Skip to main content

Evaluating the Impact of Signal Control on Emissions at Intersections

  • Conference paper
  • First Online:
Smart Transportation Systems 2022 (KES-STS 2022)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 304))

Included in the following conference series:

Abstract

Transport emission has become an increasingly serious problem, and it is an urgent issue in sustainable transport. In this study, by constructing traffic emission models for different vehicle types and operating conditions, the changes in CO, HC, and NOx emissions of light-duty and heavy-duty vehicles before and after signal control optimization were quantified based on VISSIM simulation. The OBEAS-3000 vehicle emission testing device was used to collect data on the micro-operational characteristics of different vehicles under different operating conditions as well as traffic emission data. Based on the data collected, the VSP (Vehicle Specific Power) model combined with the VISSIM traffic simulation platform was used to calculate the emissions of light and heavy vehicles in the mixed traffic flow before and after intersection signal optimization. It is known from the study that signal control optimization has a greater impact on heavy vehicles than on light vehicles. Emissions of CO, HC, and NOx from heavy vehicles and light vehicles are all reduced, but NOx emissions from light vehicles remain largely unchanged. The research results reveal the emission patterns of light and heavy vehicles in different micro-operating conditions and establish a traffic emission model. It provides a theoretical basis for accurate traffic emission analysis and traffic flow optimization, as well as a scientific basis for the formulation of traffic management measures and emission reduction in large city transport systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Q., Yao, Z., Huo, H., He, K.: Emission characteristics of urban light-duty vehicles in China. J. Environ. Sci. 28(9), 1713–1719 (2008)

    Google Scholar 

  2. Li, A., Gao, K., Zhao, P., Qu, X., Axhausen, K.W.: High-resolution assessment of environmental benefits of dockless bike-sharing systems based on transaction data. J. Clean. Prod. 296, 126423 (2021). https://doi.org/10.1016/j.jclepro.2021.126423

    Article  Google Scholar 

  3. Qu, X., Wang, S., Niemeier, D.: On the urban-rural bus transit system with passenger-freight mixed flow. Commun. Transp. Res. 2, 100054 (2022)

    Google Scholar 

  4. Dey, S., Mehta, N.S.: Automobile pollution control using catalysis. Resour. Environ. Sustain. 2, 100006 (2020)

    Google Scholar 

  5. Yu, Y.: Study on the development of motor vehicles and the characteristics of particulate emission pollution in Beijing. Beijing University of Architecture (2015)

    Google Scholar 

  6. Gao, K., Yang, Y., Zhang, T., Li, A., Qu, X.: Extrapolation-enhanced model for travel decision making: an ensemble machine learning approach considering behavioral theory. Knowl.-Based Syst. 218, 106882 (2021). https://doi.org/10.1016/j.knosys.2021.106882

    Article  Google Scholar 

  7. Anahita, J., Ioannis, P., Markos, P.: Bart: a mesoscopic integrated urban traffic flow-emission model. Transp. Res. Part C: Emerging Technol. 75, 45–83 (2017)

    Article  Google Scholar 

  8. Huang, Z., Hao, C., Wang, J.: Analysis of vehicle pollutant emissions-Part II of China motor vehicle environmental management annual report (2017). Environ. Prot. 13, 43–48 (2017)

    Google Scholar 

  9. Arti, C., Sharad, G.: Urban real-world driving traffic emissions during interruption and congestion. Transp. Res. Part D: Transp. Environ. 43, 59–70 (2016)

    Article  Google Scholar 

  10. Gao, K., Yang, Y., Qu, X.: Diverging effects of subjective prospect values of uncertain time and money. Commun. Transp. Res. 1, 100007 (2021). https://doi.org/10.1016/j.commtr.2021.100007

    Article  Google Scholar 

  11. Panis, L.I., Broekx, S., Liu, R.: Modelling instantaneous traffic emission and the influence of traffic speed limits. Sci. Total Environ. 371(1), 270–285 (2006)

    Google Scholar 

  12. Gao, K., Yang, Y., Sun, L., Qu, X.: Revealing psychological inertia in mode shift behaviorand its quantitative influences on commuting trips. Transport. Res. F Traffic Psychol. Behav. 71, 272–287 (2020). https://doi.org/10.1016/j.trf.2020.04.006

    Article  Google Scholar 

  13. Chen, K., Yu, L.: Microscopic traffic-emission simulation and case study for evaluation of traffic control strategies. J. Transp. Syst. Eng. Inf. Technol. 7(1), 93–99 (2007)

