Skip to main content

Tissue-Mimicking Materials for Cardiac Imaging Phantom—Section 1: From Conception to Materials Selection

  • Chapter
  • First Online:
Cardiovascular Engineering

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 881 Accesses

Abstract

The effectiveness of cardiac imaging system is valued from its reliability, reproducibility, accuracy, and usefulness in the clinical settings. These parameters are often evaluated, validated, and justified during the optimization process of the system. A large number of calibration techniques have been used in this process to provide values that specify how standardized the imaging system is. The most common technique is using physical imaging phantom. This device can clarify the degree of image quality and object detectability produced by the imaging system. However, even various imaging phantoms have been widely available, it is still difficult to obtain the phantoms that mimic the realistic biological tissues and functions, particularly for cardiac imaging applications. As cardiac imaging systems capture and analyse dynamic cardiac morphology and function in motions, the main issue in cardiac imaging phantoms is how close the phantom properties to those of realistic biological tissues so that the phantom can guarantee for a reproducible measurement. As cardiac imaging phantom materials play vital roles in the standardized validation for cardiac imaging systems, it is important to study Tissue Mimicking Materials (TMMs) for cardiac imaging systems, materials, and their properties that build the phantom structures. This review study is divided into two parts. Part 1 highlights on preparation processes in phantom development that consist of conception, design, simulation, and materials selection stages, while part 2 concentrates on realization processes from fabrication to optimization stages. This part 1 is aimed to briefly review the current state of knowledge regarding TMMs and their uses for cardiac imaging phantoms. Introduction to systematic processes in the phantom development is also presented to provide an understanding on how to generate the physical phantom step by step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Emanuel, E.J.: Ethical and Regulatory Aspects of Clinical Research: Readings and Commentary. philpapers.org (2003)

    Google Scholar 

  2. Budoff, M., Cohen, M., Garcia, M., et al.: ACCF/AHA clinical competence statement on cardiac imaging with computed tomography and magnetic resonance. Circulation 112(4), 598–617 (2005)

    Article  Google Scholar 

  3. Hubbard, P.L., Zhou, F.‐L., Eichhorn, S.J., Parker, G.J.M.: Biomimetic phantom for the validation of diffusion magnetic resonance imaging. Magn. Reson. Med. 73(1), 299–305 (2015)

    Article  Google Scholar 

  4. Koonce, J.D., Vliegenthart, R., Schoepf, U.J., et al.: Accuracy of dual-energy computed tomography for the measurement of iodine concentration using cardiac CT protocols: validation in a phantom model. Eur. Radiol. 24, 512 (2014). https://doi.org/10.1007/s00330-013-3040-6

    Article  Google Scholar 

  5. Hill, A.J., Iaizzo, P.A.: Comparative cardiac anatomy. In: Iaizzo, P. (ed.) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham (2015)

    Google Scholar 

  6. Mathur, A., Ma, Z., Loskill, P., Jeeawoody, S., Healy, K.E.: In vitro cardiac tissue models: current status and future prospects. Adv. Drug Deliv. Rev. 96(15), 203–213 (2016)

    Article  Google Scholar 

  7. Garrett, J., Fear, E.: Stable and flexible materials to mimic the dielectric properties of human soft tissues. IEEE Antennas Wirel. Propag. Lett. 13, 599–602 (2014)

    Article  Google Scholar 

  8. Vannelli, C., Moore, J., McLeod, J., Ceh, D., Peters, T.: Dynamic heart phantom with functional mitral and aortic valves. In: Proceedings, Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 9415, p. 941503 (2015). https://doi.org/10.1117/12.2082277

  9. Avendi, M.R., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)

    Article  Google Scholar 

  10. Shahzad, R., Bos, D., Budde, R.P.J., Pellikaan, K., Niessen, W.J., van der Lugt, A., van Walsum, T.: Automatic segmentation and quantification of the cardiac structures from non-contrast-enhanced cardiac CT scans. Phys. Med. Biol. 62(9)

    Article  Google Scholar 

  11. Xu, R., Athavale, P., Nachman, A., Wright, G.A.: Multiscale registration of real-time and prior MRI data for image-guided cardiac interventions. IEEE Trans. Biomed. Eng. 61(10), 2621–2633 (2014)

    Article  Google Scholar 

  12. Abi-Jaoudeh, N., Kruecker, J., Kadoury, S., et al.: Multimodality image fusion-guided procedures: technique, accuracy, and applications. Cardiovasc. Intervent. Radiol. 35, 986 (2012). https://doi.org/10.1007/s00270-012-0446-5

    Article  Google Scholar 

  13. Turner, L.R., et al.: Cardiovascular disease screening in general practice: general practitioner recording of common risk factors. Prev. Med. 99, 282–285 (2017)

    Article  Google Scholar 

  14. Duffy, J.Y., et al.: Cardiovascular disease screening. Semin. Perinatol. 39(4), 264–267 (2015)

    Article  Google Scholar 

  15. Bekar, L., et al.: The preference of the physicians in diagnosis and treatment of cardiovascular diseases. Int. J. Cardiovasc. Acad. 3(1–2), 11–15 (2017)

    Article  Google Scholar 

  16. Liu, Y., et al.: Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2(11), e1601185 (2016)

    Article  Google Scholar 

  17. Danad, I., et al.: Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. Eur. Heart J. 38(13), 991–998 (2017)

    Google Scholar 

  18. Bountry, C.M., et al.: A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv. Mater. 27, 6954–6961 (2015)

    Article  Google Scholar 

  19. Sun, J., et al.: Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study. Int. J. Cardiovasc. Imaging 31, 95 (2015)

    Article  Google Scholar 

  20. Noc, M., et al.: Invasive coronary treatment strategies for out-of-hospital cardiac arrest: a consensus statement from the European Association for Percutaneous Cardiovascular Interventions (EAPCI)/Stent for Life (SFL) groups. EuroIntervention 10, 31–37 (2014)

    Article  Google Scholar 

  21. Piepoli, M.F., et al.: 2016 European guidelines on cardiovascular disease prevention in clinical practice. Atherosclerosis 252, 207–274 (2016)

    Google Scholar 

  22. Catapano, A.L., et al.: 2016 ESC/EAS guidelines for the management of dyslipidaemias. Atherosclerosis 253, 281–344 (2016)

    Article  Google Scholar 

  23. Arena, R., et al.: Healthy lifestyle interventions to combat noncommunicable disease—a novel nonhierarchical connectivity model for key stakeholders: a policy statement from the American Heart Association, European Society of Cardiology, European Association for Cardiovascular Prevention and Rehabilitation, and American College of Preventive Medicine. Mayo Clin. Proc. 90(8), 1082–1103 (2015)

    Article  Google Scholar 

  24. Kersten-Oertel, M., Jannin, P., Collins, D.L.: The state of the art of visualization in mixed reality image guided surgery. Comput. Med. Imaging Graph. 37(2), 98–112 (2013). https://doi.org/10.1016/j.compmedimag.2013.01.009

    Article  Google Scholar 

  25. Badano, L.P., Miglioranza, M.H., Edvardsen, T., Colafranceschi, A.S., Muraru, D., Bacal, F., Nieman, K., Zoppellaro, G., Marcondes Braga, F.G., Binder, T., Habib, G., Lancellotti, P., Document reviewers Sicari, R., Cosyns, B., Donal, E., Lombardi, M., Sarvari, S.: European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur. Heart J. Cardiovasc. Imaging 16(9), 919–948 (2015). https://doi.org/10.1093/ehjci/jev139

    Article  Google Scholar 

  26. Swift, A.J., Rajaram, S., Condliffe, R., Capener, D., Hurdman, J., Elliot, C.A., Wild, J.M., Kiely, D.G.: Diagnostic accuracy of cardiovascular magnetic resonance imaging of right ventricular morphology and function in the assessment of suspected pulmonary hypertension results from the ASPIRE registry. J. Cardiovasc. Magn. Reson. 14, 40 (2012). https://doi.org/10.1186/1532-429X-14-40

  27. Safavi, K.C., Li, S., Dharmarajan, K., et al.: Hospital variation in the use of noninvasive cardiac imaging and its association with downstream testing, interventions, and outcomes. JAMA Int. Med. 174(4), 546–553 (2014). https://doi.org/10.1001/jamainternmed.2013.14407

    Article  Google Scholar 

  28. Hasan, M.A., Lee, S.-L., Kim, D.-H., Lim, M.-K.: Automatic evaluation of cardiac hypertrophy using cardiothoracic area ratio in chest radiograph images. Comput. Methods Programs Biomed. 105(2), 95–108 (2012)

    Article  Google Scholar 

  29. Dimopoulos, K., Giannakoulas, G., Bendayan, I., Liodakis, E., Petraco, R., Diller, G.-P., Piepoli, M.F., Swan, L., Mullen, M., Best, N., Poole-Wilson, P.A., Francis, D.P., Rubens, M.B., Gatzoulis, M.A.: Cardiothoracic ratio from postero-anterior chest radiographs: a simple, reproducible and independent marker of disease severity and outcome in adults with congenital heart disease. Int. J. Cardiol. 166(2), 453–457 (2013). https://doi.org/10.1016/j.ijcard.2011.10.125

    Article  Google Scholar 

  30. Venugopal, A.N., Koshy, R.C., Koshy, S.M.: Role of chest X-ray in citing central venous catheter tip: a few case reports with a brief review of the literature. J. Anaesthesiol. Clin. Pharmacol. 29(3), 397–400 (2013). https://doi.org/10.4103/0970-9185.117114

    Article  Google Scholar 

  31. Ubeda, C., Vano, E., Gonzalez, L., Miranda, P.: Influence of the antiscatter grid on dose and image quality in pediatric interventional cardiology X‐ray systems. Cathet. Cardiovasc. Intervent. 82(1), 51–57 (2013). https://doi.org/10.1002/ccd.24602

    Article  Google Scholar 

  32. Schoenhagen, P., Halliburton, S.S., Stillman, A.E., Kuzmiak, S.A., Nissen, S.E., Tuzcu, E.M., White, R.D.: Noninvasive imaging of coronary arteries: current and future role of multi–detector row CT. Radiology 232(1) (2004). https://doi.org/10.1148/radiol.2321021803

    Article  Google Scholar 

  33. Wilson, J., Saremi, F., Narula, J., Narayan, S.M.: CT in the management of cardiac arrhythmias. In: Budoff, M., Achenbach, S., Hecht, H., Narula, J. (eds.) Atlas of Cardiovascular Computed Tomography. Springer, London (2018)

    Google Scholar 

  34. Sun, Z., Ng, K.H.: Diagnostic value of coronary CT angiography with prospective ECG-gating in the diagnosis of coronary artery disease: a systematic review and meta-analysis. Int. J. Cardiovasc. Imaging 28, 2109 (2012). https://doi.org/10.1007/s10554-011-0006-0

    Article  Google Scholar 

  35. Morin, R.L., Gerber, T.C., McCollough, C.H.: Radiation dose in computed tomography of the heart. Circulation 107, 917–922 (2003). https://doi.org/10.1161/01.CIR.0000048965.56529.C2

    Article  Google Scholar 

  36. Ulzheimer, S., Kalender, W.A.: Assessment of calcium scoring performance in cardiac computed tomography. Eur. Radiol. 13, 484–497 (2003). https://doi.org/10.1007/s00330-002-1746-y

    Article  Google Scholar 

  37. Sun, Z., Al Moudi, M., Cao, Y.: CT angiography in the diagnosis of cardiovascular disease: a transformation in cardiovascular CT practice. Quant. Imaging Med. Surg. 4(5), 376–396 (2014). https://doi.org/10.3978/j.issn.2223-4292.2014.10.02

    Article  Google Scholar 

  38. Scholtz, J.-E., Ghoshhajra, B.: Advances in cardiac CT contrast injection and acquisition protocols. Cardiovasc. Diagn. Ther. 7(5), 439–451 (2017). https://doi.org/10.21037/cdt.2017.06.07

    Article  Google Scholar 

  39. Baker, J.E., Moulder, J.E., Hopewell, J.W.: Radiation as a risk factor for cardiovascular disease. Antioxid. Redox Signal. 15(7), 1945–1956 (2011). https://doi.org/10.1089/ars.2010.3742

    Article  Google Scholar 

  40. Thai, W., Wai, B., Lin, K., et al.: Pulmonary venous anatomy imaging with low-dose, prospectively ECG-triggered, high-pitch 128-slice dual source computed tomography. Circ. Arrhythm. Electrophysiol. 5(3), 521–530 (2012). https://doi.org/10.1161/CIRCEP.111.968313

    Article  Google Scholar 

  41. Muraru, D., Niero, A., Rodriguez-Zanella, H., Cherata, D., Badano, L.: Three-dimensional speckle-tracking echocardiography: benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc. Diagn. Ther. 8(1), 101–117 (2018). https://doi.org/10.21037/cdt.2017.06.01

    Article  Google Scholar 

  42. Armstrong, A.C., Ricketts, E.P., Cox, C., et al.: Quality control and reproducibility in M-mode, two-dimensional, and speckle tracking echocardiography acquisition and analysis: the CARDIA study, year-25 examination experience. Echocardiography (Mount Kisco, NY) 32(8), 1233–1240 (2015). https://doi.org/10.1111/echo.12832

    Article  Google Scholar 

  43. Badano, L.P.: The clinical benefits of adding a third dimension to assess the left ventricle with echocardiography. Scientifica 2014, 897431 (2014). https://doi.org/10.1155/2014/897431

    Article  Google Scholar 

  44. Bencsik, G.: Novel strategies in the ablation of typical atrial flutter: role of intracardiac echocardiography. Curr. Cardiol. Rev. 11(2), 127–133 (2015). https://doi.org/10.2174/1573403X10666141013121843

    Article  Google Scholar 

  45. Soloperto, G., Casciaro, S.: Progress in atherosclerotic plaque imaging. World J. Radiol. 4(8), 353–371 (2012). https://doi.org/10.4329/wjr.v4.i8.353

    Article  Google Scholar 

  46. Vignali, L., Solinas, E., Emanuele, E.: Research and clinical applications of optical coherence tomography in invasive cardiology: a review. Curr. Cardiol. Rev. 10, 369–376 (2014). https://doi.org/10.2174/1573403X10666140604120753

    Article  Google Scholar 

  47. Suter, M.J., Nadkarni, S.K., Weisz, G., et al.: Intravascular optical imaging technology for investigating the coronary artery (2011). https://doi.org/10.1016/j.jcmg.2011.03.020

    Google Scholar 

  48. Peterzan, M.A., Rider, O.J., Anderson, L.J.: The role of cardiovascular magnetic resonance imaging in heart failure. Card. Fail. Rev. 2(2), 115–122 (2016). https://doi.org/10.15420/cfr.2016.2.2.115

    Article  Google Scholar 

  49. Parsai, C., O’Hanlon, R., Prasad, S.K., Mohiaddin, R.H.: Diagnostic and prognostic value of cardiovascular magnetic resonance in non-ischaemic cardiomyopathies. J. Cardiovasc. Magn. Reson. 14(1), 54 (2012). https://doi.org/10.1186/1532-429X-14-54

    Article  Google Scholar 

  50. Sherrah, A.G., Grieve, S.M., Jeremy, R.W., Bannon, P.G., Vallely, M.P., Puranik, R.: MRI in chronic aortic dissection: a systematic review and future directions. Front. Cardiovasc. Med. 2, 5 (2015). https://doi.org/10.3389/fcvm.2015.00005

    Article  Google Scholar 

  51. Gulenchyn, K., McEwan, A., Freeman, M., Kiess, M., O’Neill, B., Beanlands, R.: Treating the right patient at the right time: access to cardiovascular nuclear imaging. Can. J. Cardiol. 22(10), 827–833 (2006)

    Article  Google Scholar 

  52. Boogers, M.J., Fukushima, K., Bengel, F.M., Bax, J.J.: The role of nuclear imaging in the failing heart: myocardial blood flow, sympathetic innervation, and future applications. Heart Fail. Rev. 16, 411–423 (2011). https://doi.org/10.1007/s10741-010-9196-0

    Article  Google Scholar 

  53. Merhige, M.E., Breen, W.J., Shelton, V., et al.: Impact of myocardial perfusion imaging with PET and (82)Rb on downstream invasive procedure utilization, costs, and outcomes in coronary disease management. J. Nucl. Med. 48, 1069–1076 (2007). https://doi.org/10.2967/jnumed.106.038323

    Article  Google Scholar 

  54. Kircher, M., Lapa, C.: Novel noninvasive nuclear medicine imaging techniques for cardiac inflammation. Curr. Cardiovasc. Imaging Rep. 10(2), 6 (2017). https://doi.org/10.1007/s12410-017-9400-x

    Article  Google Scholar 

  55. Li, T., Ao, E.C.I., Lambert, B., Brans, B., Vandenberghe, S., Mok, G.S.P.: Quantitative imaging for targeted radionuclide therapy dosimetry—technical review. Theranostics 7(18), 4551–4565 (2017). https://doi.org/10.7150/thno.19782

    Article  Google Scholar 

  56. Pan, J.A., Salerno, M.: Clinical utility and future applications of PET/CT and PET/CMR in cardiology. In: Kjaer, A. (ed.) Diagnostics 6(3), 32 (2016). https://doi.org/10.3390/diagnostics6030032

    Article  Google Scholar 

  57. Zhuang, H., Codreanu, I.: Growing applications of FDG PET-CT imaging in non-oncologic conditions. J. Biomed. Res. 29(3), 189–202 (2015). https://doi.org/10.7555/JBR.29.20140081

    Article  Google Scholar 

  58. Zhenzhen, X., Tao, B., Li, Y., et al.: 3D fusion framework for infarction and angiogenesis analysis in a myocardial infarct minipig model. Mol. Imaging 16, 1536012117708735 (2017). https://doi.org/10.1177/1536012117708735

    Article  Google Scholar 

  59. Woo, J., Stone, M., Prince, J.L.: Multimodal registration via mutual information incorporating geometric and spatial context. IEEE Trans. Image Process. 24(2), 757–769 (2015). https://doi.org/10.1109/TIP.2014.2387019

    Article  Google Scholar 

  60. Nordenfur, T., Babic, A., Bulatovic, I., Giesecke, A., Günyeli, E., Ripsweden, J., Samset, E., Winter, R., Larsson, M.: Method comparison for cardiac image registration of coronary computed tomography angiography and 3-D echocardiography. J. Med. Imaging 5(1), 014001 (2018). https://doi.org/10.1117/1.JMI.5.1.014001

    Article  Google Scholar 

  61. Shrestha, U.M., Seo, Y., Botvinick, E.H., Gullberg, G.T.: Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration. Phys. Med. Biol. 60(21), 8275–8301 (2015). https://doi.org/10.1088/0031-9155/60/21/8275

    Article  Google Scholar 

  62. Lopez-Perez, A., Sebastian, R., Ferrero, J.M.: Three-dimensional cardiac computational modelling: methods, features and applications. BioMed. Eng. OnLine 14, 35 (2015). https://doi.org/10.1186/s12938-015-0033-5

    Article  Google Scholar 

  63. Fonseca, C.G., Backhaus, M., Bluemke, D.A., Britten, R.D., Chung, J.D., Cowan, B.R., Dinov, I.D., Finn, J.P., Hunter, P.J., Kadish, A.H., Lee, D.C., Lima, J.A.C., Medrano-Gracia, P., Shivkumar, K., Suinesiaputra, A., Tao, W., Young, A.A.: The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011). https://doi.org/10.1093/bioinformatics/btr360

    Article  Google Scholar 

  64. Wong, M.D., Wu, X., Liu, H.: Image quality and dose efficiency of high energy phase sensitive X-ray imaging: phantom studies. J. X-ray Sci. Technol. 22(3), 321–334 (2014). https://doi.org/10.3233/XST-140428

    Article  Google Scholar 

  65. Ceh, J., Youd, T., Mastrovich, Z., et al.: Bismuth infusion of ABS enables additive manufacturing of complex radiological phantoms and shielding equipment. In: Choi, J.-W., Engeberg, E.D. (eds.) Sensors (Basel, Switzerland) 17(3), 459 (2017). https://doi.org/10.3390/s17030459

    Article  Google Scholar 

  66. Negron, L.A., Viola, F., Black, E.P., Toth, C.A., Walker, W.F.: Development and characterization of a vitreous mimicking material for radiation force imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1543–1551 (2002)

    Article  Google Scholar 

  67. Rozenkrantz, A.B., Mendiratta-Lala, M., Bartholmai, B.J., Ganeshan, D., Abransom, R.G., Burton, K.R., Yu, J.-P.J., Scalzetti, E.M., Yankeelov, T.E., Subramaniam, R.M., Lenchik, L.: Clinical utility of quantitative imaging. Acad. Radiol. 22, 33–49 (2015)

    Google Scholar 

  68. De Grand, A.M., Lomnes, S.J., Lee, D.S., et al.: Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons. J. Biomed. Opt. 11(1), 014007 (2006). https://doi.org/10.1117/1.2170579

    Article  Google Scholar 

  69. Boltz, T., Pavlicek, W., Paden, R., Renno, M., Jensen, A., Akay, M.: An anthropomorphic beating heart phantom for cardiac X‐ray CT imaging evaluation. J. Appl. Clin. Med. Phys. (2010). https://doi.org/10.1120/jacmp.v11i1.3129

    Article  Google Scholar 

  70. Nattagh, K., Siauw, T., Pouliot, J., Hsu, I.C., Cunha, J.A.: A training phantom for ultrasound-guided needle insertion and suturing. Brachytherapy 13(4), 413–419 (2014). https://doi.org/10.1016/j.brachy.2014.01.003. Epub 12 Feb 2014

    Article  Google Scholar 

  71. Seegenschmiedt, M.H., et al.: Thermoradiotherapy and Thermochemotherapy, Volume 1: Biology, Physiology, Physics. Springer-Verlag, Berlin (1995)

    Google Scholar 

  72. Boutchko, R., Balakrishnan, K., Gullberg, G.T., O’Neil, J.P.: Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion. US8535061B2, US Patent 2007

    Google Scholar 

  73. Verkerke, G.J., van der Houwen, E.B.: Design of biomedical products. In: Rakhorst, G., Ploeg, R. (eds.) Biomaterials in Modern Medicine: The Groningen Perspective, pp. 23–38. Biomechanical Engineering, World Scientific Publishing (2008)

    Google Scholar 

  74. Jones, P., Bowes, J.: Rendering systems visible for design: synthesis maps as constructivist design narratives. She Ji J. Des. Econ. Innov. 3(3), 229–248 (2017). https://doi.org/10.1016/j.sheji.2017.12.001

    Google Scholar 

  75. Garcia, J., Yang, Z., Mongrain, R., et al.: 3D printing materials and their use in medical education: a review of current technology and trends for the future. BMJ Simul. Technol. Enhanc. Learn. (2017). https://doi.org/10.1136/bmjstel-2017-000234

    Article  Google Scholar 

  76. Zainon, R.: Design and fabrication of multipurpose smart phantom for positron emission tomography/computed tomography imaging (2008)

    Google Scholar 

  77. Shikhaliev, P.M.: Dedicated phantom materials for spectral radiography and CT. Phys. Med. Biol. 57(6), 1575–1593 (2012). https://doi.org/10.1088/0031-9155/57/6/1575. Epub 7 Mar 2012

    Article  Google Scholar 

  78. Park, S., Lee, J.K., Kim, J.I., Lee, Y.J., Lim, Y.K., Kim, C.S., Lee, C.: In vivo organ mass of Korean adults obtained from whole-body magnetic resonance data. Radiat. Prot. Dosimetry 118(3), 275–279 (2006). https://doi.org/10.1093/rpd/nci340

    Article  Google Scholar 

  79. Bosgra, S., van Eijkeren, J., Bos, P., Zeilmaker, M., Slob, W.: An improved model to predict physiologically based model parameters and their inter-individual variability from anthropometry. Crit. Rev. Toxicol. 42(9) (2012)

    Article  Google Scholar 

  80. Del Bianco, S., Martelli, F., Cignini, F., Zaccanti, G., Pifferi, A., Torricelli, A., Bassi, A., Taroni, P., Cubeddu, R.: Liquid phantom for investigating light propagation through layered diffusive media. Opt. Express 12, 2102–2111 (2004)

    Article  Google Scholar 

  81. Fieseler, M., Kugel, H., Gigengack, F., Kösters, T., Büther, F., Quick, H.H., Faber, C., Jiang, X., Schäfers, K.P.: A dynamic thorax phantom for the assessment of cardiac and respiratory motion correction in PET/MRI: a preliminary evaluation. Nucl. Instrum. Methods Phys. Res. A 702, 59–63 (2013)

    Article  Google Scholar 

  82. Boote, E., Fent, G., Kattumuri, V., Casteel, S., Katti, K., Chanda, N., Kannan, R., Katti, K., Churchill, R.: Gold nanoparticle contrast in a phantom and juvenile swine: models for molecular imaging of human organs using X-ray computed tomography. Acad. Radiol. 17(4), 410–417 (2010)

    Article  Google Scholar 

  83. Abdullah, K.A., McEntee, M.F., Reed, W., Kench, P.L.: Development of an organ-specific insert phantom generated using a 3D printer for investigations of cardiac computed tomography protocols. J. Med. Radiat. Sci. (2018). https://doi.org/10.1002/jmrs.279

    Article  Google Scholar 

  84. Lubis, L.E., Craig, L.A., Bosmans, H., Soejoko, D.S.: Task-based phantom evaluation of cardiac catheterization imaging modes. Phys. Med. 46, 114–123 (2018). https://doi.org/10.1016/j.ejmp.2018.02.002. Epub 5 Feb 2018

    Article  Google Scholar 

  85. Tavakoli, V., Kendrick, M., Shakeri, M., Alshaher, M., Stoddard, M.F., Amini, A.: A multimodal (MRI/ultrasound) cardiac phantom for imaging experiments. In: Proceedings SPIE 8672, Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging, p. 867202, 29 Mar 2013. https://doi.org/10.1117/12.2008783

