Abstract
We propose a fixed-parameter tractable algorithm for the Max-Cut problem on embedded 1-planar graphs parameterized by the crossing number k of the given embedding. A graph is called 1-planar if it can be drawn in the plane with at most one crossing per edge. Our algorithm recursively reduces a 1-planar graph to at most \(3^k\) planar graphs, using edge removal and node contraction. The Max-Cut problem is then solved on the planar graphs using established polynomial-time algorithms. We show that a maximum cut in the given 1-planar graph can be derived from the solutions for the planar graphs. Our algorithm computes a maximum cut in an embedded 1-planar graph with n nodes and k edge crossings in time \(\mathcal {O}(3^k \cdot n^{3/2} \log n)\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-planarity of graphs with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)
Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 97–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6_9
Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15(10), 3241 (1982)
Barahona, F.: Balancing signed toroidal graphs in polynomial time. Departamento de Matematicas, Universidad de Chile, Santiago, Chile (1983)
Barahona, F.: The max-cut problem on graphs not contractible to K5. Oper. Res. Lett. 2(3), 107–111 (1983)
Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988)
de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)
De Simone, C., Diehl, M., Jünger, M., Mutzel, P., Reinelt, G., Rinaldi, G.: Exact ground states of Ising spin glasses: new experimental results with a branch-and-cut algorithm. J. Stat. Phys. 80(1–2), 487–496 (1995)
Galluccio, A., Loebl, M.: Max cut in toroidal graphs. Instituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche, Oktober 1998
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM (JACM) 42(6), 1115–1145 (1995)
Grötschel, M., Nemhauser, G.L.: A polynomial algorithm for the max-cut problem on graphs without long odd cycles. Math. Program. 29(1), 28–40 (1984)
Grötschel, M., Pulleyblank, W.R.: Weakly bipartite graphs and the max-cut problem. Oper. Res. Lett. 1(1), 23–27 (1981)
Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4(3), 221–225 (1975)
Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973)
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer Computations, New York. The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972)
Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theory 72(1), 30–71 (2013)
Liers, F., Pardella, G.: A simple MAX-CUT algorithm for planar graphs. In: Cafieri, S., Mucherino, A., Nannicini, G., Tarissan, F., Liberti, L., (eds.) Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, CTW 2009, Paris, France, 2–4 June 2009, pp. 351–354 (2009)
Liers, F., Pardella, G.: Partitioning planar graphs: a fast combinatorial approach for max-cut. Comput. Optim. Appl. 51(1), 323–344 (2012)
Mahajan, S., Ramesh, H.: Derandomizing approximation algorithms based on semidefinite programming. SIAM J. Comput. 28(5), 1641–1663 (1999)
McGeoch, C.C.: Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice. Synthesis Lectures on Quantum Computing. Morgan & Claypool Publishers, San Rafael (2014)
Mutzel, P.: Graphenalgorithmen, Master Vertiefungsvorlesung. Fakultät für Informatik, TU Dortmund (2016)
Orlova, G.I., Dorfman, Y.G.: Finding the maximum cut in a graph. Eng. Cybern. 10(3), 502–506 (1972)
Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)
Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)
Shih, W.-K., Sun, W., Kuo, Y.-S.: Unifying maximum cut and minimum cut of a planar graph. IEEE Trans. Comput. 39(5), 694–697 (1990)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Dahn, C., Kriege, N.M., Mutzel, P. (2018). A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs. In: Iliopoulos, C., Leong, H., Sung, WK. (eds) Combinatorial Algorithms. IWOCA 2018. Lecture Notes in Computer Science(), vol 10979. Springer, Cham. https://doi.org/10.1007/978-3-319-94667-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-94667-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94666-5
Online ISBN: 978-3-319-94667-2
eBook Packages: Computer ScienceComputer Science (R0)