    Google Scholar 

  14. Srinivasan, K.K., Bhargavi, P.: Longer-term changes in mode choice decisions in Chennai: a comparison between cross-sectional and dynamic models. Transportation 34(3), 355–374 (2007)

    Article  Google Scholar 

  15. Ma, X., Lei, W., Andréasson, I., Chen, H.: An evaluation of microscopic emission models for traffic pollution simulation using on-board measurement. Environ. Model. Assess. 17(4), 375–387 (2012)

    Article  Google Scholar 

  16. Pan, C., Xu, J., Fu, J.: Effect of gender and personality characteristics on the speed tendency based on advanced driving assistance system (ADAS) evaluation. J. Intell. Conn. Veh. 4(1), 28–37 (2021). https://doi.org/10.1108/JICV-04-2020-0003

    Article  Google Scholar 

  17. Mueller, E.A.: Aspects of the history of traffic signals. IEEE Trans. Veh. Technol. 19(1), 6–17 (1970)

    Article  Google Scholar 

  18. Yu, X.H., Recker, W.W.: Stochastic adaptive control model for traffic signal systems. Transp. Res. Part C Emerging Technol. 14(4), 263–282 (2006)

    Article  Google Scholar 

  19. Gradinescu, V., Gorgorin, C., Diaconescu, R., Cristea, V., Iftode, L.: Adaptive traffic lights using car-to-car communication. In: 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring, 22–25 April 2007, pp. 21–25 (2007)

    Google Scholar 

  20. Ren, G., Huang, Z., Cheng, Y., Zhao, X., Zhang, Y.: An integrated model for evacuation routing and traffic signal optimization with background demand uncertainty. J. Adv. Transp. 47(1), 4–27 (2013)

    Article  Google Scholar 

  21. Zhong, R.X., Sumalee, A., Pan, T.L., Lam, W.H.K.: Stochastic cell transmission model for traffic network with demand and supply uncertainties. Transportmetrica A Transp. Sci. 9(7), 567–602 (2013)

    Article  Google Scholar 

  22. Gipps, P.G.: A behavioural car-following model for computer simulation. Transp. Res. Part B Methodol. 15(2), 105–111 (1981)

    Article  Google Scholar 

  23. Xu, Y., Zheng, Y., Yang, Y.: On the movement simulations of electric vehicles: a behavioral model-based approach. Appl. Energy 283, 116356 (2021). https://doi.org/10.1016/j.apenergy.2020.116356

    Article  Google Scholar 

  24. Meszaros, F., Torok, A.: Theoretical investigation of emission and delay based intersection controlling and synchronising in Budapest. Period. Polytech. Transp. Eng. 42(1), 37–42 (2014)

    Article  Google Scholar 

  25. Jimenez, J.L., McClintock, P., McRae, G., Nelson, D.D., Zahniser, M.S.: Vehicle specific power: a useful parameter for remote sensing and emission studies. In: Ninth CRC On-Road Vehicle Emissions Workshop, San Diego, CA (1999)

    Google Scholar 

  26. Wyatt, D.W., Li, H., Tate, J.: Examining the influence of road grade on vehicle specific power (VSP) and carbon dioxide (CO2) emission over a real-world driving cycle. No. 2013-01-1518. SAE Technical Paper (2013)

    Google Scholar 

  27. Zhang, L., Zeng, Z., Gao, K.: A bi-level optimization framework for charging station design problem considering heterogeneous charging modes. J. Intell. Connect. Veh. 5(1), 8–16 (2022). https://doi.org/10.1108/JICV-07-2021-0009

    Article  Google Scholar 

  28. Xu, Y., Ye, Z., Wang, C.: Modeling commercial vehicle drivers’ acceptance of advanced driving assistance system (ADAS). J. Intell. Connect. Veh. 4(3), 125–135 (2021). https://doi.org/10.1108/JICV-07-2021-0011

    Article  Google Scholar 

  29. Lu, C., Liu, C.: Ecological control strategy for cooperative autonomous vehicle in mixed traffic considering linear stability. J. Intell. Connect. Veh. 4(3), 115–124 (2021). https://doi.org/10.1108/JICV-08-2021-0012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieyu Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, J., Baumann, M., Jokhio, S., Zhu, J. (2022). Evaluating the Impact of Signal Control on Emissions at Intersections. In: Bie, Y., Qu, B.X., Howlett, R.J., Jain, L.C. (eds) Smart Transportation Systems 2022. KES-STS 2022. Smart Innovation, Systems and Technologies, vol 304. Springer, Singapore. https://doi.org/10.1007/978-981-19-2813-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2813-0_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2812-3

  • Online ISBN: 978-981-19-2813-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics