Abstract
Many existing global constraints can be encoded as a conjunction of among constraints. An among constraint holds if the number of the variables in its scope whose value belongs to a prespecified set, which we call its range, is within some given bounds. It is known that domain filtering algorithms can benefit from reasoning about the interaction of among constraints so that values can be filtered out taking into consideration several among constraints simultaneously. The present paper embarks into a systematic investigation on the circumstances under which it is possible to obtain efficient and complete domain filtering algorithms for conjunctions of among constraints. We start by observing that restrictions on both the scope and the range of the among constraints are necessary to obtain meaningful results. Then, we derive a domain flow-based filtering algorithm and present several applications. In particular, it is shown that the algorithm unifies and generalizes several previous existing results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We want to stress here that a global constraint is not a single constraint but, in fact, a family of them.
References
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows - Theory. Algorithms and Applications. Prentice Hall, Upper Saddle River (1993)
Appa, G., Magos, D., Mourtos, I.: LP relaxations of multiple all_different predicates. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 364–369. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0_25
Appa, G., Magos, D., Mourtos, I.: On the system of two all_different predicates. Inf. Process. Lett. 94(3), 99–105 (2005)
Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: Proceedings of IJCAI 2005, pp. 35–40 (2005)
Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Comput. Modell. 12, 97–123 (1994)
Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Toby Walsh, S.: A useful special case of the CARDPATH constraint. In: Proceedings of ECAI 2008, pp. 475–479 (2008)
Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Range and roots: two common patterns for specifying and propagating counting and occurrence constraints. Artif. Intell. 173(11), 1054–1078 (2009)
Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.-G., Walsh, T.: Propagating conjunctions of alldifferent constraints. In: Proceedings of AAAI 2010 (2010)
Chabert, G., Demassey, S.: The conjunction of interval among constraints. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 113–128. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29828-8_8
Dalmau, V.: Conjunctions of among constraints. Technical report, eprint arXiv:1706.05059 (2017)
Färnqvist, T., Jonsson, P.: Bounded tree-width and CSP-related problems. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 632–643. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77120-3_55
Fellows, M.R., Friedrich, T., Hermelin, D., Narodytska, N., Rosamond, F.A.: Constraint satisfaction problems: convexity makes alldifferent constraints tractable. Theor. Comput. Sci. 472, 81–89 (2013)
Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5), 783–797 (1998)
Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artif. Intell. 124(2), 243–282 (2000)
Hopcroft, J.E., Karp, R.M.: An n\({}^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)
Kocjan, W., Kreuger, P.: Filtering methods for symmetric cardinality constraint. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 200–208. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0_14
Kutz, M., Elbassioni, K.M., Katriel, I., Mahajan, M.: Simultaneous matchings: hardness and approximation. J. Comput. Syst. Sci. 74(5), 884–897 (2008)
Lardeux, F., Monfroy, E., Saubion, F.: Interleaved alldifferent constraints: CSP vs. SAT approaches. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 380–384. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85776-1_34
Laurière, J.-L.: A language and a program for stating and solving combinatorial problems. Artif. Intell. 10(1), 29–127 (1978)
Magos, D., Mourtos, I., Appa, G.: A polyhedral approach to the alldifferent system. Math. Program. 132(1–2), 209–260 (2012)
Maher, M., Narodytska, N., Quimper, C.-G., Walsh, T.: Flow-based propagators for the SEQUENCE and related global constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 159–174. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85958-1_11
Oplobedu, A., Marcovitch, J., Toubier, Y.: CHARME: Un langage industriel de programmation par contraintes, illustré par une application chez renault. In: Proceedings of 9th International Workshop on Expert Systems and their Applications, pp. 55–70 (1989)
Petit, T., Régin, J.-C.: The ordered distribute constraint. Int. J. Artif. Intell. Tools 20(4), 617–637 (2011)
Razgon, I., O’Sullivan, B., Provan, G.: Generalizing global constraints based on network flows. In: Fages, F., Rossi, F., Soliman, S. (eds.) CSCLP 2007. LNCS (LNAI), vol. 5129, pp. 127–141. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89812-2_9
Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of AAAI 1994, pp. 362–367 (1994)
Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Proceedings of AAAI 1996, pp. 209–215 (1996)
Régin, J.-C.: Combination of among and cardinality constraints. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 288–303. Springer, Heidelberg (2005). doi:10.1007/11493853_22
Régin, J.-C., Gomes, C.P.: The cardinality matrix constraint. In: Proceedings of CP 2004, pp. 572–587 (2004)
Régin, J.-C., Puget, J.-F.: A filtering algorithm for global sequencing constraints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg (1997). doi:10.1007/BFb0017428
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)
Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)
Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: Revisiting the sequence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–634. Springer, Heidelberg (2006). doi:10.1007/11889205_44
Jan van Hoeve, W., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New filtering algorithms for combinations of among constraints. Constraints 14(2), 273–292 (2009)
Acknowledgments
The author would like to thank the anonymous referees for many useful comments. This work was supported by the MEIC under grant TIN2016-76573-C2-1-P and the MECD under grant PRX16/00266.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Dalmau, V. (2017). Conjunctions of Among Constraints. In: Beck, J. (eds) Principles and Practice of Constraint Programming. CP 2017. Lecture Notes in Computer Science(), vol 10416. Springer, Cham. https://doi.org/10.1007/978-3-319-66158-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-66158-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66157-5
Online ISBN: 978-3-319-66158-2
eBook Packages: Computer ScienceComputer Science (R0)