Abstract
Spatial regions are a fundamental abstraction of geographic phenomena. While simple regions—disk-like and simply connected—prevail, in partitions complex configurations with holes and/or separations occur often as well. Swiss cantons are one highlighting example of these, bringing in addition variations of holes and separations with point contacts. This paper develops a formalism to construct topologically distinct configurations based on simple regions. Using an extension to the compound object model, this paper contributes a method for explicitly constructing a complex region, called a canton region, and also provides a mechanism to determine the corresponding complement of such a region.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The other hole in Switzerland, filled by the German exclave of BĂĽsingen, is a hole formed by the union of the cantons Schaffhausen, Thurgau, and ZĂĽrich so that no single Swiss canton has a hole filled by the German exclave.
- 2.
Although most maps account only two holes in Vaud, a third hole is occupied by a monastery in Avenches, which is an exclave of the canton Fribourg. The swisstopo vector map swissBOUNDARIES3D captures the hole correctly. The 2000 Swiss Census also accounts for this Fribourgeois exclave.
References
Adams, C.C., Franzosa, R.D.: Introduction to Topology: Pure and Applied. Pearson Prentice Hall, Upper Saddle River (2008)
Beales, D.E.D., Biagini, E.F.: The Risorgimento and the Unification of Italy. Pearson Education, Harlow (2002)
Clementini, E., Sharma, J., Egenhofer, M.J.: Modelling topological spatial relations: strategies for query processing. Comput. Graph. 18(6), 815–822 (1994)
Cohn, A.G., Renz, J.: Qualitative spatial representation and reasoning. In: van Hermelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 551–596. Elsevier, Amsterdam (2008)
Cohn, A.G., Varzi, A.: Mereotopological connection. J. Philos. Logic 32, 357–390 (2003)
Dube, M.P., Barrett, J.V., Egenhofer, M.J.: From metric to topology: determining relations in discrete space. In: Fabrikant, S.I., et al. (eds.) COSIT 2015. LNCS. vol. 9368, pp. xx--yy. Springer, Heidelberg (2015)
Dube, M.P., Egenhofer, M.J.: An Ordering of Convex Topological Relations. In: Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol. 7478, pp. 72–86. Springer, Heidelberg (2012)
Dube, M.P., Egenhofer, M.J.: Surrounds in Partitions. In: Huang, Y., Schneider, M., Gertz, M., Krumm, J., Sankaranarayanan, J. (eds.) ACM SIGSPATIAL 2014, pp. 233–242. ACM Press, New York (2014)
Duckham, M., Li, S., Liu, W., Long, Z.: On redundant topological constraints. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) KR 2014. AAAI Press, Menlo Park (2014)
Edmonds, J.: A combinatorial representation of polyhedral surfaces. Not. Am. Math. Soc. 7, 646 (1960)
Egenhofer, M.J.: A reference system for topological relations between compound spatial objects. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp. 307–316. Springer, Heidelberg (2009)
Egenhofer, M.: Spherical topological relations. In: Spaccapietra, S., Zimányi, E. (eds.) Journal on Data Semantics III. LNCS, vol. 3534, pp. 25–49. Springer, Heidelberg (2005)
Egenhofer, M.J., Dube, M.P.: Topological relations from metric refinements. In: Agrawal, D., Arefw, W., Lu, C., Mokbel, M., Scheurmann, P., Shahabi, C., Wolfson, O. (eds.) ACM SIGSPATIAL 2009, pp. 158–167. ACM Press, New York (2009)
Egenhofer, M.J., Franzosa, R.D.: On the equivalence of topological relations. Int. J. Geogr. Inf. Syst. 9(2), 133–152 (1995)
Egenhofer, M.J., Franzosa, R.D.: Point-set topological spatial relations. Int. J. Geogr. Inf. Syst. 5(2), 161–174 (1991)
Egenhofer, M.J., Herring, J.R.: Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases. Technical report, Department of Surveying Engineering, University of Maine (1990)
Egenhofer, M., Vasardani, M.: Spatial reasoning with a hole. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 303–320. Springer, Heidelberg (2007)
Glass, H.E.: Ethnic diversity, elite accommodation and federalism in Switzerland. Publius 7(4), 31–48 (1977)
Hampe, B., Grady, J.E. (eds.): From Perception to Meaning: Image Schemas in Cognitive linguistics, vol. 29. Walter de Gruyter, Berlin (2005)
Hu, Y., Ravada, S., Anderson, R., Bamba, B.: Supporting Topological Relationship Queries for Complex Regions in Oracle Spatial. In: Cruz, I.F., Knoblock, C.A., Kröger, P., Krumm, J., Tanin, E., Widmayer, P. (eds.) SIGSPATIAL 2012, pp. 3–12. ACM Press, New York (2013)
Klippel, A.: Spatial information theory meets spatial thinking: is topology the Rosetta Stone of spatio-temporal cognition? Ann. Assoc. Am. Geogr. 102(6), 1310–1328 (2012)
Klippel, A., Li, R., Yang, J., Hardisty, F., Xu, S.: The Egenhofer-Cohn–Hypothesis or, topological relativity? In: Mark, D.M., Frank, A.U., Raubal, M. (eds.) Cognitive and Linguistic Aspects of Geographic Space, pp. 195–215. Springer, Heidelberg (2013)
Kurata, Y.: The 9+-intersection: a universal framework for modeling topological relations. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 181–198. Springer, Heidelberg (2008)
Lewis, J.A., Dube, M.P., Egenhofer, M.J.: The topology of spatial scenes in ℝ2. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 495–515. Springer, Heidelberg (2013)
Lewis, J.A., Egenhofer, M.J.: Oriented regions for linearly conceptualized features. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds.) GIScience 2014. LNCS, vol. 8728, pp. 333–348. Springer, Heidelberg (2014)
Li, S.: A complete classification of topological relations using the 9-intersection method. Int. J. Geogr. Inf. Sci. 20(6), 589–610 (2006)
Li, S., Li, Y.: On the complemented disk algebra. The J. Logic Algebraic Program. 66(2), 195–211 (2006)
Milner, R.: pure bigraphs: structure and dynamics. Inf. Comput. 204(1), 60–122 (2006)
Open GIS Consortium, Inc.: OpenGIS® Simple Feature Specification for SQL. OpenGIS Project Document 99–049 (1999)
Parker, N., Vaughan-Williams, N.: Lines in the sand? Towards an agenda for critical border studies. Geopolitics 14(3), 582–587 (2009)
Randell, D.A., Cui, Z., Cohn, A.G.: A Spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W.R. (eds.) KR 92, pp. 165–176. Morgan Kaufmann, San Francisco (1992)
RodrĂguez, M.A., Egenhofer, M.J., Blaser, A.D.: Query pre-processing of topological constraints: comparing a composition-based with neighborhood-based approach. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J.F., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 275, pp. 362–379. Springer, Heidelberg (2003)
Saucier, R.T.: Evidence for episodic sand-blow activity during the 1811–1812 New Madrid (Missouri) earthquake series. Geology 17(2), 103–106 (1989)
Schneider, M., Behr, T.: Topological relationships between complex spatial objects. ACM Trans. Database Syst. 31(1), 39–81 (2006)
Smith, B.: Fiat Objects. Topoi 20(2), 131–148 (2001)
Sridhar, M., Cohn, A.G., Hogg, D.C.: From video to RCC8: exploiting a distance based semantics to stabilise the interpretation of mereotopological relations. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 110–125. Springer, Heidelberg (2011)
Tutte, W.T.: What is a map? In: Harary, F. (ed.) New Directions in the Theory of Graphs, pp. 309–325. Academic Press, New York (1973)
Tyler, A., Evans, V.: The Semantics of English Prepositions. CUP, Cambridge (2003)
Varzi, A.C.: Spatial reasoning in a holey world. In: Torasso, P. (ed.) AI*IA 93, pp. 326–336. Springer, Heidelberg (1993)
Vasardani, M., Egenhofer, M.J.: Comparing Relations with a Multi-holed Region. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 159–176. Springer, Heidelberg (2009)
Whyte, B.R.: En Territoire Belge et à Quarante Centimètres de la Frontière: An Historical and Documentary Study of the Belgian and Dutch Enclaves of Baarle-Hertog and Baarle-Nassau. University of Melbourne (2004)
Worboys, M.: The maptree: a fine-grained formal representation of space. In: Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol. 7478, pp. 298–310. Springer, Heidelberg (2012)
Worboys, M.: Using maptrees to characterize topological change. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 74–90. Springer, Heidelberg (2013)
Worboys, M.F., Bofakos, P.: A canonical model for a class of areal spatial objects. In: Abel, D.J., Ooi, B.C., (eds.) SSD 1993. LNCS, vol. 692, pp. 36–52. Springer, Heidelberg (1993)
Worboys, M.F., Duckham, M.: Monitoring qualitative spatial change for geosensor networks. Int. J. Geogr. Inf. Sci. 20(10), 1087–1108 (2006)
Zlatev, J.: Spatial semantics. In: Geeraerts, D., Cuyckens, H. (eds.) The Oxford Handbook of Cognitive Linguistics, pp. 318–350. Oxford University Press Inc., New York (2007)
Acknowledgments
Matthew Dube is partially supported by a Michael J. Eckardt Dissertation Fellowship from the University of Maine. Max Egenhofer’s research was partially supported by NSF grant IIS-1016740. Joshua Lewis is supported by a teaching assistantship at the University of Maine.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Dube, M.P., Egenhofer, M.J., Lewis, J.A., Stephen, S., Plummer, M.A. (2015). Swiss Canton Regions: A Model for Complex Objects in Geographic Partitions. In: Fabrikant, S., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds) Spatial Information Theory. COSIT 2015. Lecture Notes in Computer Science(), vol 9368. Springer, Cham. https://doi.org/10.1007/978-3-319-23374-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-23374-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23373-4
Online ISBN: 978-3-319-23374-1
eBook Packages: Computer ScienceComputer Science (R0)