Skip to main content

A Resilient and Efficient Protocol for Strengthening the Internet of Things Network Performance

  • Conference paper
  • First Online:
IoT Based Control Networks and Intelligent Systems

Abstract

Reliable and efficient communication with a low rate of errors and packet loss is widely requested for the Internet of things (IoT) devices. This paper offers a resilient and efficient protocol (REP) to manage transmission status, recover and faut in IoT wireless networks. The network coding (NC) implementation is used to portray a realistic IoT scenario in which one sink node (SN) interacts with numerous monitored IoT device nodes over a wireless link between two separate networks. The proposed approach is compared and evaluated against two of the most extensively used error detection and correction code (EDCC) techniques available in the literature, namely the forward error correction (FEC) and the automated repeat request (ARQ). This analysis determined that the data throughput (kbps) and forwarding delay (ms) in terms of data length (bytes) and modulation rate (kbps), using REP, outperform the FEC and ARQ by more than 50% and 42%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlswede R, Cai N, Li S-YR, Yeung RW (2000) Network ınformation flow. IEEE Trans Inf Theory IT-46(4):1204–1216

    Google Scholar 

  2. Ho T, Koetter R, Médard M, Karger DR, Effros M (2003) The benefits of coding over routing in a randomized setting. In: Proceedings of IEEE I. Symposium on ınformation theory

    Google Scholar 

  3. Ar-reyouchi EM, Hammouti M, Maslouhi I, Ghoumid K (2017) The Internet of things: network delay improvement using network coding. In: ICC 2017 proceedings of the second ınternational conference on ınternet of things, data, and cloud computing, Cambridge, United Kingdom. ACM

    Google Scholar 

  4. Hammouti M, Ar-reyouchi EM, Ghoumid K, Lichioui A (2016) Clustering analysis of wireless sensor network based on network coding with low density parity check. Int J Adv Comput Sci Appl (IJACSA) 7(3):137–143

    Google Scholar 

  5. Ho T, Koetter R, Médard M, Karger DR, Effros M, Shi J, Leong B (2006) A random linear network coding approach to multicast. IEEE Trans Inf Theory 52(10):4413–4430

    Article  MathSciNet  Google Scholar 

  6. Barekatain B, Khezrimotlagh D, Maarof MA, Quintana AA, Cabrera AT (2016) GAZELLE: an enhanced random network coding based framework for efficient P2P live video streaming over hybrid WMNs. Wirel Pers Commun 95(3):2485–2505

    Article  Google Scholar 

  7. Ar-Reyouchi EM, Ghoumid K, Ar-Reyouchi D, Rattal S, Yahiaoui R, Elmazria O (2021) Protocol wireless medical sensor networks in IoT for the efficiency of healthcare. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3125886

  8. Ar-Reyouchi EM, Ghoumid K, Ar-Reyouchi D, Rattal S, Yahiaoui R, Elmazria O (2021) An accelerated end-to-end probing protocol for narrowband IoT medical devices. IEEE Access 9:34131–34141. https://doi.org/10.1109/ACCESS.2021.3061257

  9. Rattal S, Ar-Reyouchi EM (2019) An effective practical method for narrowband wireless mesh networks performance. SN Appl Sci 1:1532. https://doi.org/10.1007/s42452-019-1595-9

    Article  Google Scholar 

  10. Vaze R, Iyer S (2019) Capacity of cellular wireless networks. IEEE Trans Wireless Commun 18(3):1490–1503. https://doi.org/10.1109/TWC.2018.2890666

    Article  Google Scholar 

  11. Ar-Reyouchi EM, Lamrani Y, Benchaib I, Ghoumid K, Rattal S (2020) The total network capacity of wireless mesh networks for IoT applications. Int J Interact Mob Technol (iJIM) 14(8):61–75

    Article  Google Scholar 

  12. Lin S, Costello DJ (1983) Error control coding: fundamentals and applications, chap 15. Prentice-Hall, Upper Saddle River

    Google Scholar 

  13. Kotuliaková K, Šimlaštíková D, Polec J (2011) Analysis of ARQ schemes. Telecommun Syst 52(3):1677–1682

    Article  Google Scholar 

  14. Ar-Reyouchi EM, Rattal S, Ghoumid K (2022) A survey on error-correcting codes for digital video broadcasting. SN Comput Sci 3:105. https://doi.org/10.1007/s42979-021-00994-x

    Article  Google Scholar 

  15. Faheem M, Butt RA, Raza B, et al (2019) Energy efficient and reliable data gathering using ınternet of software-defined mobile sinks for WSNs-based smart grid applications. Comput Stand Interf 6666:2–18

    Google Scholar 

  16. Macher G, Diwold K, Veledar O, Armengaud E, Römer K (2019) The quest for ınfrastructures and engineering methods enabling highly dynamic autonomous systems. In: Walker A, O’Connor R, Messnarz R (eds) Systems, software and services process ımprovement, EuroSPI 2019. Communications in computer and ınformation science, vol 1060. Springer, Cham. https://doi.org/10.1007/978-3-030-28005-5_2