  86. http://www.cirsinc.com/

  87. https://www.kyotokagaku.com/

  88. Thakur, Y., Nikolov, H.N., Gulka, B., Holdsworth, D.W., Drangova, M.: Design and construction of a multipath vessel phantom for interventional training. Br. J. Radiol. 83(995), 979–982 (2010). https://doi.org/10.1259/bjr/91767642

    Article  Google Scholar 

  89. Ventola, C.L.: Medical applications for 3D printing: current and projected uses. P&T 39(10), 704–711 (2014)

    Google Scholar 

  90. Abayazid, M., Kemp, M., Misra, S.: 3D flexible needle steering in soft-tissue phantoms using fiber bragg grating sensors. In: 2013 IEEE International Conference on Robotics and Automation, 6–10 May 2013. https://doi.org/10.1109/icra.2013.6631418

  91. Yokoyama, K., Nakagawa, H., Shah, D.C., Lambert, H., Leo, G., Aeby, N., Ikeda, A., Pitha, J.V., Sharma, T., Lazzara, R., et al.: Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circ. Arrhythm. Electrophysiol. 1, 354–362 (2008)

    Article  Google Scholar 

  92. Magnetic free MRI phantom: Madsen, E.L., Fullerton, G.D.: Prospective tissue-mimicking materials for use in NMR imaging phantoms. Magn. Reson. Imaging 1(3), 135–141 (1982)

    Google Scholar 

  93. Cygan, S., Werys, K., Błaszczyk, Ł., Kubik, T., Kałużyński, K.: Left ventricle phantom and experimental setup for MRI and echocardiography—preliminary results of data acquisitions. Biocybern. Biomed. Eng. 34(1), 19–24 (2014). https://doi.org/10.1016/j.bbe.2013.12.002

    Article  Google Scholar 

  94. Stabin, M.G., Xu, X.G., Emmons, M.A., Segars, W.P., Shi, C., Fernald, M.J.: RADAR reference adult, pediatric, and pregnant female phantom series for internal and external dosimetry. J. Nucl. Med. 53(11), 1807–1813 (2012). https://doi.org/10.2967/jnumed.112.106138

    Article  Google Scholar 

  95. Kim, J.I.: Physical phantom of typical Korean male for radiation protection purpose. Radiat. Prot. Dosimetry 118, 131–136 (2005). https://doi.org/10.1093/rpd/nci338

    Article  Google Scholar 

  96. http://www.simutec.com/

  97. https://humimic.com/

  98. Bolwin, K., Czekalla, B., Frohwein, L.J., Büther, F., Schäfers, K.P.: Anthropomorphic thorax phantom for cardio-respiratory motion simulation in tomographic imaging. Phys. Med. Biol. 63, 035009 (2018)

    Article  Google Scholar 

  99. Jan, S., Benoit, D., Becheva, E., Carlier, T., Cassol, F., Descourt, P., Frisson, T., Grevillot, L., Guigues, L., Maigne, L.: GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys. Med. Biol. 56, 881 (2011)

    Article  Google Scholar 

  100. Veress, A.I., Segars, W.P., IEEE Member, Tsui, B.M.W., IEEE Fellow, Gullberg, G.T.: Incorporation of a left ventricle finite element model defining infarction into the XCAT imaging phantom. IEEE Trans. Med. Imaging 30(4), 915 (2011)

    Article  Google Scholar 

  101. Paganetti, H.: Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol. 57, R99 (2012)

    Article  Google Scholar 

  102. Fang, Q.: Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates. Biomed. Opt. Express 1(1), 165–175 (2010). https://doi.org/10.1364/BOE.1.000165

    Article  Google Scholar 

  103. Dobre, A.A., Morega, A.M., Morega, M.: The investigation of flow—structural interaction in an arterial branching by numerical simulation. Proc. IEEE/EMBS Reg. 8 Int. Conf. Inf. Technol. Appl. Biomed. ITAB, 4–7 (2010). https://doi.org/10.1109/itab.2010.5687648

  104. Kung, E.O., Les, A.S., Figueroa, C.A., et al.: In vitro validation of finite element analysis of blood flow in deformable models. Ann. Biomed. Eng. 39, 1947 (2011). https://doi.org/10.1007/s10439-011-0284-7

    Article  Google Scholar 

  105. Tada, M., Nagai, N., Maeno, T.: Material properties estimation of layered soft tissue based on MR observation and iterative FE simulation. Med. Image Comput. Comput. (2005)

    Google Scholar 

  106. Han, L., Noble, J.A., Burcher, M.: A novel ultrasound indentation system for measuring biomechanical properties of in vivo soft tissue. Ultrasound Med. Biol. 29, 813–823 (2003). https://doi.org/10.1016/S0301-5629(02)00776-7

    Article  Google Scholar 

  107. Harrison, S.M., Bush, M.B., Petros, P.E.: A pinch elastometer for soft tissue. Med. Eng. Phys. 29, 307–315 (2007). https://doi.org/10.1016/j.medengphy.2006.03.011

    Article  Google Scholar 

  108. Zhang, M.G., Cao, Y.P., Li, G.Y., Feng, X.Q.: Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials. Biomech. Model. Mechanobiol. 13, 1–11 (2014). https://doi.org/10.1007/s10237-013-0481-4

