comput. Graph. 19(5), 866–885 (2013)
Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. CoRR. arXiv:1508.06576
Li, C., Wand, M.: Precomputed real-time texture synthesis with Markovian generative adversarial networks. In: European Conference on Computer Vision, pp. 702–716. Springer (2016)
Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. In: ICLR (2017)
Frigo, O., Sabater, N., Delon, J., Hellier, P.: Split and match: example-based adaptive patch sampling for unsupervised style transfer. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June (2016)
Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH, New York, NY, USA, pp. 341–346 (2001). https://doi.org/10.1145/383259.383296
Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)
Freeman, W., Jones, T., Pasztor, E.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)
Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: SIGGRAPH ’01 Proceedings of the 28th annual conference on Computer graphics and interactive techniques, New York, NY, USA, pp. 327–340 (2001). https://doi.org/10.1145/383259.383295
Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001). https://doi.org/10.1109/38.946629
Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV, Washington, DC, USA, pp. 1033 (1999). http://dl.acm.org/citation.cfm?id=850924.851569
Bénard, P., Cole, F., Kass, M., Mordatch, I., Hegarty, J., Senn, M.S., Fleischer, K., Pesare, D., Breeden, K.: Stylizing animation by example. ACM Trans. Graph. 32(4), 1191–11912 (2013). https://doi.org/10.1145/2461912.2461929
Barnes, C., Shechtman, E., Goldman, D., Finkelstein, A.: The generalized patchmatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision ECCV 2010, Series Lecture Notes in Computer Science, vol. 6313, pp. 29–43. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-15558-1_3
Liang, L., Liu, C., Xu, Y.-Q., Guo, B., Shum, H.-Y.: Real-time texture synthesis by patch-based sampling. ACM Trans. Graph. 20(3), 127–150 (2001). https://doi.org/10.1145/501786.501787
Shih, Y., Paris, S., Barnes, C., Freeman, W.T., Durand, F.: Style transfer for headshot portraits. ACM Trans. Graph. 33(4), 148 (2014)
Yi, Z., Li, Y., Ji, S., Gong, M.: Artistic stylization of face photos based on a single exemplar. Vis. Comput. 33(11), 1443–1452 (2017). https://doi.org/10.1007/s00371-016-1290-4
Freeman, W., Pasztor, E., Carmichael, O.: Learning low-level vision. Int. J. Comput. Vis. 40(1), 25–47 (2000)
Wang, X., Tang, X.: Face photo-sketch synthesis and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 1955–1967 (2009). https://doi.org/10.1109/TPAMI.2008.222
Weiss, Y.: Belief propagation and revision in networks with loops. Technical Report, Cambridge, MA, USA (1997)
Elad, M., Milanfar, P.: Style-transfer via texture-synthesis. CoRR (2016). arXiv:1609.03057
Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: The missing ingredient for fast stylization. CoRR (2016). arXiv:1607.08022
Puy, G., Kitic, S., Pérez, P.: Unifying local and non-local signal processing with graph CNNS. CoRR (2017). arXiv:1702.07759
Joshi, B.J., Stewart, K., Shapiro, D.: Bringing impressionism to life with neural style transfer in come swim. CoRR (2017). arXiv:1701.04928
Farbman, Z., Lischinski, D.: Tonal stabilization of video. In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2011), vol. 30, no. 4, pp. 89:1–89:9 (2011)
Frigo, O., Sabater, N., Delon, J., Hellier, P.: Motion driven tonal stabilization. IEEE Trans. Image Process. 25(11), 5455–5468 (2016)
Bonneel, N., Tompkin, J., Sunkavalli, K., Sun, D., Paris, S., Pfister, H.: Blind video temporal consistency. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2015), vol. 34, no. 6 (2015)
Ruder, M., Dosovitskiy, A., Brox, T.: Artistic Style Transfer for Videos. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science, vol 9796. Springer, Cham (2016)
Fišer, J., Jamriška, O., Lukáč, M., Shechtman, E., Asente, P., Lu, J., Sýkora, D.: Stylit: illumination-guided example-based stylization of 3D renderings. ACM Trans. Graph. 35(4), 92 (2016)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)
Frigo, O., Sabater, N., Demoulin, V., Hellier, P.: Optimal transportation for example-guided color transfer. Computer Vision – ACCV 2014, 12th Asian Conference on Computer Vision, Singapore, Singapore, November 1–5, 2014, Revised Selected Papers, Part III (2014)
Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, December (2013). http://hal.inria.fr/hal-00873592
Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated large displacement optical flow. In: European Conference on Computer Vision (ECCV), Series Lecture Notes in Computer Science. Springer, September (2010). http://lmb.informatik.uni-freiburg.de//Publications/2010/Bro10e
Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., et al. (eds.) European Conference on Computer Vision (ECCV), Series Part IV, LNCS 7577, pp. 611–625. Springer, Berlin (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Frigo, O., Sabater, N., Delon, J. et al. Video style transfer by consistent adaptive patch sampling. Vis Comput 35, 429–443 (2019). https://doi.org/10.1007/s00371-018-1474-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-018-1474-1