Abstract
Biological systems exhibit tremendous performance and flexibility in learning for a broad diversity of inputs, which are in general time series. Inspired by their biological counterpart, artificial neural networks used in machine learning for classification aim to extract activity patterns within input signals to transform them into stereotypical output patterns that represent categories. For the vast majority, they rely on fixed target values in output to represent probabilities or implement winner-take-all decisions, which correspond in the case of time series to first-order statistics. In other words, the basis for such classification of time series is the transformation of input high-order statistics into output first-order statistics. However, the transformation of input statistics to second- or higher-order statistics has not been much explored yet. Here, we consider a computational scheme based on a reservoir that maps information engrained in input multivariate time series statistics to second-order statistics of its own activity, before being fed to a usual classifier (logistic regression). We compare this covariance decoding with the “classical” mean decoding applied to the reservoir for classification with both synthetic and real datasets of multivariate time series. We show that covariance decoding can extract a broader diversity of second-order statistics from the input signals, yielding higher performance with smaller resources (i.e., reservoir size). Our results pave the way for the characterization of elaborate input-output mappings between statistical orders to efficiently represent and process input signals with complex spatio-temporal structures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abreu Araujo, F., Riou, M., Torrejon, J., Tsunegi, S., Querlioz, D., Yakushiji, K., Fukushima, A., Kubota, H., Yuasa, S., Stiles, M.D., Grollier, J.: Role of non-linear data processing on speech recognition task in the framework of reservoir computing. Sci. Rep. 10(1), 1–11 (2020). https://doi.org/10.1038/s41598-019-56991-x
Aceituno, P.V., Yan, G., Liu, Y.Y.: Tailoring echo state networks for optimal learning. iScience 23(9), 101440 (2020). https://doi.org/10.1016/j.isci.2020.101440, https://doi.org/10.1016/j.isci.2020.101440
Aimone, J.B.: A roadmap for reaching the potential of brain-derived computing. Adv. Intell. Syst. 3(1) (2021). https://doi.org/10.1002/aisy.202000191
Alalshekmubarak, A., Smith, L.S.: On improving the classification capability of reservoir computing for Arabic speech recognition. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8681 LNCS, pp. 225–232 (2014). https://doi.org/10.1007/978-3-319-11179-7_29
Aswolinskiy, W., Reinhart, R.F., Steil, J.: Time series classification in reservoir- and model-space. Neu. Process. Lett. 48(2), 789–809 (2018). https://doi.org/10.1007/s11063-017-9765-5
Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 112, 172–178 (2013). https://doi.org/10.1016/j.neucom.2012.12.039, https://linkinghub.elsevier.com/retrieve/pii/S0925231213001574
Bishop, C.M.: Pattern Recognition and Machine Learning (2006)
Chen, W., Shi, K.: Multi-scale attention convolutional neural network for time series classification. Neu. Netw. 136, 126–140 (2021). https://doi.org/10.1016/j.neunet.2021.01.001, https://linkinghub.elsevier.com/retrieve/pii/S0893608021000010
Dahmen, D., Gilson, M., Helias, M.: Capacity of the covariance perceptron. J. Phys. A Math. Theor. 53(35), 354002 (2020). https://doi.org/10.1088/1751-8121/ab82dd, https://iopscience.iop.org/article/10.1088/1751-8121/ab82dd
Davis, S., Mermelstein, P.: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans. Acoust. Speech Signal Process. 28(4), 357–366 (1980). https://doi.org/10.1109/TASSP.1980.1163420, http://ieeexplore.ieee.org/document/1163420/
Dua, D., Graff, C.: UCI Machine Learning Repository (2019). http://archive.ics.uci.edu/ml
Farkaš, I., Bosák, R., Gergeľ, P.: Computational analysis of memory capacity in echo state networks. Neu. Netw. 83, 109–120 (2016). https://doi.org/10.1016/j.neunet.2016.07.012, https://linkinghub.elsevier.com/retrieve/pii/S0893608016300946
Freiberger, M., Bienstman, P., Dambre, J.: A training algorithm for networks of high-variability reservoirs. Sci. Rep. 10(1), 1–11 (2020). https://doi.org/10.1038/s41598-020-71549-y
Gallicchio, C.: Sparsity in reservoir computing neural networks. In: 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–7. IEEE (2020). https://doi.org/10.1109/INISTA49547.2020.9194611, https://ieeexplore.ieee.org/document/9194611/
Gallicchio, C., Micheli, A.: Reservoir Topology in Deep Echo State Networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11731. LNCS, pp. 62–75 (2019). https://doi.org/10.1007/978-3-030-30493-5_6
Gilson, M., Dahmen, D., Moreno-Bote, R., Insabato, A., Helias, M.: The covariance perceptron: a new paradigm for classification and processing of time series in recurrent neuronal networks. PLOS Comput. Biol. 16(10), e1008127 (2020). https://doi.org/10.1371/journal.pcbi.1008127, https://dx.plos.org/10.1371/journal.pcbi.1008127
Hammami, N., Sellam, M.: Tree distribution classifier for automatic spoken Arabic digit recognition. In: 2009 International Conference for Internet Technology and Secured Transactions (ICITST), pp. 1–4. IEEE, Nov 2009. https://doi.org/10.1109/ICITST.2009.5402575, http://ieeexplore.ieee.org/document/5402575/
Hammami, N., Bedda, M.: Improved tree model for arabic speech recognition. In: 2010 3rd International Conference on Computer Science and Information Technology, pp. 521–526. IEEE, Jul 2010. https://doi.org/10.1109/ICCSIT.2010.5563892, http://ieeexplore.ieee.org/document/5563892/
Hermans, M., Schrauwen, B.: Memory in reservoirs for high dimensional input. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2010). https://doi.org/10.1109/IJCNN.2010.5596884, http://ieeexplore.ieee.org/document/5596884/
Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. Tech. rep. (2001). https://doi.org/10.1054/nepr.2001.0035, http://www.faculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRep.pdf
Jaeger, H.: Short term memory in echo state networks. Sankt Augustin: GMD Forschungszentrum Informationstechnik, 2001, 60 pp. GMD Report, 152 (2002). http://publica.fraunhofer.de/documents/B-73131.htmlpapers://78a99879-71e7-4c85-9127-d29c2b4b416b/Paper/p14153Sramko-EchoStateNNinPrediction/STMEchoStatesTechRep.pdf
Jaeger, H., Lukoševičius, M., Popovici, D., Siewert, U.: Optimization and applications of echo state networks with leaky-integrator neurons. Neu. Netw. 20(3), 335–352 (2007). https://doi.org/10.1016/j.neunet.2007.04.016, https://linkinghub.elsevier.com/retrieve/pii/S089360800700041X
Jin, Y., Li, P.: Performance and robustness of bio-inspired digital liquid state machines: a case study of speech recognition. Neurocomputing 226, 145–160 (2017). https://doi.org/10.1016/j.neucom.2016.11.045, https://linkinghub.elsevier.com/retrieve/pii/S0925231216314606
Khacef, L., Rodriguez, L., Miramond, B.: Written and spoken digits database for multimodal learning (2019). https://doi.org/10.5281/zenodo.3515935, https://doi.org/10.5281/zenodo.3515935
Khacef, L., Rodriguez, L., Miramond, B.: Brain-inspired self-organization with cellular neuromorphic computing for multimodal unsupervised learning. Electronics (Switzerland) 9(10), 1–32 (2020). https://doi.org/10.3390/electronics9101605
Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379(2194), 20200209 (2021). https://doi.org/10.1098/rsta.2020.0209, https://royalsocietypublishing.org/doi/10.1098/rsta.2020.0209
Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009). https://doi.org/10.1016/j.cosrev.2009.03.005
Maass, W., Natschläger, T., Markram, H.: Real-Time computing without stable states: a new framework for neural computation based on perturbations. Neu. Comput. 14(11), 2531–2560 (2002). https://doi.org/10.1162/089976602760407955, https://www.mitpressjournals.org/doi/abs/10.1162/089976602760407955
Morales, G.B., Mirasso, C.R., Soriano, M.C.: Unveiling the role of plasticity rules in reservoir computing (2021). http://arxiv.org/abs/2101.05848
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(85), 2825–2830 (2011). http://jmlr.org/papers/v12/pedregosa11a.html
Roca, D., Zhao, L., Choquenaira, A., Milón, D., Romero, R.: Echo State Network Performance Analysis Using Non-random Topologies, pp. 133–146 (2021). https://doi.org/10.1007/978-3-030-69774-7_10, https://link.springer.com/10.1007/978-3-030-69774-7_10
Ruiz, A.P., Flynn, M., Large, J., Middlehurst, M., Bagnall, A.: The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances, vol. 35. Springer US (2021). https://doi.org/10.1007/s10618-020-00727-3, https://doi.org/10.1007/s10618-020-00727-3
Sahidullah, M., Kinnunen, T.: Local spectral variability features for speaker verification. Dig. Signal Process. 50, 1–11 (2016). https://doi.org/10.1016/j.dsp.2015.10.011, https://linkinghub.elsevier.com/retrieve/pii/S1051200415003140
Skowronski, M.D., Harris, J.G.: Automatic speech recognition using a predictive echo state network classifier. Neu. Netw. 20(3), 414–423 (2007). https://doi.org/10.1016/j.neunet.2007.04.006, https://linkinghub.elsevier.com/retrieve/pii/S0893608007000330
Song, Q., Feng, Z.: Effects of connectivity structure of complex echo state network on its prediction performance for nonlinear time series. Neurocomputing 73(10-12), 2177–2185 (2010). https://doi.org/10.1016/j.neucom.2010.01.015
Stephenson, C., Feather, J., Padhy, S., Elibol, O., Tang, H., McDermott, J., Chung, S.Y.: Untangling in invariant speech recognition. arXiv (NeurIPS) (2020)
Strauss, T., Wustlich, W., Labahn, R.: Design strategies for weight matrices of echo state networks. Neu. Comput. 24(12), 3246–3276 (2012). https://doi.org/10.1162/NECO_a_00374, https://direct.mit.edu/neco/article/24/12/3246-3276/7845
Triefenbach, F., Jalalvand, A., Schrauwen, B., Martens, J.P.: Phoneme recognition with large hierarchical reservoirs. In: Advances in Neural Information Processing Systems, vol. 23, pp. 2307–2315. Curran Associates, Inc. (2010). https://proceedings.neurips.cc/paper/2010/file/2ca65f58e35d9ad45bf7f3ae5cfd08f1-Paper.pdf
Usman, M.: On the performance degradation of speaker recognition system due to variation in speech characteristics caused by physiological changes. Int. J. Comput. Dig. Syst. 6(3), 119–127 (2017). https://doi.org/10.12785/IJCDS/060303, https://journal.uob.edu.bh/handle/123456789/273
Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neu. Netw. 20(3), 391–403 (2007). https://doi.org/10.1016/j.neunet.2007.04.003, https://linkinghub.elsevier.com/retrieve/pii/S089360800700038X
Verstraeten, D., Schrauwen, B., Stroobandt, D.: Reservoir-based techniques for speech recognition. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 1050–1053. IEEE (2006). https://doi.org/10.1109/IJCNN.2006.246804, http://ieeexplore.ieee.org/document/1716215/
Verstraeten, D., Schrauwen, B., Stroobandt, D., Van Campenhout, J.: Isolated word recognition with the liquid state machine: a case study. Inf. Process. Lett. 95(6), 521–528 (2005). https://doi.org/10.1016/j.ipl.2005.05.019, https://linkinghub.elsevier.com/retrieve/pii/S0020019005001523
Verstraeten, D., Schrauwen, B.: On the quantification of dynamics in reservoir computing. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5768. LNCS (PART 1), pp. 985–994 (2009). https://doi.org/10.1007/978-3-642-04274-4_101
Warden, P.: Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. arXiv (2018)
Zerari, N., Abdelhamid, S., Bouzgou, H., Raymond, C.: Bidirectional deep architecture for Arabic speech recognition. Open Comput. Sci. 9(1), 92–102 (2019). https://doi.org/10.1515/comp-2019-0004, https://www.degruyter.com/view/journals/comp/9/1/article-p92.xml
Zhang, Y., Li, P., Jin, Y., Choe, Y.: A digital liquid state machine with biologically inspired learning and its application to speech recognition. IEEE Trans. Neu. Netw. Learn. Syst. 26(11), 2635–2649 (2015). https://doi.org/10.1109/TNNLS.2015.2388544, http://ieeexplore.ieee.org/document/7024132/
Acknowledgements
S.L. is supported by a FI fellowship from the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR, 2021 FI-B2 00121). R.M.B is supported by the Howard Hughes Medical Institute (HHMI, ref 55008742), MINECO (Spain; BFU2017-85936-P) and ICREA Academia (2016). M.G acknowledges funding from the German Excellence Strategy of the Federal Government and the Länder (G:(DE-82)EXS-PF-JARA-SDS005) and the European Union’s Horizon 2020 research and innovation program under grant agreement No. 785907 (Human Brain Project SGA2).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Lawrie, S., Moreno-Bote, R., Gilson, M. (2022). Covariance Features Improve Low-Resource Reservoir Computing Performance in Multivariate Time Series Classification. In: Smys, S., Tavares, J.M.R.S., Balas, V.E. (eds) Computational Vision and Bio-Inspired Computing. Advances in Intelligent Systems and Computing, vol 1420. Springer, Singapore. https://doi.org/10.1007/978-981-16-9573-5_42
Download citation
DOI: https://doi.org/10.1007/978-981-16-9573-5_42
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-9572-8
Online ISBN: 978-981-16-9573-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)