Skip to main content

Conjunctions of Among Constraints

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10416))

  • 2053 Accesses

Abstract

Many existing global constraints can be encoded as a conjunction of among constraints. An among constraint holds if the number of the variables in its scope whose value belongs to a prespecified set, which we call its range, is within some given bounds. It is known that domain filtering algorithms can benefit from reasoning about the interaction of among constraints so that values can be filtered out taking into consideration several among constraints simultaneously. The present paper embarks into a systematic investigation on the circumstances under which it is possible to obtain efficient and complete domain filtering algorithms for conjunctions of among constraints. We start by observing that restrictions on both the scope and the range of the among constraints are necessary to obtain meaningful results. Then, we derive a domain flow-based filtering algorithm and present several applications. In particular, it is shown that the algorithm unifies and generalizes several previous existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We want to stress here that a global constraint is not a single constraint but, in fact, a family of them.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows - Theory. Algorithms and Applications. Prentice Hall, Upper Saddle River (1993)

    MATH  Google Scholar 

  2. Appa, G., Magos, D., Mourtos, I.: LP relaxations of multiple all_different predicates. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 364–369. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0_25

    Chapter  Google Scholar 

  3. Appa, G., Magos, D., Mourtos, I.: On the system of two all_different predicates. Inf. Process. Lett. 94(3), 99–105 (2005)

    Article  MATH  Google Scholar 

  4. Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: Proceedings of IJCAI 2005, pp. 35–40 (2005)

    Google Scholar 

  5. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Comput. Modell. 12, 97–123 (1994)

    Article  MATH  Google Scholar 

  6. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Toby Walsh, S.: A useful special case of the CARDPATH constraint. In: Proceedings of ECAI 2008, pp. 475–479 (2008)

    Google Scholar 

  7. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Range and roots: two common patterns for specifying and propagating counting and occurrence constraints. Artif. Intell. 173(11), 1054–1078 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.-G., Walsh, T.: Propagating conjunctions of alldifferent constraints. In: Proceedings of AAAI 2010 (2010)

    Google Scholar 

  9. Chabert, G., Demassey, S.: The conjunction of interval among constraints. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 113–128. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29828-8_8

    Chapter  Google Scholar 

  10. Dalmau, V.: Conjunctions of among constraints. Technical report, eprint arXiv:1706.05059 (2017)

  11. Färnqvist, T., Jonsson, P.: Bounded tree-width and CSP-related problems. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 632–643. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77120-3_55

    Chapter  Google Scholar 

  12. Fellows, M.R., Friedrich, T., Hermelin, D., Narodytska, N., Rosamond, F.A.: Constraint satisfaction problems: convexity makes alldifferent constraints tractable. Theor. Comput. Sci. 472, 81–89 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5), 783–797 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artif. Intell. 124(2), 243–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hopcroft, J.E., Karp, R.M.: An n\({}^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kocjan, W., Kreuger, P.: Filtering methods for symmetric cardinality constraint. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 200–208. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0_14

    Chapter  Google Scholar 

  17. Kutz, M., Elbassioni, K.M., Katriel, I., Mahajan, M.: Simultaneous matchings: hardness and approximation. J. Comput. Syst. Sci. 74(5), 884–897 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lardeux, F., Monfroy, E., Saubion, F.: Interleaved alldifferent constraints: CSP vs. SAT approaches. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 380–384. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85776-1_34

    Chapter  Google Scholar 

  19. Laurière, J.-L.: A language and a program for stating and solving combinatorial problems. Artif. Intell. 10(1), 29–127 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Magos, D., Mourtos, I., Appa, G.: A polyhedral approach to the alldifferent system. Math. Program. 132(1–2), 209–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maher, M., Narodytska, N., Quimper, C.-G., Walsh, T.: Flow-based propagators for the SEQUENCE and related global constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 159–174. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85958-1_11

    Chapter  Google Scholar 

  22. Oplobedu, A., Marcovitch, J., Toubier, Y.: CHARME: Un langage industriel de programmation par contraintes, illustré par une application chez renault. In: Proceedings of 9th International Workshop on Expert Systems and their Applications, pp. 55–70 (1989)

    Google Scholar 

  23. Petit, T., Régin, J.-C.: The ordered distribute constraint. Int. J. Artif. Intell. Tools 20(4), 617–637 (2011)

    Article  Google Scholar 

  24. Razgon, I., O’Sullivan, B., Provan, G.: Generalizing global constraints based on network flows. In: Fages, F., Rossi, F., Soliman, S. (eds.) CSCLP 2007. LNCS (LNAI), vol. 5129, pp. 127–141. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89812-2_9

    Chapter  Google Scholar 

  25. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of AAAI 1994, pp. 362–367 (1994)

    Google Scholar 

  26. Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Proceedings of AAAI 1996, pp. 209–215 (1996)

    Google Scholar 

  27. Régin, J.-C.: Combination of among and cardinality constraints. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 288–303. Springer, Heidelberg (2005). doi:10.1007/11493853_22

    Chapter  Google Scholar 

  28. Régin, J.-C., Gomes, C.P.: The cardinality matrix constraint. In: Proceedings of CP 2004, pp. 572–587 (2004)

    Google Scholar 

  29. Régin, J.-C., Puget, J.-F.: A filtering algorithm for global sequencing constraints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg (1997). doi:10.1007/BFb0017428

    Chapter  Google Scholar 

  30. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  31. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: Revisiting the sequence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–634. Springer, Heidelberg (2006). doi:10.1007/11889205_44

    Chapter  Google Scholar 

  33. Jan van Hoeve, W., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New filtering algorithms for combinations of among constraints. Constraints 14(2), 273–292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous referees for many useful comments. This work was supported by the MEIC under grant TIN2016-76573-C2-1-P and the MECD under grant PRX16/00266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to VĂ­ctor Dalmau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dalmau, V. (2017). Conjunctions of Among Constraints. In: Beck, J. (eds) Principles and Practice of Constraint Programming. CP 2017. Lecture Notes in Computer Science(), vol 10416. Springer, Cham. https://doi.org/10.1007/978-3-319-66158-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66158-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66157-5

  • Online ISBN: 978-3-319-66158-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics