Skip to main content
Log in

Quantile spectral analysis of long-memory processes

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

This study examines the problem of robust spectral analysis of long-memory processes. We investigate the possibility of using Laplace and quantile periodograms for a non-Gaussian distribution structure. The Laplace periodogram, derived by the least absolute deviations in the harmonic regression procedure, demonstrates its superiority in handling heavy-tailed noise and nonlinear distortion. In this study, we discuss an asymptotic distribution of the Laplace periodogram for long-memory processes. We also derive an asymptotic distribution of the quantile periodogram. Through numerical experiments, we demonstrate the robustness of the Laplace periodogram and the usefulness of the quantile periodogram in detecting the hidden frequency for the spectral analysis of the long-memory process under non-Gaussian distribution. Moreover, as an application of robust periodograms under the long-memory process, we discuss the long-memory parameter estimation based on a log periodogram regression approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baillie RT (1996) Long memory processes and fractional integration in econometrics. J Econom 73:5–59

    Article  Google Scholar 

  • Baillie RT, Chung SK (2002) Modeling and forecasting from trend-stationary long memory models with applications to climatology. Int J Forecast 18:215–226

    Article  Google Scholar 

  • Beran J (1994) Statistics for Long-Memory Processes. Chapman & Hall, New York

    Google Scholar 

  • Beran J, Feng Y, Ghosh S, Kulik R (2013) Long-memory processes. Springer, New York

    Book  Google Scholar 

  • Birr S, Volgushev S, Kley T, Dette H, Hallin M (2017) Quantile spectral analysis for locally stationary time series. J R Stat Soc Ser B (Stat Methodol) 79:1619–1643

    Article  Google Scholar 

  • Dette H, Hallin M, Kley T, Volgushev S (2015) Of copulas, quantiles, ranks and spectra: an \( L_ 1 \)-approach to spectral analysis. Bernoulli 21:781–831

    Article  Google Scholar 

  • Doukhan P, Oppenheim G, Taqqu MS (2003) Theory and applications of long-range dependence. Birkhaüser, Boston

    Google Scholar 

  • Fajardo FA, Reisen VA, Lévy-Leduc C, Taqqu MS (2018) M-periodogram for the analysis of long-range-dependent time series. Statistics 52(3):665–683

    Article  Google Scholar 

  • Geweke J, Porter-Hudak S (1983) The estimation and application of long memory time series models. J Time Ser Anal 4:221–238

    Article  Google Scholar 

  • Godsil CD (1981) Hermite polynomials and a duality relation for matchings polynomials. Combinatorica 1(3):257–262

    Article  Google Scholar 

  • Hagemann A (2013) Robust spectral analysis. arXiv:1111.1965

  • Hurst E (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civ Eng 116:770–799

    Article  Google Scholar 

  • Hurvich CM, Beltrao KI (1993) Asymptotics for the low-frequency ordinates of the periodogram of a long-memory time series. J Time Ser Anal 14:455–472

    Article  Google Scholar 

  • Hurvich CM, Deo RS, Brodsky J (1998) The mean squared error of Geweke and Porter–Hudak’s estimator of the memory parameter of a long memory time series. J Time Ser Anal 19(1):19–46

    Article  Google Scholar 

  • Koul HL (1992) M-estimators in linear models with long range dependent errors. Stat Probab Lett 14(2):153–164

    Article  Google Scholar 

  • Koul HL, Mukherjee M (1993) Asymptotics of R-, MD- and LAD-estimators in linear regression models with long range dependent errors. Probab Theory Relat Fields 95:535–553

    Article  Google Scholar 

  • Koul HL, Mukherjee M (1994) Regression quantiles and related processes under long range dependent errors. J Multivar Anal 51:318–337

    Article  Google Scholar 

  • Kunsch H (1987) Statistical aspects of self-similar processes. In: Prohorov YuA, Sazonov VV (eds) Proceedings of the 1st World Congress of the Bernoulli Society, vol 1. Science Press, Utrecht, pp 67–74

  • Li T-H (2008) Laplace periodogram for time series analysis. J Am Stat Assoc 103:757–768

    Article  Google Scholar 

  • Li T-H (2012) Quantile periodograms. J Am Stat Assoc 107:765–776

    Article  Google Scholar 

  • Li T-H (2014) Quantile periodogram and time-dependent variance. J Time Ser Anal 35:322–340

    Article  Google Scholar 

  • Lim Y (2018) M-estimation of the long-memory parameter by Laplace periodogram. J Korean Data Inf Sci Soc 29:523–532

    Google Scholar 

  • Lim Y, Oh H-S (2015) Composite quantile periodogram for spectral analysis. J Time Ser Anal 37:195–221

    Article  Google Scholar 

  • Molinares FF, Reisen VA, Cribari-Neto F (2009) Robust estimation in long-memory processes under additive outliers. J Stat Plan Inference 139:2511–2525

    Article  Google Scholar 

  • Reisen VA (1994) Estimation of fractional difference parameter in the ARFIMA(p, d, q) model using the smoothed periodogram. J Time Ser Anal 15:335–350

    Article  Google Scholar 

  • Reisen V, Abraham B, Lopes S (2001) Estimation of parameters in ARFIMA processes: a simulation study. Commun Stat Simul Comput 30(4):787–803

    Article  Google Scholar 

  • Reisen VA, Lévy-Leduc C, Taqqu MS (2017) An M-estimator for the long-memory parameter. J Stat Plan Inference 187:44–55

    Article  Google Scholar 

  • Robinson PM (1994) Rates of convergence and optimal spectral bandwidth for long range dependence. Probab Theory Relat Fields 99:443–473

    Article  Google Scholar 

  • Robinson PM (1995) Gaussian semiparametric estimation of long range dependence. Ann Stat 23:1630–1661

    Google Scholar 

  • Zou H, Yuan M (2008) Composite quantile regression and the oracle model selection theory. Ann Stat 36:1108–1126

    Google Scholar 

Download references

Funding

This study was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (2018R1D1A1B07042933, 2019R1A2C4069453, 2020R1A4A1018207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Seok Oh.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Y., Oh, HS. Quantile spectral analysis of long-memory processes. Empir Econ 62, 1245–1266 (2022). https://doi.org/10.1007/s00181-021-02045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-021-02045-z

Keywords