  17. Chatei Y, Ghoumid K, Ar-reyouchi EM (2017) Narrowband channel spacing frequencies metric in one-hop wireless mesh networks. In: 2nd international conference on communication and electronics systems (ICCES), Coimbatore, India, October 2017

    Google Scholar 

  18. Ghasempour A, Moon TK (2016) Optimizing the number of collectors in machine-to-machine advanced metering infrastructure architecture for Internet of Things-based smart grid. In: IEEE green technologies conference, Kansas City, pp 51–55

    Google Scholar 

  19. Ar-Reyouchi EM, Maslouhi I, Ghoumid K (2020) A new fast polling algorithm in wireless mesh network for narrowband Internet of Things. Telecommun Syst 74:405–410. https://doi.org/10.1007/s11235-020-00671-z

    Article  Google Scholar 

  20. Al-Sarawi S, Anbar M, Kamal Alieyan K, Alzubaidi M (2017) Internet of things (IoT) communication protocols: review. In: 8th ınternational conference on ınformation technology (ICIT), pp 685–690

    Google Scholar 

  21. Karrupusamy P (2021) Advanced metering infrastructure with secure chord lookup protocol for IoT Systems. J Electric Eng Autom 2(3):112–117

    Article  Google Scholar 

  22. Smys S, Vijesh Joe C (2021) Metric routing protocol for detecting untrustworthy nodes for packet transmission. J Inf Technol 3(02):67–76

    Google Scholar 

  23. Alabady SA, Salleh FM, Al-Turjmanc F (2018) LCPC error correction code for IoT applications. Sustain Cities Soc 42:663–673

    Google Scholar 

  24. Omoniwa B, Hussain R, Javed MA, Bouk SH, Malik SA (2019) Fog/edge computing-based IoT (FECIoT): architecture, applications, and research ıssues. IEEE Internet Things J 6(3):4118–4149

    Google Scholar 

  25. Bada AB (2017) Automatic repeat request (ARQ) protocols. Int J Eng Sci (IJES) 6:64–66

    Google Scholar 

  26. Chen D, Rong B, Shayan N, Bennani M, Cabral J, Kadoch M, Elhakeem AK (2004) Interleaved FEC/ARQ coding for QoS multicast over the Internet. Can J Electr Comput Eng 29(3):159–166. 25

    Google Scholar 

  27. Verma N, Singh S, Prasad D (2022) A review on existing IoT architecture and communication protocols used in healthcare monitoring system. J Inst Eng India Ser B 103:245–257

    Article  Google Scholar 

  28. Vieira Luiz Filipe M, Mario G, Archan M (2013) Fundamental limits on end-to-end throughput of network coding in multi-rate and multicast wireless networks. Comput Netw 57(17):3267–3275

    Google Scholar 

  29. Rezai A, Keshavarzi P, Moravej Z (2017) Key management issue in SCADA networks: a review. J Eng Sci Technol 20(1):354–363

    Google Scholar 

  30. Ar-Reyouchi EM, Lichioui A, Rattal S (2019) A group cooperative coding model for dense wireless networks. (IJACSA) Int J Adv Comput Sci Appl 10(7):367–373

    Google Scholar 

  31. Hammouti M, Ar-reyouchi EM, Ghoumid K (2016) Power quality command and control systems in wireless renewable energy networks. In: IEEE explored renewable and sustainable energy conference (IRSEC). International IEEE Xplore Digital Library

    Google Scholar 

  32. Li J, Zhou Y, Liu Y, Lamont L (2012) Performance analysis of multichannel radio link control in MIMO systems. In: Simplot-Ryl D, Dias de Amorim M, Giordano S, Helmy A (eds) Ad hoc networks, ADHOCNETS 2011. Lecture notes of the ınstitute for computer sciences, social ınformatics and telecommunications engineering, vol 89. Springer, Heidelberg

    Google Scholar 

  33. Maslouhi I, Ar–reyouchi EM, Ghoumid K, Baibai K (2018) Analysis of end-to-end packet delay for ınternet of things in wireless communications. Int J Adv Comput Sci Appl (IJACSA) 9(9):338–343

    Google Scholar 

  34. Lee KH, Kim JH, Cho S (2014) RLNC in practical wireless networks. In: Cai Z, Wang C, Cheng S, Wang H, Gao H (eds) Wireless algorithms, systems, and applications, WASA 2014. Lecture notes in computer science, vol 8491. Springer, Cham

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Miloud Ar-Reyouchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rattal, S., Lajoie, I., Sefraoui, O., Ghoumid, K., Yahiaoui, R., Ar-Reyouchi, E.M. (2023). A Resilient and Efficient Protocol for Strengthening the Internet of Things Network Performance. In: Joby, P.P., Balas, V.E., Palanisamy, R. (eds) IoT Based Control Networks and Intelligent Systems. Lecture Notes in Networks and Systems, vol 528. Springer, Singapore. https://doi.org/10.1007/978-981-19-5845-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5845-8_51

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5844-1

  • Online ISBN: 978-981-19-5845-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics