Skip to main content

A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10979))

Included in the following conference series:

Abstract

We propose a fixed-parameter tractable algorithm for the Max-Cut problem on embedded 1-planar graphs parameterized by the crossing number k of the given embedding. A graph is called 1-planar if it can be drawn in the plane with at most one crossing per edge. Our algorithm recursively reduces a 1-planar graph to at most \(3^k\) planar graphs, using edge removal and node contraction. The Max-Cut problem is then solved on the planar graphs using established polynomial-time algorithms. We show that a maximum cut in the given 1-planar graph can be derived from the solutions for the planar graphs. Our algorithm computes a maximum cut in an embedded 1-planar graph with n nodes and k edge crossings in time \(\mathcal {O}(3^k \cdot n^{3/2} \log n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-planarity of graphs with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 97–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6_9

    Chapter  Google Scholar 

  3. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15(10), 3241 (1982)

    Article  MathSciNet  Google Scholar 

  4. Barahona, F.: Balancing signed toroidal graphs in polynomial time. Departamento de Matematicas, Universidad de Chile, Santiago, Chile (1983)

    Google Scholar 

  5. Barahona, F.: The max-cut problem on graphs not contractible to K5. Oper. Res. Lett. 2(3), 107–111 (1983)

    Article  MathSciNet  Google Scholar 

  6. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988)

    Article  Google Scholar 

  7. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)

    Article  MathSciNet  Google Scholar 

  8. De Simone, C., Diehl, M., Jünger, M., Mutzel, P., Reinelt, G., Rinaldi, G.: Exact ground states of Ising spin glasses: new experimental results with a branch-and-cut algorithm. J. Stat. Phys. 80(1–2), 487–496 (1995)

    Article  Google Scholar 

  9. Galluccio, A., Loebl, M.: Max cut in toroidal graphs. Instituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche, Oktober 1998

    Google Scholar 

  10. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM (JACM) 42(6), 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  11. Grötschel, M., Nemhauser, G.L.: A polynomial algorithm for the max-cut problem on graphs without long odd cycles. Math. Program. 29(1), 28–40 (1984)

    Article  MathSciNet  Google Scholar 

  12. Grötschel, M., Pulleyblank, W.R.: Weakly bipartite graphs and the max-cut problem. Oper. Res. Lett. 1(1), 23–27 (1981)

    Article  MathSciNet  Google Scholar 

  13. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4(3), 221–225 (1975)

    Article  MathSciNet  Google Scholar 

  14. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973)

    Article  MathSciNet  Google Scholar 

  15. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer Computations, New York. The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  16. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theory 72(1), 30–71 (2013)

    Article  MathSciNet  Google Scholar 

  17. Liers, F., Pardella, G.: A simple MAX-CUT algorithm for planar graphs. In: Cafieri, S., Mucherino, A., Nannicini, G., Tarissan, F., Liberti, L., (eds.) Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, CTW 2009, Paris, France, 2–4 June 2009, pp. 351–354 (2009)

    Google Scholar 

  18. Liers, F., Pardella, G.: Partitioning planar graphs: a fast combinatorial approach for max-cut. Comput. Optim. Appl. 51(1), 323–344 (2012)

    Article  MathSciNet  Google Scholar 

  19. Mahajan, S., Ramesh, H.: Derandomizing approximation algorithms based on semidefinite programming. SIAM J. Comput. 28(5), 1641–1663 (1999)

    Article  MathSciNet  Google Scholar 

  20. McGeoch, C.C.: Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice. Synthesis Lectures on Quantum Computing. Morgan & Claypool Publishers, San Rafael (2014)

    Google Scholar 

  21. Mutzel, P.: Graphenalgorithmen, Master Vertiefungsvorlesung. Fakultät für Informatik, TU Dortmund (2016)

    Google Scholar 

  22. Orlova, G.I., Dorfman, Y.G.: Finding the maximum cut in a graph. Eng. Cybern. 10(3), 502–506 (1972)

    MathSciNet  MATH  Google Scholar 

  23. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)

    Article  MathSciNet  Google Scholar 

  24. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MathSciNet  Google Scholar 

  25. Shih, W.-K., Sun, W., Kuo, Y.-S.: Unifying maximum cut and minimum cut of a planar graph. IEEE Trans. Comput. 39(5), 694–697 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Dahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dahn, C., Kriege, N.M., Mutzel, P. (2018). A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs. In: Iliopoulos, C., Leong, H., Sung, WK. (eds) Combinatorial Algorithms. IWOCA 2018. Lecture Notes in Computer Science(), vol 10979. Springer, Cham. https://doi.org/10.1007/978-3-319-94667-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94667-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94666-5

  • Online ISBN: 978-3-319-94667-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics