Abstract
Learning cluster-based classification systems is the process of partitioning a training set into data subsets (clusters), and then building a local classifier for each data cluster. The class of a new instance is predicted by first assigning the instance to its nearest cluster, and then using that cluster’s local classification model to predict the instance’s class. In this paper, we use the Ant Colony Optimization (ACO) meta-heuristic to optimize the data clusters based on a given classification algorithm in an integrated cluster-with-learn manner. The proposed ACO algorithms use two different clustering solution representation approaches: instance-based and medoid-based, where in the latter the number of clusters is optimized as part of the ACO algorithm’s execution. In our experiments, we employ three widely-used classification algorithms, k-nearest neighbours, Ripper, and C4.5, and evaluate performance on 30 UCI benchmark datasets. We compare the ACO results to the traditional c-means clustering algorithm, where the data clusters are built prior to learning the local classifiers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdelbar, A.M., Salama, K.M.: Clustering with the ACOR algorithm. In: Swarm Intelligence, LNCS, vol. 9882, pp. 210–222 (2016)
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications. SIAM Press, Philadelphia (2007)
Jafar, M., Sivakumar, R.: Ant-based clustering algorithms: a brief survey. Int. J. Comput. Theor. Eng. 2, 787–796 (2010)
Liao, T., Socha, K., de Montes Oca, M., Stützle, T., Dorigo, M.: Ant colony optimization for mixed-variable optimization problems. IEEE Trans. Evol. Comput. 18(4), 503–518 (2014)
Liu, X.Y., Fu, H.: An effective clustering algorithm with ant colony. J. Comput. 5, 598–605 (2010)
Martens, D., De Backer, M., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.: Classification with ant colony optimization. IEEE Trans. Evol. Comput. 11(5), 651–665 (2007)
Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data mining. Mach. Learn. 82(1), 1–42 (2011)
Otero, F.E., Freitas, A.A., Johnson, C.: A new sequential covering strategy for inducing classification rules with ant colony algorithms. IEEE Trans. Evol. Comput. 17(1), 64–74 (2013)
Otero, F.E., Freitas, A.A., Johnson, C.G.: Handling continuous attributes in ant colony classification algorithms. In: IEEE Symposium on Computational Intelligence in Data Mining (CIDM 2009), pp. 225–231 (2009)
Otero, F.E., Freitas, A.A., Johnson, C.G.: Inducing decision trees with an ant colony optimization algorithm. Appl. Soft Comput. 12(11), 3615–3626 (2012)
Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony optimization algorithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)
Salama, K.M., Abdelbar, A.M.: Learning neural network structures with ant colony algorithms. Swarm Intell. 9(4), 229–265 (2015)
Salama, K.M., Abdelbar, A.M., Anwar, I.M.: Data reduction for classification with ant colony optimization. Intelligent Data Analysis (2016, to appear)
Salama, K.M., Abdelbar, A.M., Freitas, A.A.: Multiple pheromone types and other extensions to the ant-miner classification rule discovery algorithm. Swarm Intell. 5(3–4), 149–182 (2011)
Salama, K.M., Abdelbar, A.M., Helal, A.Z., Freitas, A.A.: Instance-based classification with ant colony optimization. Intelligent Data Analysis (accepted, 2016)
Salama, K.M., Freitas, A.A.: Clustering-based Bayesian multi-net classifier construction with ant colony optimization. In: IEEE Congress on Evolutionary Computation (IEEE CEC), pp. 3079–3086 (2013)
Salama, K.M., Freitas, A.A.: Learning Bayesian network classifiers using ant colony optimization. Swarm Intell. 7(2–3), 229–254 (2013)
Salama, K.M., Freitas, A.A.: ABC-Miner+: constructing Markov blanket classifiers with ant colony algorithms. Memetic Comput. 6(3), 183–206 (2014)
Salama, K.M., Freitas, A.A.: Classification with cluster-based Bayesian multi-nets using ant colony optimization. Swarm Evol. Comput. 18, 54–70 (2014)
Salama, K.M., Freitas, A.A.: Ant colony algorithms for constructing Bayesian multi-net classifiers. Intell. Data Anal. 19(2), 233–257 (2015)
Salama, K.M., Otero, F.E.: Learning multi-tree classification models with ant colony optimization. In: 6th International Conference on Evolutionary Computation Theory and Applications (ECTA 2014), pp. 38–48 (2014)
Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D.: An ant colony approach for clustering. Anal. Chim. Acta 509(2), 187–195 (2004)
Socha, K., Blum, C.: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput. Appl. 16, 235–247 (2007)
Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 2nd edn. Addison Wesley, Reading (2005)
Whitley, D., Dominic, S., Das, R., Anderson, C.: Genetic reinforcement learning for neurocontrol problems. Mach. Learn. 13(2–3), 259–284 (1993)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, San Francisco (2010)
Xu, R., Wunsch, D.: Clustering. Wiley-IEEE Press, Hoboken (2009)
Acknowledgments
Partial support of a grant from the Brandon University Research Council is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Salama, K.M., Abdelbar, A.M. (2016). Using Ant Colony Optimization to Build Cluster-Based Classification Systems. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2016. Lecture Notes in Computer Science(), vol 9882. Springer, Cham. https://doi.org/10.1007/978-3-319-44427-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-44427-7_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44426-0
Online ISBN: 978-3-319-44427-7
eBook Packages: Computer ScienceComputer Science (R0)