    Article  Google Scholar 

  109. Dewerd, L.A.: The Phantoms of Medical and Health Physics. M. Kissick (ed.). Springer, Berlin (2014)

    Google Scholar 

  110. Johnson, P.B., Geyer, A., Borrego, D., et al.: The impact of anthropometric patient-phantom matching on organ dose: a hybrid phantom study for fluoroscopy guided interventions. Med. Phys. 38, 1008–1017 (2011). https://doi.org/10.1118/1.3544353

    Article  Google Scholar 

  111. Akhlaghi, P., Miri, H., Motavalli, L.R.: Determination of tissue equivalent materials of a physical 8-year-old phantom for use in computed tomography. Radiat. Phys. Chem. 112, 169–176 (2015). https://doi.org/10.1016/j.radphyschem.2015.03.030

    Article  Google Scholar 

  112. Brundle, C.R., Evans, C.A., Wilson, S.: Encyclopedia of Materials Characterization: Surfaces, Interfaces, Thin Films. Elsevier (1992)

    Google Scholar 

  113. Zalba, B., Marın, J.M., Cabeza, L.F., Mehling, H.: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–283 (2003)

    Article  Google Scholar 

  114. Madsen, E.L., Zagzebski, J.A., Banjavie, R.A., Jutila, R.E.: Tissue mimicking materials for ultrasound phantoms. Med. phy. 5(5), 391–394 (1978)

    Article  Google Scholar 

  115. Yusof, N.S.M., Dewi, D.E.O., Faudzi, A.A.M., Salih, N.M., Bakar, N.A., Hamid, H.A.: Ultrasound imaging characterization on tissue mimicking materials for cardiac tissue phantom: texture analysis perspective. MJFAS (2017)

    Google Scholar 

  116. Vogt, W.C., Jia, C., Wear, K.A., Garra, B.S., Pfefer, T.J.: Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties. J. Biomed. Opt. 21(10), 101405 (2016). https://doi.org/10.1117/1.JBO.21.10.101405

    Article  Google Scholar 

  117. Kawaguchi, Y., Iwazaki, H., Ida, T., Nishi, T., Tanikawa, Y., Nitta, N.: New polymer-based phantom for photoacoustic imaging. In: Proceedings Volume 8945, Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue, vol. VI, p. 89450A (2014) https://doi.org/10.1117/12.2037517

  118. Hron, P.: Hydrophilisation of silicone rubber for medical applications. Polym. Int. 52, 1531–1539 (2003). https://doi.org/10.1002/pi.1273

    Article  Google Scholar 

  119. Latorre, R., Bainbridge, D., Tavernor, A., López Albors, O.: Plastination in anatomy learning: an experience at Cambridge University. J. Vet. Med. Educ. 43(3). https://doi.org/10.3138/jvme.0715-113r1

    Article  Google Scholar 

  120. Yoon, S., Henry, R., Bouley, D., Bennett, N., Fahrig, R.: Characterization of a novel anthropomorphic plastinated lung phantom. Med. Phys. 35, 5934–5943 (2008)

    Article  Google Scholar 

  121. Shih, C.-T., Hsu, J.-T., Han, R.-P., Hsieh, B.-T., Chang, S.-J., Wu, J.: A novel method of estimating dose responses for polymer gels using texture analysis of scanning electron microscopy images. PLoS One 8(7), e67281 (2013). https://doi.org/10.1371/journal.pone.0067281

    Article  Google Scholar 

  122. Jiang, S., Liu, S., Feng, W.: PVA hydrogel properties for biomedical application. J. Mech. Behav. Biomed. Mater. 4(7), 1228–1233 (2011). https://doi.org/10.1016/j.jmbbm.2011.04.005

    Article  Google Scholar 

  123. Wang, R.-M., Zheng, S.-R.: Polymer Matrix Composites and Technology. Woodhead Publishing (2011)

    Google Scholar 

  124. Maitz, M.F.: Applications of synthetic polymers in clinical medicine. Biosurf. Biotribol. 1, 161–176 (2015). https://doi.org/10.1016/j.bsbt.2015.08.002

    Article  Google Scholar 

  125. Fisher, R.F., Hintenlang, D.E.: Super-size me: adipose tissue-equivalent additions for anthropomorphic phantoms. J. Appl. Clin. Med. Phys. 15(6), 306–312 (2014). https://doi.org/10.1120/jacmp.v15i6.5007

    Article  Google Scholar 

  126. Haddad, R., Clarysse, P., Orkisz, M., Croisille, P., Revel, D., Magnin, I.E.: A realistic anthropomorphic dynamic heart phantom. Comput. Cardiol. (2005). https://doi.org/10.1109/cic.2005.1588226

  127. Dąbrowska, A.K., Rotaru, G.M., Derler, S., Spano, F., Camenzind, M., Annaheim, S., Rossi, R.M. et al.: Materials used to simulate physical properties of human skin. Skin Res. Technol, 22(1), 3–14 (2016)

    Article  Google Scholar 

  128. Ayers, F., et al.: Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain. Proc. SPIE 6870, 1–9 (2008)

    Google Scholar 

  129. Yoda, R.: Elastomers for biomedical applications. J. Biomater. Sci., 37–41 (2012)

    Google Scholar 

  130. Manik, S.P., Banerjee, S.: Determination of chemical cross-links in rubbers. Macromol. Mater. Eng. 6(71), 171–178 (1979)

    Google Scholar 

  131. Jiang, H., Campbell, G., Boughner, D., et al.: Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Med. Eng. Phys. 26, 269–277 (2004). https://doi.org/10.1016/j.medengphy.2003.10.007

    Article  Google Scholar 

  132. Surry, K.J.M., Austin, H.J.B., Fenster, A., Peters, T.M.: Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging. Phys. Med. Biol. 49, 5529–5546 (2004). https://doi.org/10.1088/0031-9155/49/24/009

    Article  Google Scholar 

  133. Zhou, X., Kenwright, D.A., Wang, S., Hossack, J.A., Hoskins, P.R.: Fabrication of two flow phantoms for Doppler ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 53–65 (2017). https://doi.org/10.1109/tuffc.2016.2634919

    Article  Google Scholar 

  134. Culjat, M.O., Goldenberg, D., Tewari, P., Singh, R.S.: A review of tissue substitutes for ultrasound imaging. Ultrasound Med. Biol. 36, 861–873 (2010). https://doi.org/10.1016/j.ultrasmedbio.2010.02.012

    Article  Google Scholar 

  135. Zell, K., Sperl, J.I., Vogel, M.W., et al.: Acoustical properties of selected tissue phantom materials for ultrasound imaging. Phys. Med. Biol. 52, N475–N484 (2007). https://doi.org/10.1088/0031-9155/52/20/N02

    Article  Google Scholar 

  136. Manickam, K., Machireddy, R.R., Seshadri, S.: Study of ultrasound stiffness imaging methods using tissue mimicking phantoms. Ultrasonics 54, 621–631 (2014). https://doi.org/10.1016/j.ultras.2013.08.018

    Article  Google Scholar 

  137. Chen, R., Shih, A.: Multi-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties. Phys. Med. Biol. 58, 5511–5525 (2013). https://doi.org/10.1088/0031-9155/58/16/5511

    Article  Google Scholar 

  138. Wang, Y., Tai, B.L., Yu, H., Shih, A.J.: Silicone-based tissue-mimicking phantom for needle insertion simulation. J. Med. Devices 8, 021001 (2014). https://doi.org/10.1115/1.4026508

    Article  Google Scholar 

  139. Fallis, A.: Polyurethane as a base for a family of tissue equivalent materials. J. Chem. Inf. Model. 53, 1689–1699 (2013). https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  140. Fromstein, J.D., Woodhouse, K.A.: Elastomeric biodegradable polyurethane blends for soft tissue applications. J. Biomater. Sci. Polym. Ed. 13, 391–406 (2002). https://doi.org/10.1163/156856202320253929

    Article  Google Scholar 

  141. Pogue, B.W., Patterson, M.S.: Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J. Biomed. Opt. 11, 041102-1–041102-16 (2006). https://doi.org/10.1117/1.2335429

    Article  Google Scholar 

  142. Cafarelli, A., Miloro, P., Verbeni, A., et al.: Speed of sound in rubber-based materials for ultrasonic phantoms. J. Ultrasound 19, 251–256 (2016). https://doi.org/10.1007/s40477-016-0204-7

    Article  Google Scholar 

  143. Martins, P.A.L.S., Jorge, R.M.N., Ferreira, A.J.M.: A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain, 135–147 (2006)

    Google Scholar 

  144. Maggi, L.E., Von Krüger, M.A., Pereira, W.C.A., Monteiro, E.E.C.: Development of silicon-based materials for ultrasound biological phantoms. Proc. IEEE Ultrason. Symp., 1962–1965 (2009). https://doi.org/10.1109/ultsym.2009.5441472

  145. Jia, C., Kim, K., Kolias, T.J., et al.: 4D elasticity imaging of PVA LV phantom integrated with pulsatile circulation system using 2D phased array. Proc. IEEE Ultrason. Symp., 876–879 (2007). https://doi.org/10.1109/ultsym.2007.224

  146. Hebden, J.C., Price, B.D., Gibson, A.P., Royle, G.: A soft deformable tissue-equivalent phantom for diffuse optical tomography. Phys. Med. Biol. 51, 5581–5590 (2006). https://doi.org/10.1088/0031-9155/51/21/013

    Article  Google Scholar 

  147. Lamouche, G., Kennedy, B.F., Kennedy, K.M., et al.: Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography. Biomed. Opt. Express 3, 1381–1398 (2012). https://doi.org/10.1364/BOE.3.001381

    Article  Google Scholar 

  148. Chan, R., Manzke, R., Dalal, S., et al.: Image-Based Speckle Tracking for Tissue Motion Characterization in a Deformable Cardiovascular Phantom, vol. 6920, pp. 69200U-1–69200U-7 (2008). https://doi.org/10.1117/12.770631

Download references

Acknowledgements

The authors are grateful for funding supports by Universiti Teknologi Malaysia and Ministry of Higher Education Malaysia under FRGS Grant R.J130000.7845.4F764 and GUP Tier 1 Grant Q.J130000.2545.20H36.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dyah Ekashanti Octorina Dewi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dewi, D.E.O., Yusof, N.S.M. (2020). Tissue-Mimicking Materials for Cardiac Imaging Phantom—Section 1: From Conception to Materials Selection. In: Dewi, D., Hau, Y., Khudzari, A., Muhamad, I., Supriyanto, E. (eds) Cardiovascular Engineering. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-8405-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8405-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8404-1

  • Online ISBN: 978-981-10-8405-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics